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Abstract. Understanding human motion in unconstrained 2D videos has been a
central theme in Computer Vision research for decades, and over the years many
attempts have been made to design effective representations of video content. In
this paper, we apply to gait recognition the Motion Interchange Patterns (MIP)
framework, a 3D extension of the LBP descriptors to videos that was success-
fully employed in action recognition. This effective framework encodes motion
by capturing local changes in motion directions. Our scheme does not rely on sil-
houettes commonly used in gait recognition, and benefits from the capability of
MIP encoding to model real world videos. We empirically demonstrate the effec-
tiveness of this modeling of human motion on several challenging gait recognition
datasets.
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1 Introduction

Human gait is a valuable biometric characteristic describing the coordinated, cyclic
movements of a walking person. Gait analysis is available where other biometrics can-
not be measured, as gait can be recognized from a distance, does not require cooperation
or even awareness of the subject, and works well on low resolution videos as recorded
by standard surveillance cameras. The main challenge of gait recognition is the inherent
large variability due to physical factors such as injuries or fatigue, carrying a load or
wearing motion restrictive clothes.

Over the years many attempts have been made to design effective representations
of video content. These range from high-level shape representations, to methods which
consider low-level appearance and motion cues. In the task of Action recognition, the
video representation aims to distinguish among human actions regardless of their per-
former. Interestingly, motion representations developed for action recognition and ap-
plied for gait recognition [13, 15, 5, 31, 9] demonstrate good perception within the same
action (walking).

In this work, we adopt the Motion Interchange Patterns (MIP) [20] representation
that was developed for action recognition applications. MIP encodes motion directly
from video frames, and does not require preprocessing such as extracting the silhouette
from the background or finding the cycles of the motion as other methods do. This rich
local representation of human motion produces a discriminative signature of human
cyclic gait motion. We suggest adaptations of the original MIP scheme to gait based
identification.
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2 Gait Recognition

Gait recognition approaches can be roughly divided into model-based and model-free
categories. The model-based family of methods use knowledge about the body shape
for the gait analysis. Model matching is performed in each frame in order to measure
the physical gait parameters such as trajectories, limb length and angular speed.

Model-free techniques capture gait characteristics by analyzing the feature distri-
bution over the space and time extent of the motion. These techniques often rely on
extracting the human silhouette in every frame under the assumption that the interest-
ing information about gait pattern lies in the body shape and contour. Popular methods
such as the GEI variants [11] estimate the gait period and average the silhouettes over
each cycle. Motion features are then computed either directly on the silhouette charac-
teristics or by modeling the silhouette sequence using, for example, optical flow [24] or
dynamic texture descriptors [22].

The human silhouette represents human body motions in a compact and efficient
way but requires background subtraction, a challenging task for realistic backgrounds.
Identification performance is sensitive to the silhouettes quality, hence silhouette-based
methods are not well adjusted to unconstrained environment. Additionally, relying merely
on silhouettes might miss out details containing significant motion information.

In a recent line of work, descriptors extracted directly from video frames, that were
originally developed for action recognition, are applied to gait recognition. A few ex-
amples are LBP descriptors [16], HOG variants [13, 15, 5], histogram of 3D binary
patterns [31] and dense trajectories [9] .

3 Action Recognition Descriptors

A central family of action recognition approaches uses low-level representation schemes
of the information in a video. These approaches can be further categorized as local de-
scriptors [25], optical flow based methods [1] and dynamic-texture representations [35].

Local descriptors [21, 33, 27] capture the locality of the human motion in time and
space. As a first stage, pixels that are potentially significant to understand the scenario
are detected and the region around them is represented by a local descriptor. To repre-
sent the entire video, these descriptors are processed and combined using, for example,
a bag-of-words representation [26]. A major drawback of this approach is the sensitiv-
ity to the number of interest points detected. When a small number of interest points is
detected, there is insufficient information for recognition. Videos with too much motion
(such as waves or leaves in the wind) may provide a lot of information irrelevant for
recognition.

