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Analysis of DNA Chips and Gene Networks Spring Semester, 2009

Lecture 14a: January 21, 2010

Lecturer: Ron Shamir Scribe: Roye Rozov

Gene Enrichment Analysis

14.1 Introduction

This lecture introduces the notion of enrichment analysis, where one wishes to assign bio-
logical meaning to some group of genes. Whereas in the past each gene product was studied
individually to assign it functions and roles in biological processes, there now exist tools
that allow this process to be automated. By centralizing and disseminating a wealth of prior
knowledge about known genes, the Gene Ontology [1] database allows researchers to assign
attributes to groups of genes that emerge from their experiments or analyses. The initial
group of genes may be some set that was clustered together through expression analysis,
bound by the same transcription factor, or chosen based on prior knowledge. To identify
larger patterns within this group is to seek enrichment - to assess whether some subset of
the group shows signi�cant over-representation of some biological characteristic.

14.2 Gene Ontology (GO)

GO is a set of associations from biological phrases to speci�c genes that are either chosen
by trained curators or generated automatically. GO is designed to rigorously encapsulate
the known relationships between biological terms and and all genes that are instances of
these terms. The GO associations allow biologists to make inferences about groups of genes
instead of investigating each one individually. For example, the early clustering work of
Eisen et al. [Figure 14.1] resulted in gene clusters that required manual annotation of each
gene in order to interpret what was shared within each cluster. With GO, each gene can be
automatically assigned its respective attributes.

14.2.1 Structure of GO

GO terms are organized hierarchically such that higher level terms are more general and thus
are assigned to more genes, and more speci�c decedent terms are related to parents by either
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Figure 14.1: A cluster solution manually annotated

�is a� or �part of� relationships. For example, the nucleus is part of a cell, whereas a neuron
is a cell. The relationships form a directed acyclic graph (DAG), where each term can have
one or more parents and zero or more children. Users may select the level of generality the
terms capture and carry out their analysis accordingly [Figure 14.2, 14.3].

Terms are also separated into three categories/ontologies:

• Cellular Component - describes where in the cell a gene acts, what organelle a gene
product functions in, or what functional complex an enzyme is part of

• Molecular Function - de�nes the function carried out by a gene product; one product
may carry out many functions; a set of functions together make up a biological process

• Biological Process - some biological phenomena, or �commonly recognized series of
events� a�ecting the state of an organism. Examples include the cell cycle, DNA
replication, limb formation, etc.

14.2.2 GO & microarray analysis

GO annotations can be used to complement traditional microarray analysis. Once low level
analysis is complete and a group of di�erentially expressed or signi�cantly a�ected genes is
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Figure 14.2: complete GO DAG [3]

Figure 14.3: collapsed GO DAG [3]
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selected, enrichment of GO attributes within the group can be assessed. Many tools exist
to address this problem. Given a background gene set (i.e., all genes on the array), and a
subset of interesting genes (e.g., all those that are di�erentially expressed), these programs
identify which GO terms are most commonly associated with this subset and test the claim
that this association (enrichment) is signi�cantly di�erent from what would be expected by
chance, based on the proportions of genes out of the total having each attribute. As an
example, consider the table below depicting 100 di�erentially expressed genes:

Process Genes on Array # genes expected in 100 random # occurred out of 100

mitosis 800/1000 80 80
apoptosis 400/1000 40 40

p. ctrl.cell prol. 100/1000 10 30
glucose transp. 50/1000 5 20

It can clearly be seen that although 80 out of the 100 di�erentially expressed genes are associ-
ated with mitosis, the most interesting group attribute in the 100 might be glucose transport,
even though it has seemingly few occurrences. This is because the size of the group that is
present is much larger than that expected by chance for this process, meaning that it is over-
represented. Examples of tools to determine whether such over-representation is signi�cant
in general can be found at http://www.geneontology.org/GO.tools.microarray.shtml,
in addition to some described below.

14.3 TANGO: Tool for Analysis of GO classes

TANGO [4] tests for signi�cance by assuming genes are sampled from a hypergeometric dis-
tribution, an approach which was introduced earlier in the course in the context of promoter
analysis (see Lecture 12). For each group and each function in the hierarchy, we have:

Background: n genes, out of which m (the set A) are annotated with a certain function

Target: m' genes (labeled the set T), k of which with the function

Using these parameters, Pr(|A ⋂
T | = k) = HG(n,m,m′, k),and the enrichment p-value is

Pr(|A ⋂
T | ≥ k) =

∑
j≥k HG(n, m,m′, j)

14.3.1 Corrections

Since the signi�cance test is performed for many groups, a multiple testing correction must
be carried out in order to limit false positives. Both the Bonferroni and FDR methods
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are too stringent since there exist strong dependencies between groups (since they are often
members of the same hierarchy). To get around these limitations, TANGO instead calculates
the empirical p value distribution. For a given cluster Tj, TANGO samples many random
sets of the same size & computes their p-values vs. each of the annotation sets Ai. Next,
it also permutes gene IDs to eliminate dependency between annotation sets and target sets.
This correction also applies for testing multiple clusters.

