
Review of the paper ‘Rate-Limiting Steps in Yeast Protein Translation’ by Shah & Plotkin et al.  

In their paper Rate-Limiting Steps in Yeast Protein Translation, Shah et al. propose a 

computational model for whole-cell translation. This model is used to test a number of 

hypotheses regarding the contribution of various factors to global protein production in the cell.  

As we describe below, the study (at least in its current form), is clearly not suitable to be 

published in Cell.  Specifically, the reported results are either wrong or not new. In addition, the 

described model has many disadvantages that are not discussed, and it is clearly not evaluated 

accurately. Furthermore, while the authors claim the model is more comprehensive than 

previous models, many fundamental aspects mentioned in previous studies are not included in 

it. Below are some initial points (a partial list).  
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Major 

-------- 

1)  The reported correlation between estimated initiation probabilities and predicted 5'-end 

mRNA folding energies is significant, but very low (R=0.125, p<1E-13). Furthermore, the data 

presented in Figure 5A is in fact binned. This fact is specifically interesting, as the authors 

discourage the use of bins, but at the same time note that it is “sometimes appropriate to bin 

the data for visualization purposes”. ~60 bins are used for 3,795 values, and while error bars 

denote the variance in each bin, the “visual representation” gives the impression of a strong 

relation between the two variables using very few points, which is not the case. 

In addition, the authors should include a control, e.g. partial correlation, for other important 

variables, such as the Kozak score (Kozak, Cell, 1986), when computing this correlation (which 

eventually may be significantly lower) as well as CAI, amino acid charge, and GC content, at the 

beginning of the coding region, etc. These variables are known (and were known at the time of 

writing this paper) to have typical signals in the 5’-end of the ORF that are correlated with 

expression level (and initiation rate), for example see (Plotkin and Kudla, Nat Rev Genet, 2011). 

We also recommend that statistical significance for this correlation be tested using an empirical 

null model. For example, amino acid preserving sequences in the relevant window can be 

generated at random to estimate the probability of observing a correlation of 0.125 between 

inferred initiation rates and mRNA folding energy. This is important since the distribution of 

amino acids near the N terminal of the protein may induce the folding strength via their specific 

codon coding them. 

When testing 5’/3’ UTR length vs. initiation rates, p-values are provided but the statistical test is 

not defined, and it is not clear what is considered a “shorter” or “longer” UTR (e.g., if a t-test 

was used). 



2) This is not the first study that includes/suggests the analyses of many intracellular 

components (mRNA and ribosomes). However, previous studies on the topic such as (Brackley et 

al., PLoS Comput Biol, 2011; Chu et al., Bioinformatics, 2011; Cook and Zia, Journal of Statistical 

Mechanics: Theory and Experiment, 2009; Cook et al., Phys. Rev. E, 2009; Greulich et al., Phys. 

Rev. E, 2012; Heldt and Thiel, 2009; Jonathan Cook and Zia, Journal of Statistical Mechanics: 

Theory and Experiment, 2012; Karr et al., Cell, 2012; Mather et al., Biophysical Journal, 2013) are 

not cited.  

 

3) The major disadvantage when developing a model with many parameters is overfitting  

(Babyak, Psychosom Med, 2004), or accumulation of error due to individual errors in the 

different parameters. Overfitting is a fundamental concept in modeling and it is very surprising 

that this issue is not mentioned at all; the authors do not bother to discuss this issue, and to 

demonstrate that this is not the case with the model (as is usually done and should be done in 

papers in the field).   

Specifically, the authors base their simulation on 13 “physical parameters that have been 

experimentally determined in yeast”, however they do not discuss or provide confidence 

intervals (or error estimates) for these parameters in Table 1, main text, or experimental 

procedures. The accumulated error for these 13 parameters (and several additional ones 

appearing in Table S1, some of them determined per-gene for 3,795 genes) could be quite high. 

Thus, all the results in the paper, such as protein yield increase of transgenes, should be 

accompanied with confidence intervals, or at the very least, it should be demonstrated that 

results are robust to changes in parameters. 

