
Translation efficiency in humans: tissue specificity,
global optimization and differences between
developmental stages
Yedael Y. Waldman1, Tamir Tuller1,2,3, Tomer Shlomi4, Roded Sharan1 and

Eytan Ruppin1,3,*

1Blavatnik School of Computer Science, 2Department of Molecular Microbiology and Biotechnology and
3School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel, 4Computer Science Department, Technion –
Israel Institute of Technology, Haifa 32000, Israel

Received October 21, 2009; Revised January 1, 2010; Accepted January 5, 2010

ABSTRACT

Various studies in unicellular and multicellular
organisms have shown that codon bias plays a
significant role in translation efficiency (TE) by
co-adaptation to the tRNA pool. Yet, in humans
and other mammals the role of codon bias is still
an open question, with contradictory results from
different studies. Here we address this question,
performing a large-scale tissue-specific analysis
of TE in humans, using the tRNA Adaptation Index
(tAI) as a direct measure for TE. We find tAI to
significantly correlate with expression levels both
in tissue-specific and in global expression mea-
sures, testifying to the TE of human tissues.
Interestingly, we find significantly higher correla-
tions in adult tissues as opposed to fetal tissues,
suggesting that the tRNA pool is more adjusted to
the adult period. Optimization based analysis sug-
gests that the tRNA pool—codon bias co-adaptation
is globally (and not tissue-specific) driven. Addi-
tionally, we find that tAI correlates with several
measures related to the protein functionally impor-
tance, including gene essentiality. Using inferred
tissue-specific tRNA pools lead to similar results
and shows that tissue-specific genes are more
adapted to their tRNA pool than other genes and
that related sets of functional gene groups are
translated efficiently in each tissue. Similar results
are obtained for other mammals. Taken together,

these results demonstrate the role of codon bias
in TE in humans, and pave the way for future
studies of tissue-specific TE in multicellular
organisms.

INTRODUCTION

Codon bias, the unequal usage of different codons, has
been observed in many organisms. It is believed that in
many unicellular organisms codon bias has evolved to
optimize translation efficiency (TE) by favoring codons
with higher levels of tRNA (1–4). Similar evidence was
found in multicellular organisms such as Caenorhabditis
elegans and Drosophila melanogaster (5,6). However, the
evolution and functional significance of codon bias in
multicellular organisms such as mammals, and specifically
in humans, are still largely unknown (7,8). Small scale
analyses have shown that expressing a foreign gene in
human cells while fitting its codons to the bias of human
can increase its protein levels by two orders of magnitude
(9), implying a relation between codon bias and TE.
However, large-scale analyses of codon bias in humans
show contradictory results: some of the studies relate
the bias to TE while others do not find a significant cor-
relation between these two variables (2,10–16) [reviewed
in (8)].

When analyzing the role of codon bias in TE in humans,
two points should be noted: First, a measure for TE
should address the translation process directly. However,
most previous studies relied on various measures for
codon bias that are not directly related to TE. For
example, Wright (17) suggested the measure of effective
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number of codons, which quantifies how far the codon
usage of a gene departs from equal usage of synonymous
codons. Urrutia and Hurst (13,14) used the Maximum
Likelihood Codon Bias (MCB), which measures the
observed bias from a background model of expected
bias. Others have defined measures for the similarity
between the codon bias of a gene to the usage found in
highly expressed genes which their usage is presumably
selected for [e.g. Frequency of Optimal Codons (18);
Codon Bias Index (19); Codon Adaptation Index (20)].
This assumption is of course plausible, but yet indirect
[e.g. highly expressed gene may also undergo selection
for increased GC content (21)]. Hence, when studying
TE, a more useful approach would go beyond quantifying
the codon bias and also aim to measure the
codon-bias—tRNA pool co-adaptation. Indeed, the
tRNA Adaptation Index (tAI) forms such a measure (2),
as it assigns for each codon a score based upon the
availability of the corresponding tRNAs. tAI was
shown to correspond to in vivo measurements of transla-
tion rate of specific codons (22), as well as being a
better predictor of protein abundance in Saccharomyces
cerevisiae as compared to other measures (3,23). However,
tAI has not been used to study TE in depth in human or
other multicellular organisms. Second, in difference from
previous studies of TE in multicellular organisms that
utilized global measures of expression [e.g. (13–16)], an
analysis of TE in this setting should consider the distinct
gene expression (GE) pattern of each tissue. However,
most previous studies either focused on the codon bias
of small sets of tissue-specific genes rather than the
overall expression patterns of these tissues (24–26) or
took global expression measures such as expression
breadth (number of tissues in which the gene is expressed),
expression rate (mean expression over tissues) (13,14) or
maximum expression level (15,16). While a former study
indeed used tissue-specific expression levels in humans
(12), it used other measures for codon and amino acid
(AA) bias rather than direct measures for TE such as
tAI. Here we perform the first large-scale study in
human that combines both points: a tissue-specific direct
analysis of TE in human, using the tAI measure. Our
results suggest that codon bias plays an important role
in TE in humans, with significant differences between
tissues and developmental stages.

