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Abstract—The Dead Sea Scrolls were discovered in the Qum-
ran area and elsewhere in the Judean desert beginning in 1947
and were photographed in infrared in the 1950s. Recently, the
Israel Antiquities Authority embarked on an ambitious project
to digitize all the fragments using multi-spectral cameras. We
describe a method that utilizes information from both of these
image sets: the highly detailed multispectral images and the older
infrared images, which preserve the state of the fragments as it
was shortly after discovery. We use a two-step registration proce-
dure to align the image sets. First, a coarse global transformation
is applied to the whole image of the new set, producing a rough
alignment, followed by a fine, local wrapping based on interest
point matching. The aligned images can be used to improve
image binarization and to identify and repair fragments that have
degraded further over the years. Additionally, the fine alignment
parameters can be used for coarse attribute classification, such
as the period when written.

I. INTRODUCTION

The Dead Sea Scrolls (DSS) were written between the third
century BCE and the first CE, and were discovered in the Qum-
ran area and elsewhere in the Judean desert beginning in 1947.
These fragmentary documents have taught the world a great
deal about Jewish history in the late Second Temple period
and about sectarian Judaism, and they have provided much
background knowledge relevant to the birth of Christianity. In
addition, the Dead Sea Scrolls have enhanced our understand-
ing of the textual transmission of the Bible. Following their
discovery, the scrolls were photographed during the 1950s,
using infrared (IR) film and Kodak filters [1].

Removal from the stable environment in the Judean Desert
caves has placed the scrolls at great risk of deterioration.
Furthermore, in the early years, scholars mishandled the scrolls
unwittingly, causing irreversible damage, as they attempted
to piece fragments together. Recently, the Israel Antiquities
Authority, in collaboration with Google, Inc., embarked on an
ambitious project to digitize all the fragments using multi-
spectral cameras, providing high-resolution color and IR im-
ages, and to make them, as well as the old IR images, available
to everyone on the Internet [2], [3].

When examining the two image sets, one can see a number
of conspicuous differences: naturally, the new images are of
better quality and higher contrast, but in many cases the
fragment in the new image is damaged, while the older image
preserves the state of the fragments before they degraded
further. Many images are of assemblages of several tiny

Figure 1. Old infrared image (left), new color image (center) and new high-
contrast infrared image (right).

fragments, and in some cases the layout was changed before
the new image was taken. Fig. 1 shows a typical example of
the differences between the images: part of the bottom edge
of the fragment has eroded, causing letters to disappear, and
a piece at the top is displaced in the new image.

Our goal is to combine the advantages of both sets of
images. We use a two-step registration procedure to align the
two image sets in a coarse-to-fine approach, and we show how
registration may contribute to more accurate results for various
processing and analyzing tasks.

II. IMAGE REGISTRATION

Image registration is the process of aligning two (or more)
images of the same scene, taken at different times, positions
and/or capturing devices. The task is to map each pixel from
one image to its corresponding pixel in the other. Registration
is widely used in many image analysis applications, aiming to
increase the overall information gained from the multiple im-
ages. A comprehensive survey of image registration methods
may be found in [4] (and reference [26] therein).

Document registration is needed in many applications, in-
cluding office automation, document databases and digital
libraries. Template matching [5], line information and cell
structure utilization [6] and projective geometry [7] are just
a few among many methods proposed in recent years. The
special case of historic document analysis, containing hand-
written text, is gaining considerable momentum as more and
more collections are being digitized and made available on
the Internet and in libraries. In addition to the distortions that
must be handled by document registration methods, historical
documents present additional challenges, including poor image
quality, tears, bleed-through and in some cases local small
displacements of small sub-fragments within the image. A



method to automatically select interest points for historical
document registration, ignoring bleed-through areas, was pre-
sented in [8]. However, the algorithm assumes specific stroke
patterns when selecting interest points, which is not necessarily
valid in our case.

