
Dynamic Pn to Pn Alignment

Amnon Shashua and Lior Wolf⋆

School of Engineering and Computer Science,
the Hebrew University of Jerusalem,
Jerusalem, 91904, Israel
{shashua,lwolf}@cs.huji.ac.il

We introduce in this chapter A generalization of the classical collineation of
Pn. The generalization allows for a certain degree of freedom in the local-
ization of points in Pn at the expense of using multiple m > 2 views. The
degree of freedom per point is governed by an additional parameter 1 ≤ k < n

which stands for the dimension of the subspace in which the indvidual points
are allowed to move while the projective change of coordinates take place. In
other words, the point set is not necessarily stationary allowing the config-
uration to change while the entire coordinate system undergoes a projective
change of coordinates. If we denote a change of coordinates as a ”view” of the
physical set of points, then in this chapter we discuss the multi-view relations
that can be determined from observations (views) of a dynamically changing
point-configuration —- the underlying transformations and how they can be
recovered.

For example, for a point set in P2 (planar configuration) undergoing linear
motion the multiple views of the point set generate a multilinear constraint
across three views governed by a 3×3×3 contravariant tensor H. The tensor,
referred to as homography tensor, can be recovered linearly from 26 observa-
tions (matching points across three views) and once recovered can be unfolded
to yield the global coordinate change (the individual pair of homography ma-
trices). A point set in P3 (3D configuration) can undergo motion in a plane or
along a line (each point independently). For the line motion, the multi-view
constraints are governed by a 4× 4× 4 family of contravariant tensors J that
capture the dynamic 3D-to-3D alignment problem. More generally, the family
of homography tensors is captured by three parameters: the dimension n of
the observation space, the dimension k < n of the subspace along which each
point of the point set is allowed to move, and the number of ”views” m. For-
mally, the homography tensors form a GL(V ) module, denoted by V (n, m, k),
defined by the set of all tensors v1⊗· · ·⊗vm ∈ V ⊗m where vi are n-dimensional
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vectors and dimSpan{v1, . . . , vm} ≤ k. We will be interested in the structure
and dimension of V (n, m, k).

The notion of using mutli-view analysis for non-rigid scenes is interesting
and useful on its own right. In a way, this work extends the notion of “stereo
triangulation” (a stationary point observed by two or more views), to the
notion of “what can be recovered from line of sight measurements only?”.
The chapter includes a detailed exposition of these tensors for P2 and P3,
their properties and applications and derive the dimension of V (n, m, k) in
the general case.

1 Introduction

Consider the classic problem of “3D to 3D” alignment of point sets. We are
given a set of 3D points P1, ..., Pn measured by some device such as a struc-
tured light range sensor [14] or a stereo rig of cameras. When the sensor
changes its position in space while the 3D points remain stationary, the 3D
positions of the measured points P ′

1, ..., P
′
n, have undergone a coordinate trans-

formation. In a projective setting, five of these matching pairs in general po-
sition are sufficient to recover the 4 × 4 collineation A such that APi

∼= P ′
i ,

i = 1, ..., n. In a rigid motion setting the coordinate transformation consists of
translation and rotation which can be recovered using four matching points;
elegant techniques using SVD have been developed for this purpose [4].

In the same vain, consider another popular group of transformations which
include the planar collineations between two sets of points on the projective
plane P2 undergoing a projective mapping. The planar collineations (homo-
graphies) are the 3 × 3 non-singular matrices which map between point sets
undergoing a general projectivity. The planar homographies form a funda-
mental building block in multiple-view geometry in computer vision. The ob-
ject stands on its own as a point-transfer vehicle for planar scenes (aerial
photographs, for example) and in applications of mosaicing, camera stabi-
lization and tracking [8]; a homography matrix is a standard building block
in handling 3D scenes from multiple 2D projections: the “plane+parallax”
framework [11, 6, 7, 3] uses a homography matrix for setting up a parallax
residual field relative to a planar reference surface, and the trifocal tensor of
three views is represented by a “homography-epipole” structure whose slices
are homography matrices as well [5, 12].

The two examples above, general collineations of P2 and P3, readily ex-
tend to n-dimensional projective spaces Pn. A change of coordinates in an
n-dimensional projective space Pn is determined by an (n + 1)× (n + 1) ma-
trix. Coverseley, given two sets of points in Pn which result by having one set
undergo some collineation, the alignment of the two sets can be achieved by a
homography matrix which can be determined uniquely from n + 1 matching
points.
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In this chapter we introduce a “dynamic” version of the Pn to Pn align-
ment problem by allowing the individual points of the point set to undergo
independent motion within k-dimensional subspaces while the entire point set
undergoes a general collineation successively. For example, in the dynamic
P2 → P2 version, we allow for the possibility that any number of the points
may move along straight-line paths during the change of view. A change of
view results in a global change of coordinates (a collineation) but while do-
ing so the individual points of the point set have changed relative position
to one another. Points that remain in place are called stationary and points
that move are called dynamic. There can be any number of dynamic points
— including the possibility that all points are dynamic — and the system
need not know in advance which of the points are stationary and which are
dynamic (an unsegmented configuration). Under these conditions we wish to
find the multiple projective coordinate changes from the point-match observa-
tions of the point set under successive coordinate changes. We will show that
this type of transformation is governed by a 3 × 3 × 3 tensor which captures
the multi-view relation of the changing planar point-set. The tensor is formed
by a bilinear product of the global pair of homography matrices (responsi-
ble for the changes of coordinates between the first view and the other two
views). For every triplet of matching points across the three views p, p′, p′′

the following contravariant relation pip′jp′′kHijk = 0 vanishes. The vanish-
ing constraint provides a linear equation on the elements of the tensor and
the global coordinate changes can later be recovered (also linearly) from the
tensor.

The dynamic P3 → P3 alignment problem can be viewed as a 3D sensor
which changes position in 3D space (thus creating global coordinate changes)
while the physical points in space undergo independent motion — either along
straight line paths or along planar subspaces (or stay put). We will show that
this type of transformation is governed by a 4× 4× 4 family of tensors which
vanishes on each of the matching triplets induced by a physical point under
three coordinate systems.

More generally, the family of tensors governing the Pn → Pn alignment
problem is captured by three parameters: the dimension n of the observa-
tion space, the dimension k < n of the subspace along which each point of
the point set is allowed to move, and the number of ”views” m. Formally,
these tensors form a GL(V ) module, denoted by V (n, m, k), defined by the
set of all tensors v1 ⊗ · · · ⊗ vm ∈ V ⊗m where vi are n-dimensional vectors
and dimSpan{v1, . . . , vm} ≤ k. We will be interested in the structure and
dimension of V (n, m, k).

We will describe in detail the tensor families that are associated with P2

and P3, their definition, the way they can be recovered from observations,
their properties and applications. The general case will be discussed at a
reduced scope where we will address only the dimension of V (n, m, k) (the
number independent linear constraints possible for a given value of n, m, k).
Other issues which are addressed in derivations for P2 and P3 (such as mixed
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stationary and dynamic motions) are left open in the general case. Part of the
material described in Sections 2 and 3 appeared in the proceedings of [13, 16]
and the material of Section 4 in the technical report [10].

1.1 Background and Notations

We will be working with the projective space Pn. A point in Pn is defined
by n + 1 numbers, not all zero, that form a coordinate vector defined up to
a scale factor. The dual projective space represents the space of hyperplanes
which are also defined by a n + 1 tuple of numbers. For example, a point p

in the projective plane P2 coincides with a line s if and only if p⊤s = 0, i.e.,
the scalar product vanishes. In other words, the set of lines coincident with
the point p are represented by the coordinate vectors s that satisfy p⊤s = 0,
and vice versa: a point represented by the coordinate vector p can be thought
of as the set of lines through it (a.k.a the pencil of lines through p). A line s

going through two points p1, p2 is represented by the cross product s ∼= p1×p2

where ∼= denotes equality up to scale. Likewise, the point of intersection p of
the lines s1, s2 is represented by p ∼= s1 × s2. In projective 3D space P3, A
point p lies on a plane π if and only if p⊤π = 0. In other words, in P2 points
and lines are dual to each other and in P3 points and planes are duals to each
other — generally, points and hyperplanes are duals.