MATERIALS AND METHODS

tAI calculation

For all organisms, tAI was calculated as described in dos
Reis et al. (2).

Briefly, this measure is based on the fact that each
codon is recognized by some anti-codon(s) and the corre-
sponding tRNA(s). According to Crick’s wobble rules
(27), more than one anti-codon can recognize the codon,
with different efficiency, based on the match between them
[see dos Reis et al. (2) for all the relations between codons
and anti-codons].

Let ni be the number of tRNA isoacceptors recognizing
codon i. Let tGCNij be the copy number of the jth tRNA

that recognize the ith codon, and let Sij be the selective
constraint on the efficiency of the codon–anti-codon
coupling. We define the absolute adaptiveness Wi for
each codon i as:

Wi ¼
Xni
j¼1

ð1� SijÞtGCNij

From Wi we obtain wi, which is the relative adaptiveness
value of codon i by normalizing the Wi’s values (dividing
them by the maximal Wi). Supplementary Table S1 shows
the w values for all codons according to the human
genomic tRNA pool.
The final tAI of a gene, g, is the following geometric

mean:

tAIðgÞ ¼
Ylg
k¼1

wikg

 !1=lg

where ikg is the codon defined by the k’th triplet on gene g
and lg is the length of the gene (excluding stop codons).
S values were taken from dos Reis et al. (2).
Codon usage for human, Muss musculus (mouse) and

S. cerevisiae (yeast) genes was downloaded from the
Codon Usage Database (28) (http://www.kazusa.or.
jp/codon/) on 7.2008. The codon usage for Pan troglodytes
(chimpanzee), Rattus norvegicus (rat) and Escherichia coli,
was calculated from genes’ sequences that were
downloaded from BioMart (29). The codon usage for
C. elegans and D. melanogaster (fruit fly) was calcu-
lated from genes’ sequences downloaded from KEGG
database (30).
Human, chimpanzee, mouse, rat, S. cerevisiae,

C. elegans and E. coli tRNA copy numbers were
downloaded from the Genomic tRNA Database (31)
(http://gtrnadb.ucsc.edu).

Tissue-specific tRNA levels

Dittmar et al. (26) have characterized the expression
levels of tRNA across human tissues, but we were not
able to use these results here as they are not absolute
tissue-specific levels but only ratios relative to the brain.
In addition, such data are currently available on only eight
human tissues. Nevertheless, we have conducted several
additional extensive analyses using the data of Dittmar
et al. (26), to further support our choice of tRNA copy
number and the results reported in the article.
First, we used the tRNA levels in the brain as our ref-

erence point, following Dittmar et al. (26), i.e. making
their levels equal to the genomic copy number provided
by Dittmar et al. (26) (in their Supplementary Data) and
used the ratios reported in their article to infer from them
the levels in other tissues. We used the copy number in
Dittmar et al. (26) though it is slightly different from
the current version in Genomic tRNA Database (31), in
order to use their original assignment of each probe to
the corresponding tRNA and infer the relevant ratios.
Nevertheless, the two sets of copy numbers are highly
correlated and as can be seen from Supplementary
Tables S2 and S8, lead to very similar results, both in
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the correlation magnitude and in the ranking of tissues.
Next, we measured the tAI–GE correlation in six of the
tissues, for which we had expression data in our dataset.
Second, in an alternative route for identifying and using
tissue-specific tRNA levels for the TE computation, we
have employed an optimization procedure to infer the
tissue-specific tRNA levels. Briefly, instead of assuming
that the tRNA levels in the brain are determined by the
tRNA copy numbers, we allowed their levels to vary and,
while maintaining the tRNA expression ratios reported in
the work of Dittmar et al. as constraints, we maximized
the overall correlation between tAI and expression levels
across the tissues with both expression data and relative
tRNA values.
Formally, let Ti denote the inferred vector of tRNA

levels in tissue i (i=1 denotes the brain); let tAI(Ti)
denote the corresponding vector of gene tAI when using
Ti as proxy of tRNA levels; let GEðTiÞ denote GE vector
in tissue i; Let Rð�;�Þ denote Spearman correlation.
We solved the following optimization problem:

Optimize Rð½tAIðT1Þ,tAIðT2Þ, . . .�,½GEðT1Þ,GEðT2Þ, . . .�Þ

such that:

(i) For every i each entry in Ti is larger than 0 if the
copy number of the corresponding entry is larger
than 0; otherwise the entry remains 0.