The types of distortion between the two DSS image sets (old
and new) that are encountered vary from global misalignment
(e.g. rotation, scaling) to local deformations sustained differ-
ently by different parts of the document. Thus, a registration
algorithm applied to the DSS’s old and new images must be
able to address all these types of distortion. Efforts to address
the problem of alignment of old and new DSS fragments
have been performed by the team acquiring the new images
[Gregory Bearman, personal communication, 2013].

We take our inspiration from the work of Jagalur et al. [9],
describing a registration algorithm comprising two main steps:
a coarse similarity transformation step (a subset of affine trans-
formation including translation, rotation and scaling, excluding
shearing) is first applied globally to one of the images (new
image) to bring it into rough alignment with the other (old
image). Then, a fine local warping step is performed to handle
local misalignments. The fine step uses an entropy measure to
select interest points (landmarks) in the reference image, finds
matching interest points in the target image based on mutual
information (MI) and performs inverse warping by bi-cubic
interpolation to finely align the new image.

A. Algorithm

As the algorithm in [9] was targeted to mice brain images, it
required modification to be suited for registration of historical,
hand-written texts. We present our registration algorithm,
highlighting the changes relative to [9], which will be referred
to as the baseline algorithm.

Given the old (reference) image and the new (target) image,
the algorithm first performs a similarity transformation on the
target image to try and roughly align it to the reference image,
as in [9]. The main objective of this step is to reduce fine-step
complexity. We perform the search for the best transformation
parameters over a scaled-down version of the images, where
the scaling is coarsely determined by the image sizes. The
best transformation parameters (vertical and horizontal scales,
rotation and vertical and horizontal translations) are searched
for sequentially. We tested different metrics to asses the
transformation performance during the search, including sum-
of-square-distance (SSD), earth mover distance (EMD) [10],
quadratic-chi (QC) [11], normalized-cross-correlation (NCC)
and mutual-information (MI). We found that the results using
the MI metric outperformed all the others.

To present the different metrics’ performance, we introduced
scale, phase and translation errors to a registered target image
and used it, with the corresponding reference image, to test
the similarity transformation step. We used a registered target
image to emulate as closely as possible the actual registration
of the two image sources. Table I presents the transformation
parameter’s l1 errors (averaged over a few images), where
scale and translation errors are normalized to image size.

TABLE I
SIMILARITY TRANSFORMATION PARAMETER ERRORS.

Scale Mean
Error

Rotation Mean
Error (rad)

Translation
Mean Error

MI 0.020 0.011 0.015
SSD 0.114 0.072 0.211
EMD 0.217 0.070 0.167
QC 0.212 0.084 0.233
NCC 0.181 0.087 0.110

B. Probabilistic Graphical Model

After the similarity transformation, we use, differently
than [9], a probabilistic graphical model (PGM) to finely align
local image patches.

We first identity interest points in the reference image. For
the most part, each reference image contains one fragment
with some background, where the text region occupies most
(but not all) of the fragment area. Since the fragments, in
general, are distorted, we would like to search for interest
points over the text region only and avoid other areas in the
image (in contrast to the search performed by the baseline
algorithm). This will reduce unnecessary warping distortions
performed by the registration’s fine step. To do so, we use
Otsu’s method [12] to find a global threshold, mask the
reference image and define the search region as the mask’s
convex hull. Interest points are then defined as patches having
a large amount of information over the search region. To
ease the computation burden, the search is performed over
a pre-defined grid. We use the brightness histogram’s entropy
as a measure of the patch’s information. The patch size is
coarsely determined by the reference image size (with patch
sizes ranging from 50×50 pixels for small images to 100×100
pixels for larger ones).

Fig. 2 illustrates the search region in a reference fragment.
The red *’s are the pre-defined search grid, each represents
the upper-left corner location of a patch. We use a patch size
of 100×100 with grid spacing of 50 pixels in each dimension.
The blue +’s are the selected interest points, where we allow
up to 25% patch overlap.