In projective space any n+1 points in general position (i.e., no subset of n

points lie on a hyperplane) can be uniquely mapped into any other n+1 general
point configuration. Such a mapping is called a collineation and is defined
by an invertible (n + 1) × (n + 1) matrix (also known as the homography
matrix) defined up to scale. In particular, the change of coordinates of a
planar configuration induced by taking a photograph by a pin-hole camera
moving freely in the 3D world is represented by a 3 × 3 homography matrix,
and the change of coordinates of a 3D point configuration caused by the
motion of the sensor is represented by a 4 × 4 homography matrix. If H

is a homography matrix (defined by n + 1 matching pairs of points), then
H−T (inverse transpose) is the dual homography that maps hyperplanes onto
hyperplanes.

The projective plane is useful to model the image plane in a pin-hole
camera model. Consider a collection of planar points P1, ..., Pk in space living
on a plane π viewed from two views. The projections of Pi are pi, p

′
i in views

1,2 respectively. Because the collineations form a group, there exists a unique
homography matrix Hπ that satisfies the relation Hπpi

∼= p′i, i = 1, ..., k,
and where Hπ is uniquely determined by 4 matching pairs from the set of k

matching pairs. Moreover, H−T
π s ∼= s′ will map between matching lines s, s′

arising from 3D lines living in the plane π. Likewise, H⊤
π s′ ∼= s will map

between matching lines from view 2 to view 1.
It will be most convenient to use tensor notations from now on because

the material we will be using in this chapter involves coupling together
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pairs of collineations into a “joint” object. The distinction of when coor-
dinate vectors stand for points or hyperplanes matters when using tensor
notations. A point is an object whose coordinates are specified with super-
scripts, i.e., p = (p0, p1, ..., pn), thus pi stands for the i’th entry of the vec-
tor. These are called contravariant vectors. A hyperplane in Pn is called a
covariant vector and is represented by subscripts, i.e., s = (s0, s1, ..., sn). In-
dices repeated in covariant and contravariant forms are summed over, i.e.,
pisi = p0s0 + p1s1 + ... + pnsn. This is known as a contraction. For example,
if p is a point incident to a line s in P2, then pisi = 0.

Vectors are also called 1-valence tensors. 2-valence tensors (matrices) have
two indices and the transformation they represent depends on the covariant-
contravariant positioning of the indices. For example, a

j
i is a mapping from

points to points (a collineation, for example), and hyperplanes to hyperplanes,
because a

j
ip

i = qj and a
j
isj = ri (in matrix form: Ap = q and A⊤s = r); aij

maps points to hyperplanes; and aij maps hyperplanes to points. When viewed
as a matrix the row and column positions are determined accordingly: in a

j
i

and aji the index i runs over the columns and j runs over the rows, thus

bk
j a

j
i = ck

i is BA = C in matrix form.

An outer-product of two 1-valence tensors (vectors), aib
j, is a 2-valence

tensor c
j
i whose i, j entries are aib

j — note that in matrix form C = ba⊤.

A 3-valence tensor has three indices, say H
jk
i . The positioning of the indices

reveals the geometric nature of the mapping: for example, pisjH
jk
i must be a

point because the i,j indices drop out in the contraction process and we are left
with a contravariant vector (the index k is a superscript). Thus, H

jk
i maps a

point in the first coordinate frame and a hyperplane in the second coordinate
frame into a point in the third coordinate frame. A single contraction, say
piH

jk
i , of a 3-valence tensor leaves us with a matrix. Note that when p is

(1, 0, 0) or (0, 1, 0), or (0, 0, 1) the result is a “slice” of the tensor.
In the projective plane P2 we will make use of the “cross-product tensor”

ǫ defined next. The cross product (vector product) operation c = a×b is
defined for vectors in P2. The product operation can also be represented as
the product c = [a]×b where [a]x is called the “skew-symmetric matrix of a”
and has the form:

[a]× =





0 −a2 a1

a2 0 −a0

−a1 a0 0





In tensor form we have ǫijkaibj = ck representing the cross product of two
points (contravariant vectors) resulting in the line (covariant vector) ck. Sim-
ilarly, ǫijkaibj = ck represents the point intersection of the to lines ai and bj .
The tensor ǫ is defined such that ǫijkai produces the matrix [a]× (i.e., ǫ con-
tains 0,−1, 1 in its entries such that its operation on a single vector produces
the skew-symmetric matrix of that vector).
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2 Homography Tensor H of the Projective Plane

Consider some plane π whose features (points or lines) are projected onto
three views and let A be the collineation from view 2 to view 1, and B the
collineation from view 3 to 1 (we omit the reference to π in our notation). Let
P be some point on the plane π and its projections are p, p′, p′′ in views 1,2,3
respectively. We consider two possibilities: (i) the point P on the plane π is
stationary, i.e., the three optical rays from the camera centers to the image
points p, p′, p′′ meet at P , and (ii) the point P moves along a straight line (in
the plane) path, therefore the three optical rays meet at a line in π instead
of a point (see Fig.1). We summarize these two possibilities in the following
definition:

Fig. 1. The homography tensor of P2 and moving points. The collineations A, B

are from view 2 to 1 and 3 to 1 respectively. If the triplet p, p′, p′′ are projections
of a moving point along a line on π then p, Ap′, Bp′′ are collinear in view 1. Thus,
p⊤(Ap′ × Bp′′) = 0, or pip′jp′′kHijk = 0 where Hijk = ǫinuan

j bu
k .

Definition 1. A triplet of points p, p′, p′′ are said to be matching with re-
spect to a stationary point if they are matching in the usual sense of the
term, i.e., the corresponding optical rays meet at a single point. The triplet are
said to be matching with respect to a moving point if the three optical
rays meet at a line on a plane.

The constraint which satisfies both the moving and stationary possibilities
is:

det(p, Ap′, Bp′′) = p⊤(Ap′ × Bp′′) = 0.

In other words, det(p, Ap′, Bp′′) = 0 when the rank of the 3 × 3 matrix
[p, Ap′, Bp′′] is either 1 or 2. The rank is 1 when the point P is stationary
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(three optical rays meet at a point) and is 2 when the point P moves along
a straight line path (three optical rays meet at a line on π). The constraint
p⊤(Ap′×Bp′′) = 0 is bilinear in the entries of the unknown collineations A, B

and is trilinear in the observations p, p′, p′′. Using tensorial notations we can
combine the pair of collineations into a single object, a 3 × 3 × 3 tensor, as
follows. We define indices i, j, k such that index i runs over view 1, index j

runs over view 2 and index k runs over view 3. For example, the operation
Ap′ is translated to ai

jp
′j producing a point in view 1. The cross product

Ap′ ×Bp′′ is translated to ǫinu(an
j p′j)(bu

kp′′k) where parenthesis are added for
clarity only (position of symbols are not important, only position of indices).
Taken together we have:

piǫinu(an
j p′j)(bu

kp′′k) = 0.

After re-arranging the symbol positions we obtain:

pip′jp′′k(ǫinuan
j bu

k) = 0,

where the object in parenthesis is the homography tensor of P2, referred to
as Htensor:

Hijk = ǫinuan
j bu

k (1)

whose triple contraction pip′jp′′kHijk vanishes on observations p, p′, p′′ arising
from stationary or moving points on the plane π. Each such triplet of matching
points provides a linear constraint on the 27 entries of H, thus 26 matching
triplets are necessary to solve for H uniquely (up to scale).

We see from the above that the tensor H applies to both stationary and
moving points coming from the planar surface π. The possibility of working
with stationary and moving elements was first introduced in [1, 2] where it was
shown that if a moving point along a general (in 3D) straight path is observed
in 5 views, and the camera projection matrices are known, then it is possible
to set up a linear system for estimating the 3D line. With the Htensor H, on
the other hand, we have no knowledge of the camera projection matrices, but
on the other hand we require that the straight paths the points are taking
should all be coplanar (what makes it possible to work with 3 views instead
of 5 and not require prior information on camera positions). We will address
the following issues:

• What are the minimal point configurations that allow a unique solution
for H? If all points are moving then 26 of them are needed and we will
address the issue of necessary point-set configuration. If some of the points
are known to be stationary how many constraints (i.e. moving points)
are minimally necessary for a unique solution? if some of the points are
stationary (without the system being told about it) what would be the
minimal number of moving points required for a unique solution?

• Contraction properties of H and the manners in which H acts as a map-
ping.