(ii) The ratios between the expression levels of tRNAs
in each tissue(i=1, 2, . . .) relative to the brain
(i=1) are identical to the results reported in (26).

To solve this problem we employed the optimization
approach of Nelder–Mead (32,33). Optimization was
done simultaneously on all tissues.
As further tissue-specific analysis, we measured the

tissue-specific tAI measure (using optimized tissue-specific
tRNA levels, as above) of tissue-specific genes in those
tissues and found them to be significantly higher than
other genes expressed in these tissues (‘Discussion’
section). To evaluate the significance of TE in tissue-
specific genes, we compared their mean tissue-specific
tAI to those of 100 000 random gene sets of the same
size (all of them expressed in the specific tissue).

GE data

All expression data was downloaded fromGene Expression
Omnibus (34) (http://www.ncbi.nlm.nih.gov/geo/).
Human tissues (including fetal tissues): we used the GE

of Su et al. (35) (GDS596). As the original data set is
redundant (i.e. it includes similar tissues; for example,
more than 20 of the tissues are from different parts
of the brain) we focused our analysis on 30 (out of 79)
non-redundant normal adult tissues (Supplementary
Table S2).
Other GE sets: fetal and adult circulating blood

reticulocytes (GDS2655), Mouse tissues (GDS592),
Mouse fetal and adult liver (GSE13149), Mouse embry-
onic stem cells (GDS2666), Yeast (GDS772, wild type),
Chimpanzee (GSE7540), Rat (GDS589, three strains),
E. coli (GSE6836), D. melanogaster (GSE7763) and
C. elegans (GSE8004).

We averaged technical repeats and probes of the same
gene. Following (36), a gene was defined as expressed in a
tissue if its expression level in Affymetrix chip was above
200 standard Affymetrix average-difference units. A gene
was defined as tissue specific in a tissue if it is expressed in
that tissue and its expression level is at least 2 SD above
its mean across all tissues.

Protein–protein interactions

Protein–protein interaction data were downloaded from
(37). After mapping to Entrez IDs, it contains 10 024
proteins and 78 799 interactions. For tissue-specific protein
interactions networks, we considered only proteins whose
genes are expressed in the tissue.

Essential genes

A list of essential genes, both for human and mouse, was
compiled using the Mouse Genome Informatics (38)
(http://www.informatics.jax.org). We defined a mouse
gene to be essential if its phenotype data contained the
term ‘MP:0005374’ (lethality-prenatal/perinatal). Using
this criterion, 1844 genes were defined to be essential.
Similarly, we defined a human gene to be essential if its
mouse homolog was essential, resulting in 1765 human
essential genes. We evaluated the significance of their
median tAI by comparing it to those of 10 000 random
gene sets of the same size.

GC content

In order to control for GC content, we have used several
measures of GC content:

(i) GC percentage of (a) the gene (exons only)
(b) introns only (c) both introns and exons of the
gene (d) 30 UTR and (e) 50 UTR. All these measures
were downloaded from BioMart (29).

(ii) GC percentage of the isochore of the gene [which
was shown to be highly correlated with the GC
content of the gene (8)]. The genomic location of
each gene was downloaded from BioMart (29),
and the GC content of isochors along the human
genome was taken from Constantini et al. (39).

(iii) GC percentage of the probes used in the micro-
arrays of Su et al. (35) (Affymetrix GeneChip
Human Genome U133 Array Set HG-U133A).
Probes sequences were downloaded from
Affymetrix website (table HG-U133A_2.probe_tab
for human) and we have calculated accordingly
the GC content. When more than one probe was
mapped to a gene, we have averaged the probes’
GC content.

In addition, we made nucleotide-preserving permuta-
tion significance testing. We permutated the codons for
each gene, while preserving its nucleotide content. We
divided the 61 codons (ignoring stop codons) into equiv-
alence classes. Codons A and B were in the same class if
and only if they share the same nucleotides (e.g. {CGU,
CUG, UCG, GCU, GUC, UGC} is an equivalence class).
Permutations were allowed only between members of
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the same class. After obtaining random (nucleotide
preserving) codon distribution, we computed tAI based
on these distributions, and repeated our analyses. This
test was repeated a 100 times.