14.3.2 Filtering Redundancies

Because annotation groups can overlap signi�cantly, it is likely that highly related groups
will be found signi�cant. To avoid such overlapping results, greedy redundancy �ltering is
applied. To execute such �ltering for a �xed target set T, we compute the approximate
p-value for the enrichment of A in T, given the enrichment of another set A'.

This is given by CondP (T, A|A′) = HG(|A′|, |A ⋂
A′|, |T ⋂

A′|, |T ⋂
A

⋂
A′|) ∗ HG(n −

|A′|, |A− A′|, |T − A′|, |(T − A′)
⋂

A|)

Following this calculation, annotation sets Ai are sorted by increasing p values, and accepted
only if CondP (T,Aj|Ai) < β for all i<j. Thus, the parameter β controls how much overlap
is allowed.

14.4 GSEA

Gene Set Enrichment Analysis (GSEA) is di�erent from typical enrichment testing in that
it takes into account the magnitude of expression di�erences between conditions for each
gene. As such, it addresses the question of whether the expression of the gene set of interest
shows signi�cant di�erences between these conditions. It relies on ~1300 pre-de�ned gene
sets collected from other databases (such as GO or pathway databases) and computational
studies that are stored on MSigDB, the database the GSEA calls on. Running GSEA allows
the user to restrict the search to speci�c groups of genes that have attributes that are of
interest to the user. These are separated into sets C1-C5, de�ned as:

C1 positional; including genes on the same chromosome or cytogenic band

C2 curated; taken from pathway databases, publications, expert knowledge

C3 motif; conserved cis-regulatory motifs based on comparative studies

C4 computational; derived from past cancer studies

C5 GO, as above
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14.4.1 GSEA Algorithm

GSEA tests for enrichment of some group S among N background genes, similar to TANGO
above. GSEA di�ers in that more information is incorporated into this enrichment calcu-
lation. Some expression measure of all the genes is used explicitly in order to assess the
correlation of each with a phenotype C assigned to each sample. Genes are ranked based on
this correlation to calculate ES(S), as described below.

14.4.1.1 GSEA inputs:

1. Expression data set D with N genes and k samples

2. Ranking procedure to produce Gene list L. Includes a ranking metric (such as correla-
tion) and a phenotype or pro�le of interest C (e.g., sick vs. healthy in the 2-category
case).

3. An exponent p to control the weight of the step

4. Independently derived gene set S of NHgenes (e.g., some set taken from MSigDB above)

14.4.1.2 Enrichment score ES(S)

1. Rank order N genes in D to form L = {g1, ..., gN}according to the correlation, r(gj) =
rj, of their expression pro�les with C [Figure14.4, A]:.

2. Evaluate the fraction of genes in S (�hits�) weighted by their correlation and the fraction
of genes not in S (�misses�) present up to a given position i in L:

• Phit(S, i) =
∑

gjεS,j≤i
|rj |p
NR

,where NR =
∑

gjεS |rj|p

• Pmiss(S, i) =
∑

gj /∈S,j≤i
1

N−NH

Then, ES(S) is the maximum deviation from zero,ES(S) = maxi|Phit(S, i)−Pmiss(S, i)|
, which depends on what both the weight of the correlations and the positions of the
genes in S relative to all of the genes in L[Figure14.4, B]. When p=0, ES(S) reduces
to the Kolmogorov-Smirnov statistic; when p=1, the score weighs genes in S by their
correlation in C normalized by the sum over all correlations in S



GSEA 7

Figure 14.4: GSEA procedure. Genes in expression matrix are sorted based on correlation
to phenotype classes (red and blue at the top of D, panel A). The positions of genes in S are
noted with black bars to the right of D. ES(S) is calculated based on both the correlations
and the positions in L (panel B). [5]

14.4.2 Estimating Signi�cance

Signi�cance is estimated empirically as in TANGO. The observed ES score is compared
with the set of scores ESNULLcomputed by permuting phenotypes. The original phenotype
labels are assigned randomly to samples, the genes are sorted based on correlation to these
labels, and ES(S) is re-computed. This permutation step is repeated 1000 times to create a
histogram of the corresponding enrichment scores ESNULL. Since the positive and negative
sides of the distribution behave di�erently, the nominal P value for S is estimated from
ESNULLby using the portion of the distribution corresponding to the sign of the observed
ES(S).

14.4.3 Multiple Hypothesis Testing

When many gene sets are considered, a correction is performed to account for multiple
testing. Sets are normalized for size and signi�cance based on label permutations (as above).
Then, an FDR is calculated for each normalized score to estimate the probability of a given
score emerging from a false positive �nding. The normalized scores past a chosen FDR cuto�
correspond to the sets that are reported as enriched. These corrections are carried out as
follows:

1. Determine ES(S) for each gene set in the collection.
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2. For each set S and each �xed permutation π (out of 1000 performed) of the phenotype
labels, reorder the genes in L and determine ES(S,π). This is the same step as that
needed to estimate signi�cance.