The optical flow between successive frames [1, 30], sub-volumes of the video [18],
or surrounding the central motion [7, 8] is highly valuable for Action Recognition. A
drawback of optical flow methods is committing too soon to a particular motion estimate
at each pixel. When these estimates are mistaken, they affect subsequent processing by
providing incorrect information.

Dynamic-texture representations extend existing techniques for recognizing tex-
tures in 2D images to time-varying “dynamic textures” [19, 12]. One such technique
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is Local Binary Patterns (LBP) [28], that extracts texture using local comparisons be-
tween a pixel and the pixels surrounding it, and encodes these relations as a short binary
string. The frequencies of these binary strings are combined to represent the entire im-
age region.

The Local Trinary Patterns (LTP) descriptor of [35] is an LBP extension to videos.
An LTP code of a pixel is a trinary string that is computed by considering the relations
among patches centered around the pixel in consecutive frames. A video is partitioned
into a regular grid of non-overlapping cells and the histograms of the LTP codes in each
cell are then concatenated to represent the entire video.

In this work, we adopt a dynamic-texture based representation, the Motion Inter-
change Patterns (MIP) [20], a leading video representation that was developed and
evaluated on action recognition applications. This representation reflects the range of
possible changes in motion and their likelihoods of occurring at each pixel in the video.
Static edges are indicated by identifiable combinations of the MIP values, and may
be ignored by subsequent processing. MIP codes also allow effective camera motion
compensation, required in unconstrained videos.

4 Motion Interchange Patterns

Given an input video, the MIP encoding [20] assigns eight trinary strings consisting of
eight digits each, to every pixel in every frame. A single digit compares the compatibil-
ity of one motion in a specific direction from the previous frame to the current frame,
and one motion in another direction from the current frame to the next one. Figure 1
illustrates the motion structure extracted from comparing different patches.
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Fig. 1. Representation of motion comparisons of patches from three successive frames. For a
given pixel and frame, blue arrows show the motion from a patch in the preceding frame and red
arrows show the motion to a patch in the succeeding frame.

The code of a given pixel p in the current frame, denoted S(p), is constructed by
considering eight possible 3 × 3 patches around p in both preceding and successive
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frames. Each digit in S(p) refers to a pair of patches, one from the preceding frame and
another from the following frame, out of 64 such pairs.

The sum of squared differences (SSD) patch-comparison operator is used to set
the matching bit. Denote by SSD1 (SSD2) the sum of squared differences between the
patch in the previous (next) frame and the patch in the current frame, as depicted in
Figure 2. Each trit, Si,j(p), is computed as follows, for some threshold parameter θ:

Si,j(p) =

 1 if SSD1− θ > SSD2
0 if |SSD2− SSD1| ≤ θ
−1 if SSD1 < SSD2− θ

(1)


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Fig. 2. Each trinary digit in the MIP encoding represents a comparison of two SSD scores, both
referring to the same central patch (in green). SSD1 is computed between the central patch and
a patch in the previous frame (in blue), and SSD2 is computed between the central patch and a
patch in the next frame (in red).

A value of −1 indicates that the former motion is more likely and 1 indicates that
the latter is more likely. The 0 value indicates that both are compatible in approximately
the same degree or that there is no motion is this location. MIP compares all eight
motions to the eight subsequent motions, obtaining a comprehensive characterization
of the change in motion at each video pixel.
MIP Global Descriptor Denote by i and j the patch locations taken from the previous
and following frames respectively, and let α be the angle between direction i and di-
rection j out of the eight possible angle values. There are eight (i, j) pairs for each α,
and the concatenation of their Si,j(p) values creates a trinary string. Each 8-trit string
is separated into two binary strings, a positive string indicating the ones and a negative
string indicating the minus ones, and translated into an integer in the range 0-255. Each
pixel obtains 16 integer values, two values per α, that represent the complete motion
interchange pattern for that pixel.