Replication time

In order to control for replication time bias, which was
shown to correlate with GC content (40), we have used
replication time data of the human genome, with a reso-
lution of 1 MB (downloaded from http://www.sanger.ac
.uk/PostGenomics/replication-timing/).

Recombination rate

Recombination rate was shown to be correlated with
various sequence features, including GC content (41).
Recombination rate data were taken from Jensen-
Seaman et al. (41).

AA bias

We defined two measures of AA bias for control:

(i) For each gene, its AA bias was defined as the
entropy of the frequencies of the AAs along its
corresponding protein [an accepted measure for
non-uniformity; e.g. (42)]. Let pi ¼ ðni=

P
i niÞ

denote the fraction of AA ni (1� i� 20) in a
protein. The AA bias for the protein is:

�
X
i

pi logðpiÞ

(ii) We made an additional control for AA bias using a
new tAI measure, tAIaa. The tAIaa of a gene was
defined as its tAI normalized by the maximal
possible tAI value for a sequence with the same
AAs. Briefly, as in (2), each codon is given a
weight w, according to the genomic copy numbers
of its associated tRNAs. For each AA we define an
optimal codon, being the one with the highest w.
Let tAI(g) be the tAI of gene g, and let tAImax(g)
be the tAI for the same sequence of AAs, when
using optimal codons only. We define tAIaa to be
tAIðgÞ=tAImaxðgÞ. Following this definition, tAIaa
controls for AA bias, as it considers the actual
AA sequence as well.

Evolutionary rate

Evolutionary rate (ER) is defined as the ratio between
synonymous and non-synonymous mutations (dN/dS) of
a gene. We used two measures of ER: (i) between human
and mouse and (ii) along the human lineage. ER values
between human and mouse were downloaded from
BioMart (29). ER values along the human lineage were
computed as describe in (43).

tRNA–codon bias co-adaptation significance test

In order to check the significance of the tRNA–codon bias
co-adaptation found in human tissues we made two

randomization tests, one for the codon bias and the
other for the tRNA pool:

(i) In the codon bias test, we made permutations
between different codons of the same AA. Each per-
mutation was done for each gene separately.

(ii) In the tRNA pool test, we made permutations
between the copy numbers of different tRNAs of
the same codon.

Thus, both tests preserve the original protein sequence and
the total copy number of tRNAs for each of the AAs.
Repeating each test 100 times, we measured the tAI–GE

correlation for both tests, and obtained an empirical
P-value for the current tRNA codon bias co-adaptation
(being the fraction of random sets above the correlation
observed in the original data). tAI–GE correlation was
measured for each tissue separately and for all the
tissues (by concatenating all GE data into one vector)
as well.

tRNA pool optimality

The weaker tAI–GE correlation in humans (e.g. as
compared to yeast) may be the result of multi-cellular
constraints—i.e. the need to determine the composition
of a common global pool (the tRNA copy number) for
the different expression levels observed in different tissues.
Examining this hypothesis further, we performed a
heuristic hill climbing search (simulated annealing) from
numerous random starting states, to find a distribution of
tRNA copy numbers that yields both a minimal and
maximal tAI–expression correlations (separately, of
course) given a single tissue (in our case, the heart, the
tissue with the highest correlation).We then repeated this
computation as we incrementally added additional tissues
to the set whose correlations need to be maximized/
minimized. We added tissues in the following order:
heart, PB-BDCA4+dendritic cells, skeletal muscle, bron-
chial epithelial cells, whole brain and whole blood. When
considering more than one tissue, the total correlation was
computed for the concatenation of the GE of all the
tissues being optimized.
In each step of the optimization the overall sum of all

tRNA copy numbers present in the genome was preserved
(additionally preserving the copy numbers that are equal
to zero)—i.e. the underlying assumption is that there is a
limited given amount of tRNA genes in the genome, but
evolution is free to choose the ‘best’ combination of
specific tRNA copies given this allocation.

Functional enrichment

Functional enrichment was done using the DAVID
bioinformatics Functional Annotation tool (44). For
each analysis we ranked the genes according to their tAI
and took the top genes (taking the top 5, 10 and 20%
genes for genome-wide, tissue-specific and housekeeping
analyses, respectively. Differences are due to different
sample sizes to allow comparable sets of several hundred
genes for each analysis). In analyzing differential TE
(i.e. genes that are efficient in a specific tissue as com-
pared to their efficiency in other tissues) we measured
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for each tissue its tAI (and normalized its with the
mean tAI in the tissue). Next, for each gene in each
tissue we calculated the ratio between its tAI in that
tissue and the mean tAI in other tissue, and took
the top 5% genes among all genes. We report here
only results that are significant after false discovery
rate (‘Benjamini’ in DAVID results). The results
(Supplementary Table S7) are grouped according to the
clusters generated by DAVID. In cases where the same
gene ontology (GO) term appears in more than one
cluster, we present it only once.