Figure 2. Search grid (red *) and selected interest points (blue +).

Having detected interest points in the reference image, the
corresponding interest points in the target image need to be
determined. Since we assume that the similarity transformation
coarsely aligned the two images, the location of each corre-
sponding interest point in the target image should reside in a
local area surrounding the reference’s interest point location. In
general, there is some correlation between neighboring interest



points in the reference image, which should be exploited. This
is formalized using PGM as described next.

Let lm be the pixel location (row and column) of interest
point m in the reference image (which is already identified as
indicated by the + set in Fig. 2) and by dm the displacement
(row and column) of the corresponding interest point pixel
location in the target image. Then dm is a (2D) random
variable with realization over a local search space defined by a
P×P square region around lm (meaning dm ∈ [−P/2, P/2]×
[−P/2, P/2]). Thus, the corresponding target’s interest point
location is lm + dm. Our goal is to find the “best” dm value
for all m’s (all interest points). We use MI to capture the
fidelity of each dm realization by computing the MI between
the reference patch, located at lm, and the target patch, located
at lm + dm, for each dm realization. The overall MI measure
(P×P matrix) is then defined as θm(dm). This is done for
each interest point.

To formulate the underlying correlation between neigh-
boring interest points in the reference image, we define
φk(d

m, dn) to be the correlation measure (potential) between
adjacent interest points m and n having displacement dm and
dn respectively. The subscript k, defining different correlation
potentials, identifies the neighborhood space index, where
k = 1 corresponds to interest points (within the reference
image) having distance of ‖lm − ln‖ = g, k = 2 to interest
point distance of

√
2g, k = 3 to 2g, etc., where g is the

search grid spacing in each dimension. Given two neighboring
interest points m and n, the value of φk is computed by:

φk(d
m, dn) = C(k) · (L− ‖dm − dn‖)

where L ≡ max{‖dm−dn‖} over all dm and dn realizations,
C(k) is a constant per k and C(k) > C(k+1) for all k. This
suggests that the correlation assumption weakens as the two
interest points become farther apart.

Given the displacement fidelity measure, θm(dm), and the
different neighbor correlation potentials, φk(dm, dn), the in-
tegrated (over all interest points m) displacement realization
log-probability is (based on PGM):

Log(P ({dm})) =
∑
m

θm(dm) +
∑
k,m,n

φk(d
m, dn)− logZ

where Z is the partition function ensuring that the probabilities
sum to 1 and n ∈ Am(k), where Am(k) defines the interest
point m’s neighbor space corresponding to the neighbor index
k. Finding the optimal displacement for all interest points is
then equivalent to finding the maximum a-posteriori (MAP)
argument of the integrated log-probability function.

C. Inference

To find the optimum displacement for each interest point, we
perform inference based on convex belief propagation (BP),
as presented in [13]. The method uses an approximate convex
function to solve the MAP assignment (as exact inference is
NP-hard), guaranteeing the convergence of the BP algorithm.
Detailed information can be found in [13].

A factor graph is constructed with variable nodes repre-
senting θm(dm) and a factor node for each φk(d

m, dn). An
edge connects a variable node to its corresponding factor node.
We use the distributed convex-BP implementation presented
in [14]. It allows parallel inference on p processors by parti-
tioning the graph into p subgraphs and enforcing consistency
between the subgraphs’ shared nodes (inter-subgraph edges).

The solution of the distributed convex-BP is the set of op-
timal interest points’ displacements. Thus, the corresponding
optimal location of the reference’s interest point m in the target
image is lm+d̂m, where d̂m is the optimal displacement value.

Given the set of interest points in the reference image and
the corresponding interest points in the target image, Delaunay
triangulation is performed using the interest points as vertices,
followed by inverse warping, as in [9]. A bi-cubic interpolation
is used to map each pixel in the target image to its new location
based on the interest points (vertices) of the surrounding
triangle in the reference image.