For each angle α, two histograms of size 256 are pooled (for the values taken from
the positive and negative binary strings ,separately) from a 16 × 16 patch around each
image pixel and concatenated, thus creating 512-dimensional MIP features. A dictio-
nary containing 5000 code words is constructed using k-means on a random subset of
MIP features (50000 in our experiments), taken from the encoded gallery set videos.
Then, each local string is assigned to the closest word in the dictionary. Denote by uα

the histogram of the dictionary code words in the entire movie, normalized to the sum
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of one and containing the square root of each element. The global descriptor of a video
clip is a concatenation of the eight uα histograms of all channels.

5 MIP-based Gait Recognition

Our baseline method employs MIP encoding on videos to find a motion signature of a
walking person. We compute the MIP encoding for each video, and then use the local
features to create a global descriptor for the whole video as described in section 4.

The MIP encoding is well adapted to gait recognition. The MIP descriptor is a nor-
malized histogram of a bag-of-words of the patterns, hence contains pattern frequencies
and does not require finding the gait cycles explicitly. We assume that each video con-
tains at least one gait cycle. Moreover, significant motion patterns tend to repeat in each
cycle while noise is random, and are therefore better represented in the histogram.

Another advantage is that MIP does not require silhouette extraction but rather
works directly on the video frames. When MIP encoding is applied to moving silhou-
ettes, the boundaries of the body motion are well encoded but other relevant details in
the raw video are lost (e.g. the hand swing when passing over the body).

Designed for the action recognition task, MIP implicitly decodes all moving ob-
jects in the scene. Therefore, in a video clip containing a single walking person, MIP
implicitly decodes the moving person without prior knowledge of the body location,
while other methods require external human detection [15] or bounding box assign-
ment. However, when the scene contains other consistently moving objects, their mo-
tion is encoded as well, hence narrowing down the area of interest might be needed.

We suggest two modifications of MIP adjusted for gait recognition - confounding
details removal and temporal MIP.
Confounding Details Removal. MIP is an appearance-based method, hence, along
with the action of interest, it encodes other details that can be misleading in the back-
ground or outfit. The standard MIP partly overcomes confusing information by down-
scaling the input images into a fixed size (100×134 in our experiments) before applying
MIP. However, the degraded image quality affects the expressiveness of pose descrip-
tion that might be valuable for analyzing the motion, for example in the elbows region.
Hence, after downscaling we upscale the frames to their original size by interpolation
and compute MIP on the original size frames. We acquire a precise MIP encoding of
moving body parts represented by significantly more features compared to MIP on the
downscaled images, without being distracted by misleading details. This form of filter-
ing is more suitable compared to conventional direct low-pass filtering on the original
image, as it tends to remove textures while keeping depth boundaries without distorting
the moving shape. By removing confounding patterns, the weight of the motion pat-
terns relevant for gait identification is increased, thus improving the representation of
the motion in the learned dictionaries.

As shown in Figure 3, the resulting encoding follows the moving body parts accu-
rately.
Temporal MIP. The local motion pattern used in the standard MIP compares local mo-
tion in a three-sequential-frame scope, symmetrical in both preceding and successive
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(a) (b)

(c) (d)

(e) (h)

Fig. 3. MIP encoding. The first row contains images from CASIA-B, the second row contains
images from CASIA-C, and the bottom row contains images from TUMGAID. In each row, the
left image shows the standard MIP encoding and the right image shows MIP with confounding
details removal. The encoding after details removal is sharpened and represent the moving human
body in greater accuracy. The coded motions are illustrated by color coding pixels by their 8-trit
strings content, for a specific α between the compared directions. Blue - motion from the previous
frame to the current frame, red - motion from the current frame to the next frame. In image (e),
the bricks shape within the shade is encoded, contributing misleading motion patterns. In image
(h), details removal is applied and the shade is not encoded as a part of the moving object.
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directions. The temporal MIP suggested here enlarges the temporal scope by consider-
ing temporal a-symmetric scopes of motion.