In addition, it is not clear how stochastic the simulation results are? Even when averaging over 

the last 500s of the simulation, it should be demonstrated that repeated simulations converge 

to a similar/same state. “… for each simulation involving transgenes, we used ten sequences of 

similar CAI values and equal mRNA abundances to represent the transgene, in order to alleviate 

noisy, sequence-specific effects.” It would be good to show the variance between the 10 

simulated transcripts (e.g., an error bar). This is clearly a fundamental aspect without which it is 

impossible to evaluate the results. 

 

4) All the conclusions reported in this paper based on the model are either wrong or not new.  

Thus, the ability of this model to provide novel conclusions is not convincing at all. For example 

(points mentioned in the abstract), the correlation between initiation and folding energy has 

been suggested many times before (Jia and Li, FEBS Lett., 2005; Kudla et al., Science, 2009; 

Sagliocco et al., J. Biol. Chem., 1993; Schauder and McCarthy, Gene, 1989; Wang and Wessler, 

Plant Physiol., 2001) and is very low (r = 0.125); the idea that the ramp is caused by rapid 

initiation is wrong, among others, due to the fact that the authors did not normalize each profile 

by dividing it by the mean as was performed in previous studies they cite. The conclusions 



regarding the fact that “protein production in healthy yeast cells is typically limited by the 

availability of free ribosomes, whereas protein production under periods of stress can 

sometimes be rescued by reducing initiation or elongation rates” is not new (Bergmann and 

Lodish, J. Biol. Chem., 1979) and can’t be accurately evaluated via the model due to overfitting 

issues mentioned above, and missing fundamental aspects mentioned below and above. 

 

5) The authors ignore previous studies that suggested that elongation is not only due to 

adaptation to the tRNA pool. For example, the model does not consider important aspects 

related to the elongation rate that were previously reported and suggested to have stronger 

effect on elongation than tRNA levels. Expressly, the effect of mRNA folding (Nackley et al., 

Science, 2006; Plotkin and Kudla, Nat Rev Genet, 2011; Pop et al., Molecular Systems Biology, 

2014; Tuller et al., Genome Biology, 2011; Yang et al., PLoS Biol, 2014) and amino acid content 

(Charneski and Hurst, PLoS Biol, 2013; Lu and Deutsch, J. Mol. Biol., 2008; Lu et al., Journal of 

Molecular Biology, 2007; Muto and Ito, Biochemical and Biophysical Research Communications, 

2008; Pavlov et al., Proc. Natl. Acad. Sci. U.S.A., 2009), as well as wobble basepairing (Stadler 

and Fire, RNA, 2011). In addition, the analysis is partially based on Ribo-Seq data, but 

measurements are not used to infer reliable codon decoding rates. Previous studies (e.g. 

Charneski and Hurst, 2013) suggested that these aspects are significantly more important than 

the tRNA pool adaptation. 

Thus, without considering these fundamental aspects it is not clear what we can learn from this 

model (!). 

 

6) The analysis of the ramp is clearly wrong and was not performed as in previous studies (see, 

explanations in Figure 5A in (Tuller and Zur, Nucl. Acids Res., 2015)). Ribosome occupancies must 

be normalized per gene by its average ribosome occupancy before averaging each codon 

position across the transcriptome (this is how this was performed in previous studies e.g. 

(Ingolia et al., Science, 2009) (!) ). This simple normalization ensures, for instance, that shorter 

genes with elevated ribosome densities cannot bias the analysis (and indeed did not bias 

previous reports). Furthermore, the analysis should include only highly expressed genes, 

because of the very limited coverage (only <7% of the nucleotides are covered with reads (!) for 

the bottom 80% of genes) of the ribosome profiling approach, and specifically the data in 

(Ingolia et al., Science, 2009). Thus, the entire section dedicated to this issue is not 

relevant/correct. We must say we are surprised that the authors are not familiar with the details 

and methodologies used in previous studies. 

 

7) The reported results contradict previous papers of the authors’ themselves (Kudla et al., 

Science, 2009), but this is not discussed. In this paper (Kudla et al., Science, 2009), the authors 

claimed that slower codons (with lower adaptation to the tRNA pool/codon bias) are related to 



higher ribosomal densities and vice versa. The 5' end of the ORF has been shown to be enriched 

with slower codons (Plotkin and Kudla, Nat Rev Genet, 2011). Thus, by concluding that the 5' 

ramp is not related at all to codon usage bias in this Cell paper, the authors contradict 

themselves (as it is related to the claim that codon bias and ribosome densities are unrelated).  