D. Results

The proposed algorithm was tested on many of the DSS
old and new image sets. We used two neighborhood space
indexes for the correlation potential: φ1(dm, dn) describing
the potential values for two interest points having a Euclidean
distance of g and φ2(dm, dn) having a distance of

√
2g, where

g is the search-grid spacing in each dimension.
To present the registration results, we superimpose the two

images within a color image where the red channel contains
the reference image and the green channel the target image
(either before or after registration). Thus a perfectly aligned
text will appear black. The arrows point to sample regions
showing marked improvement.

Fig. 3(a) presents the registration result on a Herodian
fragment. The figure contains the superimposed image before
registration (left side), after registration using the baseline
algorithm [9] (center) and after registration using the proposed
algorithm (right size). Note the performance differences at the
lower-left edge of the fragment between the two algorithms.
Fig. 3(b) is a Hasmonean fragment; note the performance
differences at the right edge of the fragment between the
two algorithms. Fig. 3(c) is another Herodian fragment; note
the performance differences on the middle and bottom sides
between the two.

III. APPLICATIONS

We show now how the registration of images from the two
sets enables us to further process and analyze the DSS images.

A. Binarization

Binarization is an essential stage of every document image-
processing system. For images of historical manuscripts, this
is a very challenging task, as degradation and different kinds
of damage lead to variability both in the background and
the foreground. Many local methods have been suggested to
binarize non-uniform document images ([15], [16]). Other



(a)

(b)
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Figure 3. Registration input (left), output using baseline (center) and output
using proposed algorithm (right). The arrows point to sample regions showing
marked improvement.

methods have been proposed to solve typical problems of
historical documents ([17], [18]).

We investigated the benefits of multispectral imaging, as is
available for the DSS. We show how the different wavelengths
are combined to achieve a binary image, and then use the
registration results and integrate the old image as an additional
reference. We show how using the old image may produce a
binary image that contains information lost over the years.

Each fragment of the DSS is being photographed in 12
different wavelengths, between 445nm and 924nm. Our as-
sumption was that the different wavelength images together
contain more information than any one separately. As a
baseline, we use the results of Sauvola’s method [15] on the
single highest wavelength (924nm).

Given k different wavelengths, we classify each pixel as
foreground or background in the following way: we train
an SVM classifier using an equal number of foreground and
background pixels, sampled from the baseline binary image.
The features of each pixel are its grayscale values in the k
different images. Then, the achieved SVM model is used to
classify every pixel in the image according to its k features.
The obtained image is our binary result. After registering the
old and new images, we can use the old image as an additional
reference, as it may contain details that have subsequently
degraded. Therefore, we repeat the procedure using the 12
wavelengths plus the old image.

To evaluate the output obtained from different combinations,
we used a manually-made ground-truth binary image, and
calculated three measures: Stot, the fraction of pixels that

Figure 4. Old image (left), new image of wavelength 924nm (center) and
binary image sampled from old and new references (right).

were correctly classified as foreground or background; Sfg, the
success rate on the foreground area, namely, the fraction of the
foreground that was correctly classified; Sbg, the success rate
on the background area, namely, the fraction of the background
that was correctly classified. Table II shows an example of the
scores obtained for different combinations of reference images
of a typical fragment.

TABLE II
BINARIZATION SCORES OF DIFFERENT COMBINATIONS OF REFERENCES.

Stot Sfg Sbg
New image 924nm 0.925 0.999 0.921
Old image 0.873 0.992 0.874
New image 924nm & old image 0.928 0.999 0.923
All new wavelengths 0.929 0.999 0.925
All new wavelengths & old image 0.927 0.999 0.923

The combination of the old and the new images seems
to achieve better accuracy than any single one of them,
specifically with regard to background identification, meaning
that it helps avoid noise caused by ruptures, stains or parch-
ment texture. This is very important for the next stages of
processing, such as character recognition, where we want to
minimize the number of errors. Investigation of the contribu-
tion of the different reference images and obtaining an optimal
combination is left for future research.