Analysis

Analysis was done using Matlab� software (MathWorks
Inc.). All correlations are the non-parametric Spearman
correlation (and partial correlation).

RESULTS

Tissue-specific translation is efficient

We calculated tAI values for 12 271 human genes for
which expression data across tissues was available (35),
and detected significant correlations between tAI and
GE levels in all 30 human adult tissues examined. This
testifies to the efficient translation in those tissues, where
highly expressed genes have higher TE. The correlations
varied among the tissues, with the heart, lung and liver
showing the highest correlation scores (R> 0.21) and the
appendix and salivary gland showing the lowest scores
(R< 0.05, Figure 1 and Supplementary Table S2). These
results, as well as others reported below, remain significant
after controlling for numerous potentially confounding
features reported earlier in the literature (GC content,
AA bias, protein length, replication time, recombination
rate and more) (Note 1 in Supplementary Data and
Supplementary Tables S2 and S3).

Analyzing tissue-specific TE in a developmental per-
spective, we studied whether there is a difference in TE
between fetal and adult tissues. Comparison between
adult and fetal circulating blood reticulocytes showed
that adult tissues exhibit a significantly higher correlation
(P=2.62� 10�5, Wilcoxon test). Additional comparison
of four tissues further supported this hypothesis (where
three of them exhibit 2–3-fold increase in correlation,
Figure 2), but we were unable to test the significance of
these results due to the small number of samples. Taken
together, these results suggest that the current tRNA
genomic copy number is more adapted to the adult
period rather than the developmental/fetal one.

The co-adaptation of codon bias and tRNA pool is
globally driven

The human tAI–expression correlations shown above are
markedly lower than the levels that have been typically
obtained in unicellular organisms [in E. coli these correla-
tion values varies between 0.30 and 0.44 across 121
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different conditions (Supplementary Table S4) and in
S. cerevisiae being R=0.596, P=4.54� 10�264

(Supplementary Figure S1)]. This may represent a lower
selection pressure on multi-tissue organisms, perhaps due
to smaller effective population size (45). Yet, another pos-
sibility for explaining this gap is that the need to cater for
more tissues in multicellular organisms makes the task of
optimizing tAI–expression correlation more challenging.
Additionally, it is interesting to observe that expression
patterns across human tissues have a higher variation
than that observed across growth environments in unicel-
lular organisms (Note 2 in Supplementary Data). In light
of these comparatively lower human TE levels, we turned
to further study the co-adaptation of the tRNA
pool–codon bias in both global and in tissue-specific
terms (‘Materials and Methods’ section). First, we
randomly permutated the current tRNA pool, without
changing the translation code (by permuting the tRNAs
of the same AA), finding it to be significantly adapted to
the given codon usage human genes over all tissues (empir-
ical P=0.01). Next, we randomly permutated each gene’s
codon usage, without changing its protein sequence, again
finding the current codon bias more adapted to the given
tRNA pool over all tissues (empirical P<0.01). However,
when we measured these correlations in each tissue sepa-
rately we found a small number of tissues that were not
significantly more correlated than the random sets, for
both kinds of tests (Supplementary Table S5). This can
be a result for a global, rather than tissue specific,
co-adaptation; as the genomic tRNA pool is shared by
all tissues, the tRNA pool–codon bias co-adaptation is
globally driven, resulting in rather low correlations in
specific tissues (in lieu of putative ‘compromises’ that evo-
lution has to make due to the multiple constraints).
Examining this hypothesis further, optimization based
analysis shows that, as expected, the tAI–expression cor-
relation decreases as we add more tissues in a simulated
scenario (‘Materials and Methods’ section). Furthermore,
this simulation demonstrates that the current correlation
observed in humans is closer to being maximal than to
being minimal (Supplementary Figure S2).