The MIP encoding described in section 4 is computed for a given frame t on frames
t − 1, t and t + 1. The temporal MIP further encodes MIP on frames t − 2, t and
t + 1 and on frames t − 1, t and t + 2, and illustrated in Figure 4. A normalized
histogram is constructed separately for every α in each of these encodings. Finally, the
global descriptor is a concatenation of all 24 histograms. According to our experiments,
extending the temporal scope to the symmetric five frames encoding does not improve
performance either by its own or when concatenated with the suggested encoding.

Fig. 4. Visualization of the Temporal MIP extension. Standard MIP encodes three successive
frames, t− 1, t and t+1 (solid arrows). Temporal MIP additionally encodes frames t− 1, t and
t + 2 (dotted arrows), and frames t − 1, t, and t + 2 (dashed arrows). Frame t is emphasized in
red.

Figure 5 describes the features extracted by the three MIP components of the tem-
poral MIP on examples from CASIA-B and CASIA-C datasets, both on the downscaled
frames and on the original size frames after details removal. The details removal vari-
ant is computed on the frames enlarged to their original size, thus produces significantly
more features to describe the same action compared to standard MIP.

6 Classification

Given a gallery set, each image is represented by a global descriptor. These descriptors
are used to train a multiclass linear SVM classifier. For N different subjects (class
labels), N binary classifiers are obtained in the One-vs-All scheme. Prediction of a new
example is performed by extracting its global descriptor, applying all binary classifiers
and choosing the subject whose matching classifier gains the highest confidence score.

7 Experiments

We demonstrate our method on the CASIA-B and CASIA-C datasets and on the re-
cently published TUM-GAID dataset. These datasets are challenging, containing vari-
ous walking styles such as walking in different paces, walking while wearing a coat and
carrying a bag or wearing restrictive shoes. Variation in the time of recording given in
the TUM-GAID dataset are not tested here.
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Fig. 5. Representation of the Temporal MIP local features on walking people from the CASIA
datasets. Images (a)-(d) show temporal MIP features on a video taken from CASIA-B , (e)-(h)
show the details removal variant on the same video. Images (i)-(l) show temporal MIP features on
a video taken from CASIA-C, and (m)-(p) show the details removal variant. In the details removal
variant, MIP is applied on the full sized frames and hence contains more features. Legend: green
pluses - standard MIP features, blue stars - MIP features on frames (t− 2, t, t+ 1), red circles -
MIP features on frames (t − 1, t, t + 2). The features of all three encodings participating in the
temporal MIP tend to occur in similar locations.

We test the performance of our method for standard MIP and temporal MIP rep-
resentations, both with and without confounding details removal, and compare to the
results reported by other methods on these datasets.

Performance is evaluated by the classification accuracy – the rate of correct iden-
tification by the first match. Experimentally, in most cases our method is comparable
or superior to the other approaches, and the temporal MIP and confounding details re-
moval adjustments usually outperform the vanilla MIP classification.
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Table 1. The evaluation protocols for the CASIA-B dataset. Gallery and probe size represents the
number of examples taken for each of the 124 subjects participating in the evaluation test. (a) first
set of experiments, the protocol is defined in [38], (b) second set of experiments, the protocol is
defined in [16]

Gallery Probe
NN - first 4 NN - last 2
NN - first 4 BG - 2
NN - first 4 CL - 2

(a)

Gallery Probe
NN - 5 NN -1
NN - 6 CL - 2
NN - 6 BG - 2
CL - 1 CL - 1
CL - 2 NN - 6
CL - 2 BG - 2
BG - 1 BG - 1
BG - 2 NN - 6
BG - 2 CL - 2

(b)

7.1 CASIA-B

The CASIA-B dataset [38] is a large multi-view gait database, containing 124 subjects
captured from 11 views. For each subject, three walking styles are recorded - six video
clips of normal walk (NN), two of carrying a bag (BG), and two of wearing a coat
(CL). CASIA-B was recorded in a controlled indoor environment, with no textured
outfits. Therefore, the performance of the details removal MIP in this case is equivalent
to a direct encoding of the frames in their original resolution with no filtering applied.