• How to recover the component collineations A, B from H.
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2.1 Recovering Htensor from Image Measurements

The measurements available for recovering H are triplets of matching points
p, p′, p′′ across the three views and prior information whether a triplet arises
from a moving or stationary point. Assuming first that all measurements are
induced by moving points, a triplet of matching points contribute one linear
constraint pip′jp′′kHijk = 0 on the elements of H. Therefore 26 triplets are
necessary for a unique2 solution. The 26 points should be distributed on the
plane π in such a way that they cover at least 4 lines in general position, such
that no more than 8 points are on the first line, no more than 7 points on the
second line, no more than 6 on the third line and no more than 5 on the fourth
line. This distribution will guarantee a unique solution for H (of course more
than 26 points are allowed where in that case a least-squares approximation
is recovered).

Theorem 1. A minimal configuration of 26 matching triplets arising from
moving points on π are necessary for a unique recovery of H provided that the
distribution of the points are such that the motion trajectories cover at least
4 lines in general position on π and that no more than 8 of the points lie on
the first trajectory, no more than 7 on the second trajectory, no more than 6
on the third and no more than 5 points lie on the fourth line trajectory.

Proof: Consider a line L1 on the plane π. Let the projections of L onto the
three views be denoted by q1, s1, r1 (see Fig. 2). Since each line is determined
by two points, we can have at most 23 = 8 linearly independent constraints
of the form pip′jp′′kHijk = 0 where the points p, p′, p′′ are coincident with the
lines q1, s1, r1 respectively. Consider a second line L2 ∈ π projecting onto lines
q2, s2, r2. Since each of the image lines is spanned by two points, choose one
of those points to be the projection of L1 ∩ L2 denoted by p, p′, p′′. Among
the 8 choices of choosing three points from the three pairs of points, the
choice p, p′, p′′ is already covered by the span of the 8 constraints induced
by L1 — thus we are left with 7 linearly independent constraints in H. This
argument continues by induction over additional lines Li each inducing one
less constraint than the one before it. The process ends with 4 lines inducing
8 + 7 + 6 + 5 = 26 linearly independent constraints.

Next, we consider the contribution of stationary points to the system of
linear equations for H. A stationary point, known as such (referred to as
labeled), contributes 9 linear constraints of rank 7, as follows: let p, p′, p′′ be
a triplet of matching points arising from a known stationary point on π. The
rank of the matrix [p, Ap′, Bp′′] is 1, which in turn translates to the three sets
of constraints: p × Ap′ = 0, p × Bp′′ = 0 and Ap′ × Bp′′ = 0. In tensor form,
the contractions pip′jHijk, pip′′kHijk and p′jp′′kHijk are null vectors. The 9
constraints are explicitly written below (allow the vector e to vary over the
standard basis (1, 0, 0), (0, 1, 0) and (0, 0, 1)):

2 The dimension of the GL(V) module Span{p ⊗ p′ ⊗ p′′ ∈ V ⊗3 :
dim Span{p, p′, p′′} = 2 } is 26. The details are in Section 4.
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Fig. 2. A straight line path L1 can induce at most 8 independent linear constraints
as the projections q1, s1, r1 in the three views are determined by two points each.
A second straight line path L2 can contribute at most 7 independent constraints
since the constraint pip′jp′′kHijk = 0 induced by the projection of the intersection
L1 ∩ L2 onto p, p′, p′′ is spanned by the 8 constraints from L1.

pip′jekHijk = 0 ∀e (2)

piejp′′kHijk = 0 ∀e

eip′jp′′kHijk = 0 ∀e

Note that the constraint pip′jp′′kHijk = 0 is in the span of the three sets of
constraints — thus making a total of 7 linearly independent constraints (a
system of 9 linear equations of rank 7). We thus arrive to the conclusion:

Proposition 1. The matching triplets induced by four labeled stationary points
in general position on π provide a unique solution for H.

We consider next the contribution of unlabeled stationary points. A station-
ary point can provide 9 constraints (of rank 7) provided it is known to be
stationary — otherwise it provides only a single constraint. Consider the case
where all the measurements arise from unlabeled stationary points. It is easy
to see that the rank of the estimation matrix for H is at most 10 (compared to
26 when moving points are used). Each row of the estimation matrix for H is
some “constraint tensor” Gijk such that GijkHijk = 0. It is sufficient to prove
this statement for the case where A = B = I (the identity matrix) — because
all other cases are transformed into this one by local change of coordinates. In
the case A = B = I, Gijk is a symmetric tensor, i.e., remains the same under
permutation of indices — hence contains only 10 different groups of indices

111, 222, 333, 112, 113, 221, 223, 331, 332, 123
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up to permutations. Generally speaking, the m-fold symmetric powers SymmV

of an n-dimensional vector space V is a vector space of dimension
(

n+m−1
m

)

(substitute n = 3, m = 3 to get 10). We arrive to the following conclusion:

Proposition 2. In a collection of unlabeled matching triplets, there could be
at most 10 of which are induced by stationary points. In other words, there
should be at least 16 moving points an an input collection of unlabeled points
for a unique linear solution for H.

Finally, we consider the situation of a mixed labeled and unlabeled triplets.
Consider the case where x ≤ 4 of the triplets are labeled as arising from
stationary points. We saw above that a labeled stationary point is equivalent
to 7 constrains, however some of those constraints may be already included
in the span of the unlabeled stationary points. The theorem below addresses
the question of how many matching triplets arising from moving points are
necessary given that x ≤ 4 matching triplets are labeled as stationary? Clearly,
when x = 4 there is no need for further measurements, but when x < 4 we
obtain the following result:

Theorem 2. In a situation of matching triplets arising from a mixture of
stationary and moving points, let x ≤ 4 be the number of matching triplets
that are known a priori to arise from stationary points. To obtain a unique
linear solution for H, the minimal number of matching triplets arising from
moving points is 16 − 4x and at most 10 − 3x can be (unlabeled) stationary
points.

Proof: Each row of the estimation matrix for H is some “constraint
tensor” Gijk such that GijkHijk = 0. It is sufficient to prove this statement
for the case where A = B = I (the identity matrix) — because all other
cases are transformed into this one by local change of coordinates. Therefore,
a stationary point induces a symmetric tensor Gijk = pipjpk. The case x = 0
was discussed above with the conclusion that a minimal of 16 moving points
are required.

Consider the case x = 1, i.e., one of the matching triplets contributed 9
constraints of rank 7:

pip′jek
1Hijk = 0 pie

j
1p

′′kHijk = 0 ei
1p

′jp′′kHijk = 0

pip′jek
2Hijk = 0 pie

j
2p

′′kHijk = 0 ei
2p

′jp′′kHijk = 0

pip′jek
3Hijk = 0 pie

j
3p

′′kHijk = 0 ei
3p

′jp′′kHijk = 0,

where e1, e2, e3 are the standard basis (1, 0, 0), (0, 1, 0), (0, 0, 1). Add the three
constraints in the first row:

Eijk = pipjek
1 + pie

j
1p

k + ek
1p

jpk

Then, Eijk is a symmetric tensor and thus spanned by the 10-dimensional
subspace of the unlabeled stationary points. Likewise, the constraint tensors
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resulting from adding the constraint of the second and third row above are
also symmetric. Taken together, 3 out of the 7 constraints contributed by a
labeled stationary point are already accounted for by the space of unlabeled
stationary points. Therefore, each labeled stationary point adds only 4 linearly
independent constraints.

2.2 Contraction Properties of H and Recovery of A, B

We turn our attention next to single and double contractions of the Htensor
— what can be extracted from them and what is their geometric significance.
Those contractions will hold the key for decoupling the collineations A, B from
H.

The double contractions perform mapping operations. Consider for ex-
ample pip′jHijk, which by the index arrangements, must be a contravariant
vector (a line in P2) denoted by l′′. Since the remaining index is k, l′′ is a line
in view 3. Consider the line L ∈ π defined by the projection p, p′ in views 1,2.
Since pip′jp′′kHijk = 0 for all points p′′ in view 3 which are the projections
from L, we conclude that l′′ is the projection of L onto view 3.

The single contractions produce matrices which form the key for decou-
pling the collineations A, B from H. Consider, for example, δkHijk for some
contravariant vector (a point in view 3) δ. The result is a matrix E with in-
dex structure suggesting it maps points to lines (a correlation matrix) and
between views 1,2. By substitution in the definition of H we obtain:

δkHijk = ǫinuan
j (bu

kδk) = [Bδ]×A.

Let E = [Bδ]×A and note that the point µ = Bδ is the matching point
to δ in view 1, i.e., it is the projection onto view 1 of the point defined by
the intersection of the plane π with the optical ray associated with δ (see
Fig. 3). The matching points to δ, the points µ = Bδ and η = A−1Bδ, can be
recovered directly from E since:

E⊤µ = −A⊤[µ]×µ = 0

Eη = [µ]×Aη ∼= [µ]×µ = 0.