Functionally important genes are translated more
efficiently

Turning to study global features of human TE, we find
that shorter genes are translated more efficiently: there is a
significant negative correlation between tAI and protein
length (R=–0.12, P =1.05� 10�40). This result, which is
in concordance with previous studies showing (for other
organisms) a correlation between codon bias and protein
length (46–48), may reflect that both mechanisms for TE
(protein length and codon bias) work in concert. In
addition, we find tAI to significantly correlate with both
expression rate and breadth [R=0.182, P =2.34� 10�92

and R=0.144, P=7.14� 10�58, respectively (Figure 3A
and B)]. Moreover, we find that the tAI reflects previously
reported trends more robustly than the MCB measure
(13). Whereas the correlation between MCB and expres-
sion breadth is not significant after controlling for protein
length, the tAI remains significantly correlated with both

expression rate and breadth even after controlling to gene
length, as well as many other features [R=0.139,
P=8.58� 10�33 and R=0.10, P=1.27� 10�17, for exp-
ression rate and breadth, respectively (Note 1 in
Supplementary Notes; Supplementary Table S6)]. The
correlation between tAI and expression breadth may
indicate that housekeeping genes are translated more effi-
ciently. To examine this hypothesis further we measured
the correlation between tAI and a number of measures
that are conventionally considered to be related to the
functional importance of genes. We find that essential
human genes have higher values of tAI as compared to
those of all genes (empirical P< 10�5); conserved genes
show higher tAI values manifesting a significant nega-
tive correlation between tAI and ER (R=–0.263,
P=5.81� 10�231, Figure 3C); and finally a gene’s tAI
significantly correlates with its connectivity in a human
protein–protein interaction network (R=0.055,
P=4.73� 10�8). Taken together, these results indicate
that functionally important genes are translated more
efficiently in humans.
In addition, to identify whether the most efficient genes

(in tAI terms) are enriched in some functional classes, we
ranked all the genes according to their tAI values and
looked whether the top genes were enriched in specific
GO (49) categories (‘Materials and Methods’ section).
We find that the most translationally efficient genes are
enriched in functional classes such as ribosomal activity,
metal (copper, cadmium) and calcium ion binding,
GTPase activity, development and more (Supplementary
Table S7). When focusing on housekeeping genes (i.e.
those expressed in all tissues), we find enrichment
in genes related to ribosomal activity (Supplementary
Table S7).

TE analysis based on inferred tissue-specific tRNA levels

All results above are based on global copy numbers of
tRNAs. Yet, when analyzing tissue-specific aspects of
TE, a more adequate measure would be the actual
tissue-specific tRNA levels, which varies between tissues
(26). However, as such data are currently unavailable on a
broad scope, we used tRNA genomic copy number as
approximation for their actual levels. Nevertheless, as
additional analysis of tissue-specific TE, we used pub-
lished data of relative tRNA levels in various human
tissues (26). Being relative measurements we could not
use the data directly, but, using an optimization
procedure we inferred tissue-specific tRNA levels from
the data (‘Materials and Methods’ section). Interestingly,
the results obtained using tRNA genomic copy numbers
remain fairly similar when using inferred tissue-specific
tRNA levels instead of the tRNA copy numbers, for a
set of six tissues for which both relative tRNA levels
(26) and expression data was available (35) (Figure 5
and Supplementary Table S8), suggesting that tRNA
genomic copy numbers can be used for first approxima-
tion. In addition, for all six tissues we find significant cor-
relation between tAI and expression for the genes
expressed in these tissues. Moreover, focusing on tissue-
specific genes, we find that in three of the six tissues
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examined, their inferred tissue-specific tAI measure is
significantly higher than that of other genes expressed in
the tissue (empirical P<0.002, Supplementary Table S9).
Next, we obtained tissue-specific protein–protein inter-

action networks, based upon the genes expressed in each
tissue (‘Materials and Methods’ section). We find that in
five of the six tissues, hubs (proteins with connectivity
above the 90th percentile) are translated significantly
more efficiently compared to other genes expressed
in the tissue. Similarly, we find that tAI significantly cor-
relates with network connectivity in four of the
tissue-specific networks (Supplementary Table S9).
Similar to our analysis of global tAI measures, we used

the tissue-specific tAI measure to look for functional
enrichment in translationally-efficient genes. We find
ribosomal proteins show significant tissue-specific TE in
all tissues. Interestingly, we also find that genes translated
efficiently in the brain are enriched in calcium ion-binding
genes. Calcium is known to have a major essential role in
various neuronal activities such as neurotransmitter
release and dendritic propagation (50). In addition, we
find genes translated efficiently in the thymus to be
enriched for genes related to chemotaxis and locomotion,
which play a key role in T cells maturation in the thymus
(51) (Table 1, Supplementary Table S7). As each tissue has
its own tRNA pool, we identified the genes that are

