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ABSTRACT 
Summary: iMAT is an Integrative Metabolic Analysis Tool, enabling 
the integration of transcriptomic and proteomic data with genome-
scale metabolic network models to predict enzymes’ metabolic flux, 
based on the method previously described by (Shlomi, Cabili et al. 
2008). The prediction of metabolic fluxes based on high-throughput 
molecular data sources could help advance our understanding of 
cellular metabolism, since current experimental approaches are 
limited to measuring fluxes through merely a few dozen enzymes.  
Availability and Implementation:  http://imat.cs.tau.ac.il/ 
Contact: zurhadas@post.tau.ac.il; ruppin@post.tau.ac.il;            
tomersh@cs.technion.ac.il,  
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION  
Modern genomic sequencing technologies have enabled the rapid 
reconstruction of metabolic networks, giving rise to more than 50 
highly curated metabolic reconstructions published to date 
(Oberhardt, Palsson et al. 2009), spanning all three domains of life 
including Eukaryota, Bacteria, and Archaea. Additional computa-
tional methods to automatically reconstruct metabolic network 
models have recently resulted in draft network reconstructions for 
160 microbial species (Henry, DeJongh et al. 2010). Such recon-
structed metabolic network models have been commonly used for 
metabolic phenotype prediction, metabolic engineering, studies of 
network evolution, and biomedical applications (Oberhardt, 
Palsson et al. 2009). These studies employ various constraint-based 
modeling (CBM) methods to analyze the network function by sole-
ly relying on simple physical-chemical constraints (Price, Reed et 
al. 2004).  

Utilizing gene and protein expression to predict metabolic flux is 
a challenging task due to the complex mapping between the two. 
Previous studies have found a strong qualitative correspondence 
between gene expression and measured (Daran-Lapujade, Jansen et 
al. 2004) as well as predicted (Famili, Forster et al. 2003) meta-
bolic fluxes in microbes. However, the correlation between expres-
sion and metabolic flux is generally moderate and in some cases 
significant transcriptional changes do not reflect changes in flux, 
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and vice-versa, significant changes in measured flux may not re-
flect transcriptional changes (Ovacik and Androulakis 2008). 
These discrepancies may result from post-transcriptional regula-
tory processes that effect the actual levels of enzymes translated 
and from metabolic regulation, representing the effect of metabo-
lite concentrations on the actual enzyme activity through allosteric 
and mass action effects (Rossell, van der Weijden et al. 2006). 

Several CBM methods for analyzing and predicting metabolic 
flux distributions based on gene expression data have been sug-
gested previously. The methods of (Åkesson, Förster et al. 2004; 
Becker and Palsson 2008) use gene expression data to identify 
genes that are absent or likely to be absent in certain contexts and 
search for metabolic states that prevent (or minimize) the flux 
through the associated metabolic reactions. (Shlomi, Cabili et al. 
2008) consider data on both lowly and highly expressed genes in a 
given context as cues for the likelihood that their associated reac-
tions carry metabolic flux, and employ constraint-based modeling 
(CBM) to accumulate these cues into a global, consistent predic-
tion of the metabolic state. The latter method was shown to accu-
rately predict human tissue metabolism, based on tissue-specific 
gene and protein expression data. Its application has demonstrated  
that in many cases, the activity of genes responsible for metabolic 
diseases is not directly manifested in enzyme-expression data, 
though can still be correctly predicted by expression integration 
with the  metabolic network.  The implementation of the method 
based on (Shlomi, Cabili et al. 2008)  involves  solving multiple, 
complex Mixed-Integer Linear Programming (MILP) optimization 
problems, requiring extensive parallel computing resources, and 
hence has not been readily accessible for the research community 
since its publication.  

Here, we present an integrative metabolic analysis tool (iM-
AT) that is a web-based implementation based on the method of 
Shlomi et al. The new tool will serve the community by enabling 
the prediction of the metabolic state of an organism in a specific 
condition given pertaining gene and protein expression data. We 
provide below a high-level description of the iMAT server with an 
illustrative example of applying it to a toy model. 