The matrix E forms a point to line mapping from view 2 to view 1, as follows.
Consider any point p′ in view 2, then Ep′ = p′jδkHijk is the projection of the
line in π, defined by the optical rays associated with δ and p′, onto view 1.
Therefore, any point p coincident with the projected line will satisfy p⊤Ep′ =
0. We conclude that the bilinear form p⊤Ep′ = 0 is satisfied for all pairs of
p, p′ which are on matching lines through the fixed points µ, η (see Fig. 3).

Finally, the collineation A can be recovered from single contractions by
the fact that A⊤E is a skew-symmetric matrix:

A⊤E + E⊤A = A⊤[µ]×A − A⊤[µ]×A = 0,
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which provides 6 linearly independent equations on the entries of A. By taking
δ to range over the standard basis (1, 0, 0), (0, 1, 0), (1, 0, 0) we obtain three
slices of H denoted by E1, E2, E3 each producing 6 linear equations on A —
taken together A can be recovered linearly from the slices of H. Likewise, B can
be recovered from the slices δjHijk in the same manner, and the collineation
A−1B (between views 2 and 3) from the slices δiHijk. These findings are
summarized in the theorem below:

π

δ

ηp’

µ

A’p’

Fig. 3. A single contraction, say δkHijk, is a mapping E between views 1,2 from
points to concurrent lines. The null spaces of E and ET are the matching points
µ, η of δ in views 1,2. The image points p′ are mapped by E to the lines Ap′×µ and
the image points p are mapped by E⊤ to the lines A−1p× η in view 2. The bilinear
relation p⊤Ep′ = 0 is satisfied for all pairs of p, p′ on matching lines through the
fixed points µ, η.

Theorem 3. Each of the contractions

δkHijk (3)

δjHijk (4)

δiHijk (5)

represents a point-to-line (correlation) mapping between views (1, 2), (1, 3) and
(2, 3) respectively. By setting δ to be (1, 0, 0), (0, 1, 0) or (0, 0, 1) we obtain three
different slicings of the tensor: denote the slices of δiHijk by the matrices
G1, G2, G3, the slices of δjHijk by the matrices W1, W2, W3, and the slices of
δkHijk by the matrices E1, E2, E3. Then these slices provide sufficient (and
over-determined) linear constraints for the constituent homography matrices
A, B and for C = A−1B:
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CG⊤
i + GiC

⊤ = 0, (6)

BW⊤
i + WiB

⊤ = 0, (7)

AE⊤
i + EiA

⊤ = 0, (8)

for i = 1, 2, 3.

In summary, the homography tensor in P2 applies to both cases: optical
rays meet at a single point (matching points with respect to a stationary
point) and optical rays meet at a line on π (matching points with respect to a
moving point). In the case where no distinction can be made to the source of
a matching triplet p, p′, p′′ (stationary or moving) then we have seen that in a
set of at least 26 such matching triplets, 16 of them must arise from moving
points. In case that a number x ≤ 4 of these triplets are known a-priori to
arise from stationary points, then 16−4x must arise from moving points. Once
H is recovered from image measurements it forms a mapping of both moving
and stationary points and in particular can be used to distinguish between
moving and stationary points (a triplet p, p′, p′′ arising from a stationary point
is mapped to null vectors pip′jHijk ,pip′′kHijk and p′jp′′kHijk). The Htensor
can be useful in practice to handle situations rich in dynamic motion seen
from a monocular sequence — some experiments are shown in Section 6.

We will next describe the homography tensors of P3 where points lie in the
3D projective space, the collineations which are responsible for the coordinate
changes are 4 × 4 matrices and the points are allowed to move along straight
lines or planar subspaces while coordinate changes take place.

3 Homography Tensors of P3

We consider stepping up one dimension, namely, the point configuration lies in
P3 the collineations are 4× 4 matrices and the dimension in which the points
are allowed to move while the global collineations take place are k = 1, 2, 3
where k = 1 stands for stationary points, k = 2 stands for motion along a
straight line path and k = 3 stand for motion along a planar subspace. We will
focus below on the constraint of straight line motion and stationary points
k = 2, 1 which induce a 4× 4× 4 homography tensor. The situation of planar
dynamic motion k = 3 induces a 44 tensor which we will not consider in detail
here and leave it for the discussion on general dynamic alignment in Section 4.

Let X be some stationary point in 3D space with coordinate vector P . Let
P ′ be the coordinate representation of the point X at some other time instant
(i.e., the measurement sensor has changed its viewing position) and let P ′′ be
the coordinate representation of X at a third time instant. Let A, B be the
collineations mapping the second and third coordinate representations back
to the first representation, i.e., P ∼= AP ′ and P ∼= BP ′′.

If the point X happens to move along some straight-line path during the
change of coordinate systems, then P, AP ′, BP ′′ do not coincide but they form
a rank-2 matrix (see Fig. 4):
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32

1

P

P’

P"
A

B

Fig. 4. The points P ,P ′ and P ′′ are measured at three time instants from different
viewing positions of the sensor, i.e., each point is given in a different coordinate sys-
tem. While the measuring device changes position, the physical point in space moves
along a straight line path. In other words, the rank of the 4×3 matrix [P, AP ′, BP ′′]
is 2 for a moving point and 1 for a stationary point. The 4 × 4 matrices A,B are
responsible for the change of coordinate system back to the starting position.

rank





| | |
P AP ′ BP ′′

| | |



 = 2

And for every column vector V we have

det





| | | |
P AP ′ BP ′′ V

| | | |



 = 0 (9)

Note that because V is spanned by a basis of size four, we can obtain at
most four linearly independent constraints on some object consisting of A, B

from a triplet of matching points P, P ′, P ′′. Note also that the null vector of
a 4 × 3 matrix can be represented by the 3 × 3 determinant expansion. For
example, let X, Y, Z be three column vectors in a 4×3 matrix, then the vector
W = (w1, ..., w4) representing the plane defined by the points X, Y, Z is

w1 = det





x2 y2 z2

x3 y3 z3

x4 y4 z4



 w2 = − det





x1 y1 z1

x3 y3 z3

x4 y4 z4





w3 = det





x1 y1 z1

x2 y2 z2

x4 y4 z4



 w4 = − det





x1 y1 z1

x2 y2 z2

x3 y3 z3





We can write the relationship between W and X, Y, Z as a tensor operation
as follows:

wi = ǫijklx
jykzl

where the entries of ǫ consist of +1,−1, 0 in the appropriate places. We will
refer to ǫ as the “cross-product” tensor. Note that the determinant of a 4× 4
matrix whose columns consist of [X, Y, Z, T ] can be compactly written as
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tixjykzlǫijkl .

Using the cross-product tensor we can write the constraint (9) as follows:

0 = det





| | | |
P AP ′ BP ′′ V

| | | |





= P i(ǫilmu(al
jP

′j)(bm
k P ′′k)vu)

= P iP ′jP ′′k(ǫilmual
jb

m
k vu)

Note that the tensor form allows us to separate the measurements P, P ′, P ′′

from the unknowns A, B (and vector V ), and we denote the expression in
parentheses as:

Jijk = ǫilmual
jb

m
k vu (10)

as the the homography tensor of P3. Note that for every choice of the vector
V we get an Htensor. As previously mentioned, since V is spanned by a basis
of dimension four there are at most four such tensors; each tensor is defined
by the constraints

P iP ′jP ′′kJijk = 0.

These are linear constraints on the 64 elements of the Htensor. Since there are
four Htensors compatible with the observations, the linear system of equations
for solving for J from the matching triplets P, P ′, P ′′ has a four-dimensional
null space. The vectors of the null space are spanned by the Htensors. In prac-
tical terms, given N ≥ 60 matching triplets P, P ′, P ′′, each triplet contributes
one linear equation P iP ′jP ′′kJijk = 0 for the 64 entries of J . The eigenvec-
tors associated with the four smallest eigenvalues of the estimation matrix are
the Htensors of the dynamic 3D-to-3D alignment problem. We summarize this
in the following theorem:

Theorem 4 (Htensors in P2). Each matching triplet P, P ′, P ′′ arising from
a dynamic point contributes one linear equation P iP ′jP ′′kJijk = 0 to a 4 ×
4 × 4 tensor J . Any N ≥ 60 matching triplets in general position provide an
estimation matrix for Jijk with a four-dimensional null space. The 60 points
should be distributed along at least 10 lines, five of which can hold up to eight
dynamic points, and the remaining five up to four dynamic points.