significantly efficient in a given tissue according to its
own tRNA pool, compared to their TE (tAI values) in
other tissues. Interestingly, we find that the set of genes
in the gonads (testis and ovary) is overlapping consider-
ably compared to other tissues, as well as the set of genes
in the immune system tissues of the thymus and lymph
nodes (Jaccard index being 0.253 and 0.156 for the
gonads and immune system, respectively, compared to
mean Jaccard index 0.055 across all tissues. See also
Supplementary Table S7 for enriched GO terms in the
gene set of each tissue). Notably, this distinction cannot
be inferred from GE alone (e.g. expression in the testis is
more correlated with the brain and thymus than the
ovary). Additionally, we find that genes related to
calcium ion binding are translated more efficiently in the
brain and that hormonal genes [including growth
hormone 2 (Entrez ID: 4262), insulin (Entrez ID: 3630)
and more (GO:0005179)] are translated more efficiently
in the liver, as compared to other tissues (Table 1,
Supplementary Table S7). Similar tissue-specific analysis
of the ovary shows enrichment for extracellular matrix
related genes (GO:0031012), specifically for collagen
genes (GO:0005581), both are known to have an impor-
tant role in normal ovary function (52) as well as in
ovarian cancer progression, outcome and treatment
(53–55) (Table 1, Supplementary Table S7). In addition
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we find that cadmium ion binding is enriched in the testis;
this may be related to the sensitivity of this tissue to
elevated levels of cadmium [e.g. (56)].

Taken together, these results suggest that inferred
tissue-specific tAI values reveal additional tissue-specific
features of TE.

DISCUSSION

Using tAI as a measure for TE and large-scale
tissue-specific expression data, we analyzed the role of
codon bias in TE in humans, finding it to be important.
As opposed to most previous studies in multicellular
organisms, our tissue-specific approach enabled us to
find significant differences across tissues and develop-
mental stages. Computation based analysis implies that
the codon bias–genomic tRNA pool co-adaptation is

globally driven, thus explaining why the tAI–GE correla-
tions observed in human, although significant, are lower
than those obtained in unicellular organisms. In addition,
using various measures, we find that functionally impor-
tant genes are translated more efficiently, and identify
functional groups that are translated more efficiently.
Extending our analyses to mouse, chimpanzee and rat,
we obtain qualitatively similar results (Figures 4; Notes
3–4 in Supplementary Data; Supplementary Tables
S10–S12). These findings suggest that codon bias plays
an important functional role in TE in humans as well as
in other mammals.
Recently, employing some of methods described here,

we have shown that codon bias plays a significant role in
TE not only in normal tissues but also in cancerous
tissues. Analyzing the distribution of cancerous mutations
in the tumor suppressor gene TP53, we found them to be
under selection for their TE effect (22). This result gener-
alizes the results reported here for normal tissues.
Our results indicate that there is a significant difference

between the TEs at distinct developmental stages and that
the tRNA pool is more adjusted to the expression regime
of adult versus fetal period. In order to see whether we
observe this difference in other mammals as well, we
compared adult and fetal liver tissues in mouse (57).
Again, we find the adult tissue showing higher correlation
values (P=0.0158, Wilcoxon test; Supplementary Table
S13). As there are GE measurements in various develop-
mental stages of mouse embryonic stem cells (58), we
examined how this correlation changes during develop-
ment. Interestingly, we find a significant correlation
between development and tAI–GE correlation—as the
stem cells develop, the correlation increases (R=0.864,
P=0.0013, over 11 developmental time points. See
Supplementary Table S14). Notably, we also find that as
the fetal liver develops, its GE regime becomes more

0 500 1000 1500 2000
0.335

0.34

0.345

0.35

0.355

M
ea

n
 t

A
I

Pan troglodytes

0 200 400 600 800 1000
0.255

0.26

0.265

0.27

Mean Expression

M
ea

n
 t

A
I

Rattus norvegicus

0 500 1000 1500 2000
0.16

0.162

0.164

0.166

0.168

0.17

Mean Expression

Mean Expression

M
ea

n
 t

A
I

Mus musculus

A

B

C

Pan troglodytes

Mus musculus

Rattus norvegicus

Figure 4. TE analysis in other mammals. tAI versus expression rate
in other mammals: (A) in Pan troglodytes (chimpanzee) R=0.841,
P=5.49� 10�6, (B) in Mus musculus (mouse) R=0.758,
P=2.59� 10�4 and (C) in Rattus nrvegicus (rat, Spargue strain)
R=0.692, P=2.60� 10�4. We divided the genes into bins according
to their mean expression over 30 tissues. Each bin is 150 standard
Affymetrix average-difference units wide, using a minimal bin size of
at least 10 genes. For each bin we show its mean tAI. In addition, we
performed further analyses, such as tissue-specific analysis in these
mammals with several controls and more, obtaining significant
results. See Notes 3–4 (Supplementary Data) and Supplementary
Tables S10–S12 for detailed results.