8) The reported results are also contradicted by papers the authors published after this study 

(Weinberg et al., Cell Reports, 2016). 

9) The performance related to all the aspects of the model should be comprehensively 

compared with that of other models, including simpler ones such as TASEP, deterministic TASEP, 

RFM, tAI, etc., and include a *balanced* discussion about the relative advantages of the 

different models. Otherwise, the advantages of the proposed model are not clear and 

misleading. The following are some points to be considered: running time, number of 

parameters needed and the availability of the parameters, the possibility of analytical analysis of 

the model, accurate comparison of different predictions using real and simulated data, etc. 

In addition, the inferred initiation rates should be compared with previous reported initiation 

rates based on other models, such as (Ciandrini et al., PLoS Comput Biol, 2013; von der Haar, 

BMC Syst Biol, 2008). 

10) Codon Bias and Transgene Expression: In order to test the effect of codon optimization it 

would have been better (and more interesting) to use the equilibrium codon decoding rates of 

the simulation instead of CAI. It is only assumed, but not shown, that CAI is correlated with the 

simulated codon decoding rates. 

11) Very few verifications for the model are provided in the study: “Simulated initiation rates are 

successfully inferred using the model equations, and the average codon translation rate and the 

mean distance between consecutive bound ribosomes are in agreement with previous reports”. 

The authors could use their GFP library to compute correlations between, e.g., protein 

production and their model predictions (as well as compare that with the performance of 

simpler models).  

In addition, the data appearing in Figure S2 is not cited or provided as an accession number. 

12) “Interestingly, we also found a negative correlation between initiation probability and open 

reading frame (ORF) length (R = -0.56 and p < 10^-15; Figure 5B), even after controlling for 

mRNA expression level (partial correlation, R = -0.425 and p < 10^-15). This trend suggests that 

shorter yeast genes have experienced selection for faster initiation, and so it provides a 

mechanistic explanation for the greater density of ribosomes typically observed on short genes 

(Arava et al., 2003; Lackner et al., 2007).” This result can be at least partially explained by the 

fact that in (Ingolia et al., Science, 2009) there is an increased ribosome density at the 5' end 

(partially due to biases as suggested in (Ingolia et al., Cell, 2011)). This should have a stronger 

effect on shorter genes and will be related to higher inferred initiation rates in these genes 

(higher RC --> higher initiation). The current analysis does not control for this point.  



At the time of publishing and working on this study it was already very clear that the higher 

density of ribosomes at the 5’end of the mRNA was at least partially due to biases in the 

experiment (see, for example, (Ingolia et al., Cell, 2011)); nevertheless, the authors do not 

mention or consider this fundamental issue in their analysis/conclusions at all (!). 

Minor:  

13) “Finally, it is important to note that the TASEP-based models of translation (e.g., Reuveni et 

al., 2011) cannot, even in principle, be used to assess whether protein production is limited by 

available ribosomes because such models assume a fixed, inexhaustible supply of free 

ribosomes.”. There are dozens of TASEP-based models of translation but the authors cited only 

one. For example, see (Chou, Biophys J, 2003; Chou and Lakatos, Phys. Rev. Lett., 2004; Ciandrini 

et al., Phys. Rev. E, 2010, PLoS Comput Biol, 2013; Dong et al., J Stat Phys, 2007; Garai et al., 

Phys. Rev. E, 2009; Kemp et al., Mol. Microbiol., 2013; MacDonald and Gibbs, Biopolymers, 1969; 

Romano et al., Phys. Rev. Lett., 2009; Shaw et al., Phys. Rev. E, 2003; Zia et al., J Stat Phys, 2011). 

There is an entire section (Comparison with Ribosome Flow Model of Translation) in the 

extended experimental procedures in which the proposed model is compared exclusively with 

RFM in terms of the size of ribosome pool needed to reconcile the 2 models. Other 

computational models for translation are not mentioned. 

14) Minor ramp issue: 

“The ability of our model to recapitulate this striking spatial trend is nontrivial because we did 

not use any position-specific information from the ribosomal profiling data.” It should be noted 

that previous much simpler models for translation, e.g. tAI values, also managed to do this. See 

also comment 12. 
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