Fig. 4 shows another example where using the old image
as reference contributes to the accuracy of the binary result.
The fragment in the new image has deteriorated so that letters
at the bottom disappeared, but in the old image they are still
apparent. The binary image on the right combines the high
contrast of the new image with the information that was lost
at the bottom of the fragment.

B. Damage Detection

Some of the fragments were significantly damaged over the
years, so that it is almost impossible to align the two images
with one another. In such cases, the registration results cannot
be used, but they do give an indication that the fragment’s
condition is very poor. In severe cases, we found that it is
preferable to use the old image for the next processing stages,
although its quality is lower.

However, in many other fragments, a milder deformation
occurred, which influenced mostly the edges of the fragments.
In some cases, as seen in Fig. 4, parts of letters that clearly
show in the old image have disappeared by time the new



images were taken. Another common difference between the
image sets is displacement of small pieces that are part of
a composite, presumably caused during conservation efforts.
This is demonstrated in the upper part of the fragment in
Fig. 4. The two registered images can be used to identify such
cases by comparing the margins of the old and the new photo
after they are aligned. This can serve as a starting point for a
“damage repair” algorithm that will use the old image to fix
the new one, and vice versa.

C. Classification

We considered the three DSS periods, Herodian (Her),
Hasmonean (Has) and Hellenistic-Roman (Hel), and evaluated
the discrimination capabilities of the following measures: (1)
Interest-point displacement norm, R(s) = E{‖dm‖}, where
the average is over all interest points in a fragment. There
is one measure per registration image set s (old and new
images). (2) Jaccard index, J(s), between the interest points’
convex hull in the reference image and the corresponding
convex hull in the target image (one measure per set). (3)
Mutual information, M(s), of the registration’s coarse step
(one measure per set). Analysis of variance (ANOVA) was
performed with each of the above measures, together with a
multiple comparison test to evaluate discrimination between
pairs of periods. The results are provided in Table III. Each row
corresponds to a different measure and gives the p-value (under
the null hypothesis of equal means) and the 95% confidence
interval (CI) range [low mid high] of the estimated means
difference for each period pair.

TABLE III
ANOVA TEST RESULTS FOR PERIOD DISCRIMINATION.

p-value CI(Her,Has) CI(Her,Hel) CI(Has,Hel)
R(s) 0.0175 [-6.00 -1.65 +2.70] [-11.54 -6.20 -0.86] [-9.03 -4.55 -0.06]
J(s) 0.0024 [-0.02 +0.07 +0.16] [-0.16 -0.06 +0.05] [-0.22 -0.13 -0.04]
M(s) 0.0111 [-0.15 -0.03 +0.08] [-0.31 -0.17 -0.03] [-0.25 -0.13 -0.01]

These results suggest a rejection of the null hypothesis at
the 5% significance level for all measures. In addition, both the
displacement norm and mutual information can discriminate
between the Hellenistic-Roman period and each of the other
two, whereas the Jaccard index can only discriminate between
the Hellenistic-Roman and Hasmonean periods.

IV. CONCLUSION

We have demonstrated a registration method that was de-
veloped to address the characteristics of images of historical
document. We used this method to align together image sets
that were taken at two different points in time. The images
show the changes that occurred in a fragment’s state, and
the alignment between them allows for the combining of
information that is preserved in each of the two image sets.
The parameters used in different stages of the registration
may also highlight the features of the different images, and
the differences between the image sets. As part of future
research, we plan to further investigate the ability of the
two image sets to contribute to DSS preservation efforts and

to enhance the results of further image processing steps,
like character recognition and fragment classification. The
registration method presented here is also applicable to the
many other collections that have been imaged multiple times
over the years.
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