In this work, only recordings captured from a lateral viewpoint are considered. The
protocols used for testing are described in Table 1. The first set of experiments follows
the evaluation protocol suggested in [38]. It uses as gallery the first four normal walk
(NN) sequences per subject and three probe sets, one per each walking style. The second
set of experiments follows the evaluation protocol in [16] and contains all gallery-probe
combinations of walking styles.

Table 2 compares the performance on the first set of experiments. The results on
the left refer to probe NN, and the results on the rigth refer to probes BG and CL. All
compared methods except LBP-Flow [16] rely on silhouette extraction. Our method
achieves good performance on the NN probe, and the details removal variants generalize
well to the other walking styles, outperforming the other methods on the BG probe by
∼ 5%, and achieving the second best result on the CL probe.

Table 3 compares performance of standard MIP against LBP-Flow [16] for all com-
binations of walking styles per gallery and probe, following the evaluation protocol
given in [16]. When the gallery and probe contain different walking styles, all existing
sequences are used in both gallery and probe. When the gallery and probe share the
same walking style, cross-validation is performed with one example per subject as the
probe and the other examples in the gallery, and the average performance is reported.
In all combinations, MIP variants outperform LBP-FLOW by a large gap.
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Table 2. Comparison on CASIA-B dataset from a lateral viewpoint. The model is trained on
normal walking and tested separately on each of the walking styles. Left - comparison of the
performance on the normal (NN) style probe, right - comparison of the performance on carrying
a bag (BG) and wearing a coat (CL). (*) The Robust method [17] is trained on three examples per
subject and tested on the remaining examples, differently from the protocol defined in Table 1

Method NN
MIP 95.96
Temporal MIP 96.37
MIP + Detail removal 98.79
Temporal MIP + Detail removal 99.19
LBP-FLOW [16] 94
HWLD [31] 100
GEI+ nn [38] 97.6
GEI + LDA [11] (results from [4]) 83.1
PSC [23] 97.7
FDEI - Wavelet [4] 90.3
FDEI - Frieze [4] 91.1
IDTW [37] 83.5

Method BG CL
MIP 87.9 55.64
Temporal MIP 88.3 57.66
MIP + Details removal 98.38 83.87
Temporal MIP + Details Removal 97.98 77.82
LBP-FLOW [16] 45.2 42.9
HWLD [31] 92.2 96.5
GEI+ nn [38] 32.7 52.0
GFI Fusion [3] 83.6 48.8
Cross-view [2] 78.3 44.0
Robust(*) [17] 91.9 78.0
PRWGEI [36] 93.1 44.4

Table 3. Comparison on CASIA-B dataset of all combinations of gallery and probe against LBP-
FLOW, following the protocol specified in Table 1(b). The number of examples in the gallery and
probe indicated the number of examples for each subject out of 124 subjects

Gallery NN BG CL
Probe NN BG CL NN BG CL NN BG CL
MIP 95.96 89.11 66.12 75 87.5 50.8 51.34 54.43 87.9
LBP-FLOW [16] 94 45.2 42.9 45.2 64.2 25 36.9 22.6 57.1

7.2 CASIA-C

The CASIA-C dataset [32] contains video of lateral view captured at night and recorded
by a fixed low resolution infra-red camera. There are 153 subjects walking in four walk-
ing styles with 10 movies per subject: four movies for normal walking (fn), and two
movies per each of the other walking styles – slow pace (fs), quick pace (fq) and carry-
ing a bag (fb).

Table 4 summarizes the evaluation protocol used for CASIA-C dataset. In the ex-
periments referring to gallery and probe that share the same walking style (within), the
probe contains one example per subject and the other examples serve as the gallery.
Each experiment is repeated with different probe examples for k times, where k is the
number of examples per subject in the relevant walking style. We report the average
accuracy on the k repetitions. In the experiments training on one walking style and
evaluating on a different walking style (cross), all available sequences are used.