In the remainder of this section we will discuss (i) tensor slices and the
extraction of the constituent collineations A, B from the four Htensors, (ii)
the use of Htensors for direct mapping between coordinate systems (without
extracting A, B along the way), (iii) the use of Htensors to distinguish between
dynamic and stationary points, and (iv) the relationship between the number
of stationary and dynamic points for estimating the Htensors in unsegmented
and segmented configurations.
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AP’ BP"

V

P

2

V1

Fig. 5. The points AP ′,BP ′′ and V define a plane. AP ′,BP ′′ and V ′ define another
plane. The line of intersection of these planes contains P .

3.1 Tensor Slices and the Extraction of the Collineations A, B

The role of J is symmetric with respect to the position of the points P, P ′, P ′′

(this is true for every purely covariant or contravariant tensor, unlike the
mixed covariant-contravariant tensor). It is therefore sufficient to investigate
P ′jP ′′kJijk as one of the tensor double-contractions; the others, P iP ′′kJijk

and P iP ′jJijk, follow by symmetry.
Consider any Htensor with its associated vector V . Recall that from ob-

servations we can recover four Htensors which span the null space of the mea-
surement matrix — each Htensor has a different vector V associated with it.
We will describe next how to recover the vector V , referred to as the ”principal
point” of the tensor, from the Htensor.

Consider the plane π defined by πi = P ′jP ′′kJijk and which contains the
three points V, AP ′ and BP ′′:

πi = P ′jP ′′kJijk = ǫilmu(al
jP

′j)(bm
k P ′′k)vu,

which by definition of the cross-product tensor provides the plane associated
with the three points acted upon by ǫ. By varying P ′ and P ′′ we obtain a star
of planes all coincident with the point V . As a result, the principal point V

of the tensor can be recovered by taking three double slices of the tensor and
finding their intersection.

We next recover the line in space coincident with the points AP ′ and
BP ′′. Consider two Htensors denoted by J 1 and J 2 (recall that we have
four Htensors at our disposal). The intersection of the planes P ′jP ′′kJ 1

ijk and

P ′jP ′′kJ 2
ijk is the line passing through AP ′ and BP ′′ (see Fig. 5).

The collineations A, B can be recovered (linearly) from the matrices re-
sulting from single contractions of the Htensors. A single contraction Hij =
P ′′kJijk is a 4×4 matrix H that maps points to planes. As mentioned above,
P ′jHij = P ′jP ′′kJijk is the plane passing through V, AP ′, BP ′′; thus by vary-
ing P ′ one obtains a pencil of planes coincident with the line through V and
BP ′′. Hence the rank of the matrix H must be 2.

Because HP ′ is the plane through V, AP ′, BP ′′, we have P ′⊤A⊤HP ′ = 0
for every choice of P ′. Therefore A⊤H is a skew-symmetric matrix and thus
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provides ten linear constraints for A. By varying P ′′ and thus obtaining other
H-matrices P ′′kJijk we can obtain more constraints on A but this is not
sufficient to obtain a unique solution for A. A unique solution requires the
H-matrix of at least another Htensor because the principal point must vary
as well. Likewise, one can recover B from the contractions P ′jJijk by varying
P ′ and taking at least two Htensors.

3.2 Direct Mapping

We can use the Htensor to map points between the coordinate frames without
the need to extract the collineations A and B.

Consider for example the direct mapping P ∼= BP ′′ between the third and
the first coordinate frames. The contraction γjP ′′kJijk for some arbitrary
vector γ is a plane in 3D containing the points BP ′′, Aγ and V (the principal
point of J ), all represented in the first coordinate frame. By varying γ over
the standard basis, and taking the four different Htensors (so that V also
varies), we get a collection of 16 planes. These planes intersect in the point
P ∼= BP ′′. It is sufficient to use a subset of these planes (at least three) as
long as not all of them are generated using the same Htensor or the same γ.

As a result, the Htensor can play the same role as a collineation (i.e.,
direct) mapping between coordinate frames. The direct mapping can be used,
for example, to distinguish between stationary and dynamic points. If P is
equal to the direct mapping BP ′′, then the corresponding physical point X is
stationary; otherwise (ignoring noise considerations), X is dynamic.

The segmentation of stationary and dynamic points can be achieved in
other ways as well. For example, from (9) we know that for a stationary
point X with coordinate vectors P ,P ′ and P ′′ in the three frames, any double
contraction vanishes:

P iP ′jJijk = P ′jP ′′kJijk = P iP ′′kJijk = 0.

Hence a vanishing double contraction (under all three possibilities) indicates
a stationary point. In practice, since the double contraction provides only
an algebraic (rather than geometric) measure of error, better segmentation
results are achieved by measuring the distance between the point P and the
direct mapping BP ′′.

3.3 Constraints from Stationary Points

We have seen that a matching triplet P , P ′ and P ′′ satisfies the Htensor
constraint

P iP ′jP ′′kJijk = 0

regardless of whether the corresponding physical point X is moving along a
straight-line path (dynamic) or is stationary. For a dynamic point, the rank
of the 4 × 3 matrix [P, AP ′, BP ′′] is 2 and for a stationary point the rank is



18 Amnon Shashua and Lior Wolf

1. In other words, admissible measurements for recovering the Htensors come
from dynamic and stationary points alike. The natural question is, how much
alike? — i.e., can all the measurements arise (unknowingly) from stationary
points? If not, what is the maximal number number of stationary points after
which the contributions of additional stationary points become redundant?
These questions are exactly the same as those addressed for H in the context
of P2.

The contribution of unlabeled stationary points, i.e., recovering J from
constraints P iP ′jP ′′kJijk = 0 where the triplet P, P ′, P ′′ are induced by
stationary points only, can fill up a 20 dimensional subspace only (out of 60).
Without loss of generality we can assume that A = B = I which in turn
makes each constraint GijkJijk = 0 where Gijk = P iP jP k is a symmetric
tensor (remains the same under permutation of indices). The 3-fold symmetric
powers Sym3V of a 4-dimensional vector space V is

(

4+3−1
3

)

= 20. In other
words, there are only 20 different groups of indices:

111, 222, 333, 444, 112, 113, 114, 221, 223, 224,

331, 332, 334, 441, 442, 444, 123, 124, 134, 234.

This analysis is summarized in the theorem below:

Theorem 5. The constraints P iP ′jP ′′kJijk = 0 made solely from stationary
points span at most a 20-dimensional space.

Consequently, in the unsegmented situation when stationary and dynamic
points are treated alike, it is not possible to obtain a unique solution from
stationary points alone; one needs at least 40 dynamic points in the collection
of N ≥ 60 matching triplets. We consider next the contribution arising from
labeled stationary points, i.e., how many constraints would a triplet P, P ′, P ′′

contribute if it were known that the corresponding physical point X is sta-
tionary? In this case, for every δ4×1 and for every V , the determinant

det





| | | |
P AP ′ Bδ V

| | | |





vanishes. Since this is true for every pair of the three points, then for each of
the four Htensors we get:

P iP ′jek
1Jijk = 0 P ie

j
1P

′′kJijk = 0 ei
1P

′jP ′′kJijk = 0

P iP ′jek
2Jijk = 0 P ie

j
2P

′′kJijk = 0 ei
2P

′jP ′′kJijk = 0

P iP ′jek
3Jijk = 0 P ie

j
3P

′′kJijk = 0 ei
3P

′jP ′′kJijk = 0

P iP ′jek
4Jijk = 0 P ie

j
4P

′′kJijk = 0 ei
4P

′jP ′′kJijk = 0,

(11)

where e1, e2, e3, e4 are the standard basis (1, 0, 0, 0),(0, 1, 0, 0),(0, 0, 1, 0),(0, 0, 0, 1).
Note that the constraint

P iP ′jP ′′kJijk = 0
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can be spanned by each row separately, hence the rank of the above system
is at most 10. We thus arrive to the conclusion:

Theorem 6. A labeled stationary point can provide at most 10 linearly inde-
pendent constraints for the solution of J .

These constraints came from one stationary point, but how many of them
are spanned by the subspace of constraints obtained from unlabeled stationary
points? This question is answered next:

Theorem 7. Out of the ten linearly independent constraints arising from a
labeled stationary point, four lie in the rank-20 subspace spanned by unlabeled
stationary points and six lie in the subspace spanned only by dynamic points.