1 2 3 4 5 60

0.05

0.1

0.15

0.2

0.25

Relative
Optimization

W
h

o
le

b
rain

L
iver

T
estis

O
vary

T
h

ym
u

s

L
ym

p
h

n
o

d
e

tA
I-

G
E

C
o

rr
el

at
io

n

Copy Number
Relative
Optimization

Figure 5. Comparison between genomic tAI values and inferred
tissue-specific tAI values. tAI–GE correlation values in six human
tissues, based on tAI–GE correlation for (i) copy number—genomic
copy numbers (shared by all tissues), (ii) Relative tRNA levels—
obtained by fixing the brain tRNA levels as a base point equal to
the genomic copy numbers and using the ratios reported in (26) to
infer the levels in the five other tissues, and (iii) Optimized tRNA
levels, where we allowed variance in the brain tRNA levels (while main-
taining the tRNA expression ratios in other tissues) when optimizing
the overall tAI–GE in tissues (‘Materials and Methods’ section). As
expected from such an optimization procedure, the resulting tAI–GE
correlations were higher than those previously obtained using the gene
copy number, but remarkably, in average less than 5% higher
(Supplementary Table S8).

Nucleic Acids Research, 2010, Vol. 38, No. 9 2971



similar to the adult liver (R> 0.97, P=3.96� 10�4 over
eight prenatal developmental stages), which may partially
explain the increase in co-adaptation to the genomic
tRNA pool during developmental stages.

Nevertheless, the lower correlation observed in fetal
tissues does not necessarily indicate that their translation
is less efficient. It may be a result of post-transcriptional
regulation such as RNA-binding proteins (59,60) or
ncRNAs (61,62). Indeed, various mechanisms of such reg-
ulation are known to be abundant during development
(63,64).

As mammals are viviparous organisms, some proteins
are translated in maternal tissues and transported to the
fetus. Therefore, the expression in fetal tissues may not
necessarily represent the actual demands and may
account for the different correlation values. To analyze
this hypothesis, we examined whether this phenomenon
is also observed in oviparous organisms which lay eggs
and where the embryo translates all its proteins by itself.
For that purpose, we have examined expression data from
the central nervous system of the oviparous nematode
C. elegans. We found that also in this organism, embry-
onic tissue exhibited significant lower correlation than the
corresponding larval tissue (P=0.0159, Wilcoxon’s test;
Supplementary Table S15). To asses our assumption that
in our context larval tissues resemble adult tissues
(and differ from fetal tissues), we compared between
larval and adult tissues in the oviparous fruit fly
D. melanogaster, not finding significant differences in
tAI–GE correlations (Supplementary Table S16). These
results suggest that also in some of the oviparous the
tRNA pool is more adjusted to the expression regime at
the adulthood. An interesting future work would be to
further analyze the differences in TE between various
developmental stages in different organisms.

Nevertheless, some limitations of the current analysis
should be pointed out.

First, the tAI measure encapsulates within its definition
the wobble rules (27). However, there are some post-
transcriptional modifications which alter the specific
binding of some tRNAs (65,66). When more data on
these modifications will be available it will obviously be
interesting to repeat the analysis shown here.

In addition, following previous studies in humans and
other multicellular organisms (6,11,15,16), we used the
genomic copy numbers of tRNA genes as a first approx-
imation of their levels; indeed, tRNA copy numbers were
previously shown to highly correlate with their expression
levels in several unicellular organisms (18,67–69). This
global measure, shared by all tissues, is adequate when
analyzing global features of TE (such as the fetal/adult
tissue comparison, multi-tissue optimization, the function-
ally importance of genes and more). Yet, when analyzing
tissue-specific aspects of TE, a more adequate measure
would be the actual tissue-specific tRNA levels, which
varies between tissues (26). However, such data are
currently unavailable on a broad scope, therefore we
used tRNA genomic copy number as approximation for
their actual levels. While tRNA copy numbers are
obviously identical across tissues, their usage leads to
distinct tissue-specific TE estimations since each tissueT
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has a different GE pattern. Nevertheless, analysis based on
inferred on tissue-specific tRNA levels for six tissues leads
to results similar to those reported using the common
pool, suggesting that tRNA genomic copy numbers can
be used for first approximation. As tissue-specific tRNA
levels data accumulates, it will be highly interesting to
repeat our analysis: the tissue-specific TE scores presented
here should possibly be viewed as lower bounds on the
final TE values in humans, as the actual tissue-specific
tRNA levels are probably further transcriptionally
regulated to optimize TE.
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Supplementary Data are available at NAR Online.
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