Table 5 shows the classification accuracy when training on normal walking and
evaluating on all walking styles. The MIP variants outperform all compared methods,
and the confounding details removal boosts performance on the bag carrying test set.
Table 6 summaries the results when learning on the slow pace, quick pace and carrying
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Table 4. The evaluation protocol for CASIA-C dataset: (a) the gallery and probe are from the
same walking style, (b) cross style experiments. The number of examples per subject taken as
gallery and as probe is specified, for each of the 153 subjects participating. CV stands for cross-
validation

Gallery Probe Remarks
fn - 3 fn - 1 4-fold CV
fs - 1 fs - 1 2-fold CV
fq - 1 fq - 1 2-fold CV
fb - 1 fb - 1 2-fold CV

(a)

Gallery Probe
fn - 4 fs - 2 fq - 2 fb - 2
fs - 2 fn - 4 fq - 2 fb - 2
fq - 2 fn - 4 fs - 2 fb - 2
fb - 2 fn - 4 fs - 2 fq - 2

(b)

Table 5. Results on CASIA-C dataset for a gallery containing normal walking style and evaluated
on all probe sets. The first column refers to the normal walking probe. (*) The PSA results in [23]
refer to a random subset of 50 subjects (out of 153 subjects)

Method Within Cross
fs fq fb

MIP 99.34 95.09 98.69 96.73
Temporal MIP 99.34 93.79 98.69 97.05
MIP+Details removal 99.34 92.15 98.36 99.02
Temporal MIP + Details Removal 99.34 92.16 98.69 99.34
WBP [22] 99.02 86.3 89.5 80.7
PSA(*) [23] 98 92 92 93
Gait curves [6] 91 65.4 69 25
Bag Of Gait [29] 99.84 91.23 95.78 89.82
Pseudo Shape [32] 98 82.4 91.8 24.4
GEI [38] 96 74 83 60
HTI [32] 94 85 88 51

a bag train sets, evaluated within the same walking style and on the other styles. MIP
variants outperform the compared methods on most combinations.

7.3 TUM-GAID

The TUM-GAID [14] is a recently published dataset with 305 subjects, captured indoor
from a lateral viewpoint. The movies were taken by a 3D-depth camera and provide
matching audio. In this work we only use the 2D RGB images of the recorded subjects.
For each subject, three walking styles are recorded - normal walking (N), carrying a
backpack (B) and wearing coating shoes (S). A subset of 32 people is recorded again
after a three months period in all walking styles (TN, TB, TS).

The evaluation protocol designed in [14] defines a test set containing 155 subjects.
For recognition, the gallery consists of four normal walk recordings per each of the 155
subjects and the probe is divided into six test sets, for each walking style and recording
phase. The experiments conducted here use the N, B and S probe sets. Table 7 shows
the evaluation protocol used for those probe sets.
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Table 6. Results on the CASIA-C dataset. The top two rows refer to the gallery and probe walking
styles respectively. (*) The PSA results in [23] refer to a random subset of 50 subjects (out of 153
subjects).

Within Cross
Gallery fs fq fb fs fq fb
Probe fs fq fb fn fq fb fn fs fb fn fs fq
MIP 99 99.34 99 93.13 89.54 88.23 95.75 84.31 92.48 92.97 83.98 90.52
Temporal MIP 99.34 99.34 99.34 91.17 87.25 85.94 96.95 83.98 94.44 93.95 86.93 91.5
MIP + 99 99.34 99.34 87.41 66.33 80.07 97.05 62.41 88.88 96.73 84.31 91.83
Details Removal
Temporal MIP + 99.34 99.34 99.34 85.78 66.33 78.43 97.22 62.41 91.83 97.22 85.29 93.46
Details Removal
WBP [22] 95 96 96 88 61 71 84 61 71 81 70 80
PSA(*) [23] 98 96 96 93
Gait curves [6] 85 79.1 81

Table 7. Evaluation protocol for the N, B and S probe sets from the TUMGAID dataset as defined
in [14]. The number of examples per subject taken as gallery and as probe is specified for each of
the 155 subjects

Gallery Probe
N - first 4 N - last 2
N - first 4 B - 2
N - first 4 S - 2

Table 8 compares our results to other methods. This comparison is challenging, as
all methods apart from MIP and GEI [13] employ the depth information provided by
the dataset.