Proof: Again, it is sufficient to prove this theorem for the case where
A = B = I . In this case a stationary point satisfies P ∼= P ′ ∼= P ′′.

We look at the 12 constraints of rank 10 described in (11). Adding the
three constraints in the first row gives

Gijk = P iP jek
1 + P ie

j
1P

k + ek
1P jP k

which is a symmetric tensor and thus is spanned by the 20-dimensional sub-
space of the unlabeled stationary points.

Similarly, the constraint tensors resulting from adding the other three rows
are also symmetric. One can verify that except for those four constraints (and
the ones they span) there are no other symmetric constraints.

Taken together, four out of the ten constraints contributed by a labeled
stationary point lie in the subspace of unlabeled stationary points and six
constraints lie in the subspace of dimension 40 spanned by dynamic points.

As a corollary, we can deduce that 7 labeled stationary points are nec-
essary to fill up the 60 dimensional subspace necessary for a solution for J .
Since the 10 constraints contributed by a labeled stationary point include 4
which are spanned by the subspace of unlabeled stationary points, then 5 la-
beled stationary points will fill up the 20-dimensional subspace of unlabeled
stationary point. Each additional labeled stationary point can contribute at
most 6 linearly independent constraints.

Corollary 1. A minimum of 7 labeled stationary points are necessary for a
unique (up to a 4-dimensional solution space) solution for J .

Note that we used the term ”unique” for the solution of J (despite the fact
that J can be recovered only up to a 4-fold linear subspace) due to the fact
that the collineations A, B can be recovered uniquely from the 4-dimensional
J tensor space.

Finally, we consider the situation of a mixed labeled and unlabeled triplets.
Consider the case where x ≤ 7 of the triplets are labeled as arising from
stationary points. The corollary below addresses the question of how many



20 Amnon Shashua and Lior Wolf

matching triplets arising from moving points are necessary given that x ≤ 7
matching triplets are labeled as stationary? Clearly, when x = 7 there is no
need for further measurements, but when x < 7 we obtain the following result:

Corollary 2. In a situation of matching triplets arising from a mixture of
stationary and moving points, let x ≤ 7 be the number of matching triplets
that are known a priori to arise from stationary points. To obtain a unique
linear solution for J (up to a 4-dimensional solution space), the minimal
number of unlabeled matching triplets required is:







60 − 10x x ≤ 5
4 x = 6
0 x = 7







,

out of which 40 − 6x, x < 7, should be dynamic and at most 20 − 4x, x ≤ 5,
could be unlabeled stationary points.

4 Homography Tensors for Pn

The tensors H and J we have encountered so far belong to the general class
of tensors defined as follows. Let V (n, m, k), where n > k, be a GL(V ) mod-
ule defined by the set of all tensors v1 ⊗ · · · ⊗ vm ∈ V ⊗m where vi ∈ V are
n-dimensional vectors and dimSpan{v1, . . . , vm} ≤ k. What is the structure
and dimension of V (n, m, k)? In the terminology of the previous sections, we
considered the space Pn−1, the number of views to be m and the motion of
the dynamic points are limited to a k-dimensional subspace. Thus we have
encountered V (3, 3, 2) and V (3, 3, 1) which stand for dynamic and stationary
points in P2, and encountered V (4, 3, 2) and V (4, 3, 1) which stand for dy-
namic motion along straight lines and stationary points in P3. To generalize
the construction of homography tensors to Pn we need to find out:

1. The dimension of V (n, m, k). Namely, given linear constraints generated
by a multilinear form over the m-fold Htensor from known observations
of m points moving inside k-dimensional subspaces what would be the
maximal space those measurements could fill. For example, for V (3, 3, 2)
the maximal space is 26, which means we can obtain a unique solution
for the 3 × 3 × 3 Htensor, but for V (4, 3, 2) the maximal dimension is 60
which means we can pin-point the 4 × 4 × 4 tensor up to a 4-fold linear
space. This will be the focus of this section.

2. Is the dimension of V (n, m, k) sufficient for uniquely recovering the m− 1
individual collineations? and how to recover those collineations using the
tensor slices? For example, we saw that the two collineations A, B can
be recovered uniquely from H and also uniquely from J even though J
cannot be uniquely recovered from the measurements (in other words, we
recovered A, B from the 4-dimensional linear space of solutions for J ).
This generalization is an open for future research.
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3. What are the constraints contributed from a labeled k′ < k-dimensional
point? from example we saw that the stationary points k′ = 1 for V (3, 3, 2)
contribute 7 independent constraints, and 10 independent constraints for
V (4, 3, 2). This is left open for future research.

4. What would be the dimension of the space covered by mixed observations,
i.e., from labeled k′ < k, and unlabeled points from k and k′ < k. For
example, we saw that the the labeled stationary k′ = 1points provide
only 4 new constraints as 3 of the 7 provided by labeled stationary points
constraints are included in the space of dimension V (3, 3, 1) covered by
unlabeled stationary points. This topic is left for future research.

We will focus below on the first item above which is the dimension
of V (n, m, k). The simple cases are dim V (n, m, 1) =

(

n+m−1
m

)

(because

V (n, m, 1) = SymmV ) and dimV (n, m, m − 1) = nm −
(

n
m

)

which arises
by naive introspection. For example, dim V (3, 3, 2) = 26 which means that
the Htensor requires 26 matching triplets across three views of a dynamic
planar configuration for a unique solution (27 − 26 = 1), whereas if all the
measurements arise from “stationary” points then dimV (3, 3, 1) = 10. Like-
wise, dim V (4, 3, 2) = 60 which means the Jtensors are spanned by 4 tensors
(64− 60 = 4) and 60 matching triplets of 3D points across changes of coordi-
nate systems of a dynamic 3D configuration are required for a solution, and
if all the measurements arise from stationary points then dim V (4, 3, 1) = 20.

We will show next that the question of structure and dimension of the
GL(V ) module V (n, m, k) can be generally solved by counting irreducibles
using the tools of Representation Theory [15]. The notations and a brief primer
on representation theory can be found in the Appendix. The central result of
this section is proving that:

V (n, m, k) =
⊕

λk+1=0

Sλ(V )⊕fλ ,

and in particular

dimV (n, m, k) =
∑

λk+1=0

fλ dimSλ(V ) .

Where λ is a partition of m, the direct sum is over all partitions with at most
k parts, fλ is the number of standard tableaux on λ, and Sλ(V ) is Schur’s
module.

The mathematics of representation theory may be somewhat unfamiliar
as it was so far not in use in computer vision literature, yet it uncovers some
beautiful connections between the recent new efforts of extending the envelope
of Structure from Motion (SFM) theory and applications to non-rigid scenes
and the representations of finite groups and of GL(V ) on the m-fold tensor
product.
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5 The Structure of V (n, m, k)

We would like to prove the following claim:

Claim.
V (n, m, k) =

⊕

λk+1=0

Sλ(V )⊕fλ .

In particular

dim V (n, m, k) =
∑

λk+1=0

fλsλ.

Proof: Suppose λ ⊢ m and λk+1 = 0. Let t be the tableau given by t(i, j) =
∑i−1

l=1 λl + j. Noting that V (n, r, 1) = SymrV it follows that

V ⊗m · at = Symλ1V ⊗ · · · ⊗ SymλkV

= V (n, λ1, 1) ⊗ · · · ⊗ V (n, λk, 1) ⊂ V (n, m, k) .

Therefore,

St(V ) = V ⊗m · aT · bT ⊂ V (n, m, k) · bT ⊂ V (n, m, k)

hence,
⊕

λk+1=0

Sλ(V )⊕fλ ⊂ V (n, m, k).

To show the other direction let (·, ·) be a hermitian form on V and let the
induced form on V ⊗m be given by

(u1 ⊗ · · · ⊗ um, v1 ⊗ · · · ⊗ vm) =

m
∏

i=1

(ui, vi) .

Note that

(u1 ∧ · · · ∧ um, v1 ⊗ · · · ⊗ vm)

=
1

m!
(u1 ∧ · · · ∧ um, v1 ∧ · · · ∧ vm)

=
1

m!
det[(ui, vj)]

m
i,j=1 .

Let λ ⊢ m with λk+1 6= 0, then the conjugate partition µ = (µ1 ≥ µ2 ≥ . . . ≥

µt) satisfies µ1 ≥ k + 1. Let lj =
∑j

r=1 µr and let t be the tableau given by
t(i, j) = lj−1 + i. Then

St(V ) = V ⊗m · at · bt ⊂ V ⊗m · bt

= ∧µ1V ⊗ · · · ⊗ ∧µlV .