2 TOOL DESCRIPTION 
The usage of iMAT is straightforward. The input is gene and/or 
protein expression data for a certain organism. The output is a 
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visualization map of the organism’s metabolic state, showing the 
most likely predicted metabolic fluxes across its reactions.  iMAT 
supports the integration of functional data with an array of differ-
ent existing metabolic CBM models, including: (i) a highly curated 
metabolic network model of human metabolism (accounting for 
~1500 genes) by (Duarte, Becker et al. 2007), enabling the predic-
tion of metabolic activity under various tissues and cell-types;  (ii) 
common model organisms such as E. coli and S. cerevisiae (ac-
counting for ~1300and ~800 genes, respectively); and (iii) an array 
of automatically reconstructed networks for 160 bacteria (Henry, 
DeJongh et al. 2010) (for a list of supported organisms, see the 
iMAT website); (iv) user submitted models in either SBML or 
matlab format. For any of the organisms in this list, iMAT enables 
the prediction of metabolic activity under various environmental 
and genetic conditions.  

The gene and/or protein expression data submitted to iMAT 
should be in the form of discrete tri-valued expression states, rep-
resenting either low, moderate, or high expression in the condition 
studied. If continuous data is submitted, iMAT will perform discre-
tization automatically. Various parameters can be tuned to control 
the discretization of the raw input values (see section 2, supple-
mentary information). 

Given the target species metabolic model and gene or protein 
expression data, iMAT predicts a flux activity state for each reac-
tion in the model, reflecting the presence or absence of its associ-
ated metabolic flux. For some of the reactions, the flux activity 
state can be uniquely determined to be active or inactive, with 
associated confidence estimations. For others, the activity state 
cannot be uniquely determined because of potential alternative flux 
distributions with the same overall consistency with the expression 
data due to isozymes or alternative pathways. In cases where the 
predicted flux activity of reactions deviates from the given expres-
sion state of the corresponding enzyme-coding gene, the corre-
sponding gene is considered to be post-transcriptionally up-or-
downregulated.  

iMAT provides as output the predicted flux activity state and the 
corresponding confidence values over all network reactions in both 
tabular and network visualization forms. The network visualization 
displays the relevant transcriptomic and proteomic data given as 
input, as well as the predicted metabolic flux, superimposed on top 
of the organism’s metabolic network, employing the publicly 
available Cytoscape software (Cline, Smoot et al. 2007). To further 
facilitate the interpretation of the predicted flux activities, iMAT 
performs a pathway enrichment analysis, reporting the significant 
active and inactive pathways comprising the metabolic profile 
signature of the biological experiment studied. In addition, iMAT 
reports predicted post-transcriptionally up and down regulated 
genes.  

3 TOY MODEL EXAMPLE 
Fig. 1.  An illustrative example of applying iMAT to a toy metabolic 
network (shown in b) given gene expression data (where green (red) de-
notes high (low) expression and black denoting an intermediate level, as 
depicted in sub-figure (a)). Circular nodes represent metabolites, edges 
represent biochemical reactions, and diamond-shaped nodes represent 
enzyme-coding genes. iMAT’s output is an optimal flux distribution (c) 
that is the most consistent with the input expression data. Reactions associ-
ated with highly, lowly or moderately expressed genes are colored in green, 

red, or black, respectively (c). Solid (dashed) edges represent reactions 
predicted to be active (inactive). Reactions whose flux activity state is 
uniquely determined to be active or inactive (across the entire space of 
alternative optimal flux distributions) are marked with thick edges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We describe the application of iMAT on a small toy model (Figure 
1). The toy model is comprised of 10 metabolites and 13 reactions, 
including 7 exchange reactions that enable the uptake of substrates 
and the secretion of metabolic by-products. The predicted flux is 
consistent with the expression high/low state of 4 of the 5 reac-
tions. One reaction (M6->M9) is predicted to be inactive though its 
corresponding gene is highly expressed, reflecting the potential 
effect of post-transcriptional regulation. Of the seven metabolites 
that can be transported across the membrane boundary in the toy 
model (M1-3, M5, M7-9), iMAT predicts the uptake of one me-
tabolite (M1) and the secretion of two others (M7 and M8). The 
reaction M1->M4 is predicted to be active with low confidence, 
since an alternative flux distribution through M1->M10->M4 in 
which it is inactivated achieves the same level of consistency with 
the expression data. 
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