MIP and MIP variants cope well with all walking styles. When normal walk is used
for both training and testing, all presented methods show very good performance. The
RSM method [10] achieves the best performance, utilizing the depth information to
extract high quality silhouettes. When training on normal walk and testing on either (B)
or the coating shoes probe (S), Mip and temporal MIP outperform all other methods.
Temporal MIP gains the highest accuracy on the backpack carrying probe, while MIP
wins temporal MIP by a small margin on the coating shoes probe (S).

Although the TUM-GAID dataset is captured indoor, it contains a challenging back-
ground of a brick wall nearby the subjects. Due to the lighting conditions, the subjects
cast shadows on the wall, which follow them and vary in shape and direction.

When applying MIP, the shadow is encoded along with the movement, as shown
in Figure 6(a) and Figure 3(e). Hence, the shaded area contributes motion patterns to
the MIP encoding. Since the background contains repetitive strong edges and colored
bricks, the filtering in the details removal pre-process does not eliminate these undesir-
able patterns that clearly reflects the brick edges, as shown in Figure 6(b).

Elimination of these edges is done by applying a Gaussian filter (3 × 3, σ = 1)
on each frame after downsampling, and then upscaling the frame to the original size.
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Table 8. Results on the TUM-GAID dataset trained on normal walking and evaluated on three
walking styles. N - normal walking, B - carrying a backpack and S - wearing coating shoes. All
compared methods except for our method and GEI utilize depth information

Method N B S
MIP 98.06 95.8 97.42
Temporal MIP 98.38 97.42 96.77
MIP + Details Removal 97.41 90.96 89.35
Temporal MIP + Details Removal 97.74 94.19 91.61
GEI (results from [13]) 94.2 13.9 87.7
Depth-GHEI [13] 96.8 3.9 88.7
Depth-GEI [13] 99 40.3 96.1
GEV [13] 99.4 27.1 52.6
Unimodal RSM [10] 100 79 97
SVIM [34] 98.4 64.2 91.6

(a) (b) (c)

Fig. 6. Detail removal preprocessing for TUMGAID dataset. (a) Low resolution MIP encoding
shows the shaded area is encoded, creating motion patterns caused by the shade and the patterned
wall. (b) After applying detail removal preprocessing (downsampling then upsampling again to
the original frame size) misleading motion patterns that reflects the bricks pattern are still exists
in the current shaded area. (c) the result of the new preprocessing flow using a gaussian filtering
to suppress the strong edges, now following mostly the moving body.

Figure 6(c) demonstrates the new encoding, which focuses on the moving body while
avoiding the misleading wall and shadow patterns.

The standard MIP encoding performs better on this dataset over the details removal
MIP encoding. The reason might be the information found in the shadow, that is coded
when no details removal is applied. Since all scenes in this dataset were recorded in
the same location, in similar conditions and from the same viewpoint, the information
encoded in the shaded area might contribute to identification.

8 Summary and Conclusions

Most methods applied to gait recognition involve a preprocessing step of silhouette ex-
traction, making them sensitive to the silhouettes quality and unstable in unconstrained
environments.
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In this work, we examine the the Motion Interchange Patterns, designed to directly
represent motion in unconstrained 2D videos, on gait recognition datasets. Following
our observations, we suggest two adaptations of MIP to the task of gait recognition –
a temporal extension of the encoded motion, and confounding details removal that en-
ables the analysis of the frames in their original size without getting lost in confounding
details.

Employing MIP is a step towards motion analysis that is perceptive enough to iden-
tify people from a distance, in real world sequences and under various appearances.

Acknowledgments. Portions of the research in this paper use the CASIA Gait Database
collected by Institute of Automation, Chinese Academy of Sciences.
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