Suppose now that v1, . . . , vm ∈ V ⊗m satisfy dimSpan{v1, . . . , vm} ≤ k. Then
v1 ∧ · · · ∧ vµ1

= 0 therefore for any u1, . . . , um ∈ V
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((u1 ⊗ · · · ⊗ um) · bT , v1 ⊗ · · · ⊗ vm) =

l
∏

r=1

1

µr!
(

lr
∧

i=lr−1+1

ui,

lr
∧

i=lr−1+1

vi) = 0 .

It follows that V (n, m, k) is orthogonal to

⊕

λk+1 6=0

Sλ(V )⊕fλ

hence,

dimV (n, m, k) ≤ dim
⊕

λk+1=0

Sλ(V )⊕fλ .

Claim 5 can be used to give explicit formulas for dim V (n, m, k) when
either k or m − k are small. In the later case we write

dim V (n, m, k) = nm −
∑

λk+1 6=0

fλdλ(n)

and note that the partitions of m with λk+1 6= 0 correspond to all partitions
of all numbers up to m − k − 1.

Examples: to calculate dimV (n, m, m−1) note that only λ = (1m) must
be excluded, thus:

f(1m) = 1 , d(1m)(n) =

(

n

m

)

hence,

dimV (n, m, m − 1) = nm −

(

n

m

)

.

To calculate dim V (n, m, m − 2) we must exclude, in addition to the above,
the partition (2, 1m−2), thus:

f(2,1m−2) = m − 1 , d(2,1m−2)(n) = (m − 1)

(

n + 1

m

)

hence,

dimV (n, m, m − 2) = nm − [

(

n

m

)

+ (m − 1)2
(

n + 1

m

)

].

To calculate dim V (n, m, m − 3) we must exclude, in addition to the above,
the partitions (3, 1m−3) and (22, 1m−4), thus:

f(3,1m−3) =

(

m − 1

2

)

, d(3,1m−3)(n) =

(

m − 1

2

)(

n + 2

m

)
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f(22,1m−4) =
m(m − 3)

2
,

d(22,1m−4)(n) =
(m − 3)n

2

(

n + 1

m − 1

)

Hence,

dim V (n, m, m − 3) = nm − [

(

n

m

)

+

(m − 1)2
(

n + 1

m

)

+

(

m − 1

2

)2(
n + 2

m

)

+
m(m − 3)2n

4

(

n + 1

m − 1

)

].

6 Experiments and Applications

We start with an experiment for separating dynamic from stationary points
from a planar configuration. The projections of a planar configuration are
governed by collineations. The conventional way to separate the moving from
the stationary points is to treat the dynamic points as outliers and use ro-
bust estimation to recover the collineations [9]. Using homography tensors we
can treat the dynamic and stationary points alike and recover the governing
Htensor H instead.

The point configuration is illustrated in Fig. 6. The moving points were
part of 4 remote controls that were in motion while the camera changed po-
sition from one view to the next. The points were tracked along the three
views, without knowledge what was stationary and what was moving. The
triplet of matching points were fed into a least-square estimation for H. We
then checked the error of reprojection on the stationary points —these were
at sub-pixel level as can be seen in Fig. 6h — and the accuracy of the line
trajectory of the moving points. Because the moving points were clustered
on only 4 objects (the remote controls), then the accuracy was measured by
“eye-balling” the parallelism of the trajectories of all points within a moving
object. The lines are closely parallel as can be seen in Fig. 6f. The Htensor
can also be used to segment the scene into stationary and moving points —
this is shown in Fig. 6e.

To illustrate the use of the homography tensor J , consider the problem
of 3D reconstruction of an object which extends beyond the field of view of
the sensor. For this purpose we can use a stereo rig, that contains a texture
pattern projector for obtaining matching points on textureless areas of the
object. Because the field of view of the cameras does not cover the entire
object, the stereo rig must acquire images from multiple viewing positions.
Each image provides a 3D patch of the object and the goal is to “stitch” these
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patches together by aligning their coordinate systems. In other words, we
must recover the relative 3D motion of the rig. The problem is conventional
if the texture projection is stationary (i.e., remains in place while the rig
changes position); but here the projector moves with the rig. In this domain,
the dynamic points are the points arising from the projected texture and the
stationary points arise from texture markings on the object’s surface. Hence,
if the rig moves in a piecewise straight-line path and the object is polyhedral,
Htensor theory is an appropriate tool for aligning the coordinate systems of
the 3D patches.

Once the Htensor J are recovered one can align the reconstructed patches
using two different approaches. The first approach is to align all the patches to
one coordinate frame using direct mapping (Section 3.2) or by recovering the
transformations A and B (Section 3.1). The second approach is to first seg-
ment the tracked points into stationary and dynamic points. Then, using only
the stationary points, we can recover the collineation between the coordinate
frames A and B.

We apply the Htensor to the scene with multiple objects shown in Fig 7.
Most of the objects are textureless but there are stationary features through-
out the scene. A texture was projected and 236 features were tracked between
the images in each stereo pair and across the three stereo pairs. The feature
set contains both stationary and dynamic points. It can be seen from the last
row of Fig. 8 that the correct motion was captured because the stationary
points were stabilized whereas the dynamic points are moving on straight line
paths. The last image shows the segmented stationary points. Note that in our
framework we use only projective reconstruction and we do not use any cali-
bration. If Euclidean reconstruction is desired, a 4×4 projective-to-Euclidean
transformation can be applied later on.

7 Summary

We have introduced in this chapter the m-view analogue of the classical
collineation (homography matrix). The extension from 2 to m views intro-
duces an additional parameter k < n which endows the individual points of
the point configuration, which is being transformed projectively from view to
view, with the ability to become ”dynamic”. The value of k stands for the
dimension of the subspace in which the indvidual points are allowed to move
while the projective change of coordinates take place. For example, when k = 1
the points are not allowed to move (are stationary) just like with conventional
collineations, and when k = 2 the individual points are allowed to move along
straight line paths, and so forth.

The m-view tensors for Pn and for k < n, referred to as homography
tensors, were developed in detail for the case n = 3, 4 and the case k = 2, 1
— which are instances of practical value for applications. In the derivation
of the homography tensor the following issues need to be addressed (i) the
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maximal space contributed by dynamic points of sub-dimension k, (ii) number
of constraints contributed by mixed points where some are labeled to move
in k-subspace and some are unlabeled, and (iii) the use of the homography
tensor as a mapping and the recovery of the individual projective mappings
between views from the elements of the tensor.

Those issues were covered in detail for n = 3, k = 2, 1 (the H tensor for
planar configurations) and for n = 4, k = 2, 1 (the J tensor for 3D configu-
rations). For general n, m, k we have covered only the first issue above, that
of dimension of the GL(V) module V (n, m, k) associated with the question
of how many independent linear constraints are possible for a given value of
n, m, k.

As for applications, we presented two instances, in 2D and 3D, of the
problem of recovering the global alignment under dynamic motion. Without
homography tensors, a recovery of alignment requires the use of statistical
methods of sampling where the points undergoing dynamic motion are con-
sidered as outliers — whereas with the homography tensors both stationary
and moving points can be considered alike and part of a global transforma-
tion which can be recovered analytically from observations (matching points
across m views).

Generally, the homography tensors can be used to recover linear models
under linear uncertainty. This generalization is quite straightforward, although
the size of the resulting tensors grows exponentially. The use of such tensors
in dimensions larger then P3 (n > 4) is not straightforward and is left for
further research.
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A Representation Theory Digest

In this section we briefly recall some relevant facts concerning the represen-
tation theory of the general linear group. For a thorough introduction see
[15].

Let V be a finite n-dimensional vector space over the complex numbers.
The collection of invertible n × n matrices is denoted by GL(n) which is the
group of automorphisms of V denoted by GL(V ). The vector space V ⊗m (m-
fold tensor product) is spanned by decomposable tensors of the form v1⊗· · ·⊗
vm, where the vectors vi are in V . Hence the dimension of V ⊗m is nm. The
vector space V ⊕m is the m-fold direct sum of V , thus is of dimension nm.

The exterior powers ∧mV of V , n ≥ m, is the vector space spanned by
the m×m minors of the n×m matrix [v1, ..., vm] where the vectors vi are in
V . Hence the dimension of ∧mV is

(

n
m

)

. The exterior powers are the images
of the map V ×m → V ⊗m given by

(v1, · · · , vm) →
∑

σ∈Sm

sgn(σ)vσ(1)⊗, · · · , vσ(m)
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where Sm denotes the symmetric group (of permutations of m letters).
The symmetric powers SymmV are the images of the map V ×m → V ⊗m

given by

(v1, · · · , vm) →
∑

σ∈Sm

vσ(1)⊗, · · · , vσ(m)

Hence the vector space SymmV is of dimension
(

n+m−1
m

)

. Note that,

V ⊗ V = Sym2V ⊕ ∧2V

with the appropriate dimension: n2 =
(

n+1
2

)

+
(

n
2

)

. This decomposition into ir-
reducibles (see later) is not true for V ⊗m, m > 2. The remainder of this section
is devoted to the necessary notation for representing V ⊗m as a decomposition
of irreducibles.

A representation of a group G on a complex finite dimensional space U is
a homomorphism G to GL(U) - the group of linear automorphisms of U . The
action of g ∈ G on u ∈ U is denoted by g · u. The G−module U is irreducible
if it contains no non-trivial G−invariant subspaces. Any finite dimensional
representation of a compact group G can be decomposed as a direct sum
of irreducible representations. This basic property called complete reducibil-
ity also holds for all holomorphic representations of the general linear group
GL(V ).

The main focus of Section 4 is the space

V (n, m, k) = Span{v1 ⊗ · · · ⊗ vm ∈ V ⊗m :

dimSpan{v1, . . . , vm} ≤ k } .

Since V (n, m, k) is invariant under the GL(V ) action given by g·v1⊗· · ·⊗vm =
g(v1)⊗ · · · ⊗ g(vm) it is natural to study its structure by decomposing it into
irreducible GL(V )- modules.
The description of the finite dimensional irreducible representations (irreps)
of GL(V ) depends on the combinatorics of partitions and Young diagrams
which we now describe:
A partition of m is an ordered set λ = (λ1, ..., λk) such that λ1 ≥ ... ≥
λk ≥ 1 and

∑

λi = m. A partition is represented by its Young diagram (also
called shape) which consists of k left aligned rows of boxes with λi boxes in
row i. The conjugate partition µ = (µ1, ..., µr) to a partition λ is defined by
interchanging rows and columns in the Young diagram — or without reference
to the diagram, µi is the number of terms in λ that are greater than or equal
to i.

An assignment of the numbers {1, ..., m} to each of the boxes of the dia-
gram of λ, one number to each box, is called a tableau. A tableau in which
all the rows and columns of the diagram are increasing is called a standard
tableau. We denote by fλ the number of standard tableaux on λ, i.e., the num-
ber of ways to fill the young diagram of λ with the numbers from 1 to m, such
that all rows and columns are increasing. Let (i, j) denote the coordinates of
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the boxes of the diagram where i = 1, .., k denotes the row number and j

denotes the column number, i.e., j = 1, ..., λi in the i’th row. The hook length
hij of a box at position (i, j) in the diagram is the number of boxes directly
below plus the number of boxes to the right plus 1 (without reference to the
diagram, hij = λi + µj − i − j + 1). Then,

fλ =
m!

∏

(i,j) hij

where the product of the hook-lengths is over all boxes of the diagram. We
denote by dλ(n) the number of semi-standard tablaeux which is the number
of ways to fill the diagram with the numbers from 1 to n, such that all rows
are non-decreasing and all columns are increasing. We have:

dλ(n) =
∏

(i,j)

n − i + j

hij

.

Let Sm denote the symmetric group on {1, . . . , m}. The group algebra CSm

is the algebra spanned by the elements of Sm

CG = {
∑

σ∈Sm

ασσ | ασ ∈ C}

where addition and multiplication are defined as follows:

α(
∑

σ∈Sm

ασσ) + β(
∑

σ∈Sm

βσσ) =
∑

σ∈Sm

(αασ + ββσ)σ

and
(

∑

σ∈Sm

ασσ)(
∑

τ∈Sm

βτ τ) =
∑

g∈Sm

(
∑

g=στ

ασβτ )g

for α, β, ασ, βσ ∈ C.
Let t be a tableau on λ (a numbering of the boxes of the diagram) and let

P (t) denote the group of all permutations σ ∈ Sm which permute only the
rows of t. Similarly, let Q(t) denote the group of permutations that preserve
the columns of t. Let at, bt be two elements in the group algebra CSm defined
as:

at =
∑

g∈P (t)

g , bt =
∑

g∈Q(t)

sgn(g)g.

The group algebra CSm acts on V ⊗m on the right by permuting factors,
i.e., (v1 ⊗ · · · ⊗ vm) · σ = vσ(1) ⊗ · · · ⊗ vσ(m). For a general shape λ and a
tableau t on λ the image of at, V ⊗m · at, is the subspace:

V ⊗m · at = Symλ1V ⊗ · · · ⊗ SymλkV ⊂ V ⊗m

and the image of bt is
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V ⊗m · bt = ∧µ1V ⊗ · · · ⊗ ∧µrV ⊂ V ⊗m

where µ is the conjugate partition to λ. The Young symmetrizer is defined by
ct = at · bt ∈ CSm. The image of the Young symmetrizer

St(V ) = V ⊗m · ct

is the Schur Module associated to t and is an irreducible GL(V )- module.
The isomorphism type of St(V ) depends only on the shape λ so we may write
St(V ) = Sλ(V ). It turns out that all the polynomial irreps of GL(V ) are of
the form Sλ(V ) for some m and a partition λ ⊢ m.
Let Tλ denote the set of standard tableaux on λ then the direct sum decom-
position of V ⊗m into irreducible GL(V )-modules is given by

V ⊗m =
⊕

λ⊢m

⊕

t∈Tλ

St(V ) ∼=

⊕

λ⊢m

Sλ(V )⊕fλ .

Since dλ(n) = dimSλ(V ) it follows that

dimV ⊗m = nm =
∑

λ⊢m

dλ(n)fλ.

For example, consider n = m = 3, i.e., V ⊗ V ⊗ V where dimV = 3. There
are three possible partitions λ of 3 — these are (3), (1, 1, 1) and (2, 1). From
the above, S(3)(V ) = Sym3V and S(1,1,1)V = ∧3V . There are two, f(2,1) = 2,
standard tableaux for λ = (2, 1) and these are 123 and 132 (numbering of
boxes left to right and top to bottom). There are eight, d(2,1)(3) = 8, semi-
standard tableaux which are: 112, 113, 122,123, 132, 133,223 and 233. We have
the decomposition:

V ⊗ V ⊗ V = Sym3V ⊕ ∧3V ⊕ (S(2,1)V )⊕2

with the appropriate dimensions: 27 = 10 + 1 + (8 + 8).
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(a) (b) (c)

(d) (e) f
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(g) (h)

Fig. 6. (a),(b),(c) three views of a planar scene with 4 remotes moving on straight
lines (d) The first view with the points that were tracked across the sequence. These
points were used for computing the homography tensor H in a least-squares manner.
(e) Segmentation: the homography tensor was used to choose the stationary points.
Only the stationary points are shown. (f) Trajectory lines: the homography tensor
was used to calculate the trajectory lines. In this figure we see the trajectory lines in
the third image. (g) Reprojection: Using the homography tensor we reprojected the
points in view 1 to view 3. The reprojected points are shown as circles. The Tracked
points as stars. (h) A zoom of the previous image.
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(a) Left view, time 1

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(b) Right view, time 1
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(c) Left view, time 2
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(d) Right view, time 2
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(e) Left view, time 3
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(f) Right view, time 3

Fig. 7. A pair of views from a stereo rig taken at three time instants. The rig is
moving with the texture pattern. The scene therefore contains both stationary and
dynamic points.
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(a) Left-hand image of first pair (b) Right-hand image of first pair

(c) Tracked points, shown on (a) (d) Zoomed part of (c)

(e) Stabilized points, shown on (a) (f) Zoomed part of (e)

(g) Segmentation of moving/static
points

Fig. 8. Application of the Htensor J to 3D reconstruction. Row 1 displays two
images from one stereo pair. The images show the projected texture. The stereo rig
and the projector are moved together at subsequent time instants (not shown). Row
2 displays the tracked points. Some of the points are stationary features (physical
objects) and some are from the projected texture. Row 3 displays the points after
the motion was canceled with the Htensor. Notice that points that are stationary
were stabilized, meaning that the Htensor captured the correct 3D motion. (g) shows
the stationary points, which were identified by the Htensor.