3. Adjust for variation in the gene set size. Normalize ES(S,π) and the observed ES(S),
separately rescaling the positive and negative scores by dividing by the mean of the
ES(S,π) to yield the normalized scores NES(S,π) and NES(S). For example, for positive
scores:

• NES(S,π) = ES(S,π)
AV EES(S,π).≥0[ES(S,π)]

if ES(S,π) ≥ 0

• NES(S) = ES(S)
AV EES(S,π).≥0[ES(S,π)]

if ES(S) ≥ 0

4. Compute the FDR. Control the ratio of false positives to the total number of gene
sets attaining a �xed level of signi�cance separately for positive (negative) NES(S) and
NES(S,π):

Create a histogram of all NES(S,π) over all S and π. Use this null distribution to
compute an FDR q value, for a given NES(S)= α ≥ 0. The FDR is the ratio of
the percentage of all (S,π) with NES(S,π)≥ 0, whose NES(S,π)≥ α divided by the
percentage of observed S with NES(S)≥ α and similarly if NES(S)= α ≤ 0.

• q = |{(S,π)|NES(S,π)≥α}|/|{(S,π)|NES(S,π)≥0}|
|{S|NES(S)≥α}|/|{S|NES(S)≥0}|

14.4.4 Results

Many studies have applied GSEA in diverse settings. One [5]employed GSEA to reanalyze
results from two earlier lung cancer studies (called here the Boston and Michigan studies).
Each study obtained about 70 expression pro�les that were classi�ed either as good or poor
outcomes. It was found that there was little overlap (12 genes) between the top 100 genes
most correlated to the outcomes in each study, and more strikingly that there were no
genes signi�cantly associated with the outcome at a .05 signi�cance level after correcting for
multiple testing. This demonstrated the disadvantages of the single gene analysis approach.
Using GSEA on the same data, 8 genes in the Boston data and 11 in the Michigan data
were found signi�cantly correlated with poor outcome (FDR ≤0.25). It was also found that
checking the sets correlated with negative outcome from each study against the dataset of
the other resulted in signi�cant enrichment [Figure 14.5]. While this result in itself is an
improvement over the gene based approach, the bigger advantages were seen in the gene
sets that showed signi�cant enrichment. About half the sets were shared between the two
studies, and there were several non-identical sets that related to the same processes, such as
up-regulation by telomerase, and two di�erent insulin-related sets.

GSEA was also applied in conjunction with motif discovery software (instead of expression)
and ChIP- chip measures to predict gene sets targeted by a speci�c transcription factor[6].
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Figure 14.5: The top 100 genes correlated with negative outcome (out of genes present in
both studies) from each study showing similar enrichment among all genes (present in both
studies) for each individual dataset - i.e., here the Boston signature is compared against the
Michigan dataset and vice-versa.

Figure 14.6: BRCA1_NEG gene set

The ChIP-chip screened for targets of Nanog, a factor involved in maintaining pluripotency
of embryonic stem cells. Hits of the screen were then input into a motif prediction algorithm,
which produced new theoretical motifs. These motifs were then compared against promoter
sequences of all human sequences and scored based on the matches to the motifs. This
score was the input to GSEA, and once run GSEA produced most likely targets sets of
Nanog. Among these were several other pluripotency genes, including Nanog itself, which
was expected. Surprisingly, some of these genes also belonged to a larger breast cancer gene
set characterized as genes upregulated in BRCA1 tumors [Figure 14.6], yielding a result with
potential therapeutic implications.

14.5 Conclusions

Enrichment analysis is a means to characterize biological attributes in a given gene set. The
GO dataset provides a central collection of such attributes already known and assigned to
speci�c genes. The GO ontologies are split into cellular component, molecular function,
and biological process. Using these ontologies one can give meaning to any gene, and when
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they are assigned to groups of genes one can de�ne patterns instead of labeling each gene
manually. Many tools exist for assessing signi�cance of enrichment within a group. These
typically employ hypergeometric (TANGO) testing, but can also be based on a Kolmogorov-
Smirnov statistic (GSEA). These tools usually require empirical estimations of p-values and
multiple testing corrections.

GSEA is di�erent in character from hypergeometric test based tools, and also o�ers several
advantages. It requires no cuto� to be chosen a priori for gene level signi�cance, and takes
into account the e�ects of all genes - not only a small subgroup to be tested for enrichment.
This eliminates bias of the choice, but also allows for the possibility of random results
showing up as signi�cant. As a result more corrections need to be made. GSEA also takes
into account the strength of each gene's activity, as opposed to only testing for membership
in speci�c groups. It was also shown that the tool is not limited to expression based queries,
in that it has also been applied to target identi�cation.



Bibliography

[1] The Gene Ontology Consortium: Gene Ontology: tool for the uni�cation of biology.

Nature Genetics Volume 25 May 2000

[2] Jane Lomax. Gene Ontology Tutorial www.geneontology.org/teaching_resources/

presentations/2006-02_MUGEN_expression-analysis_jlomax.ppt

[3] Jennifer Deegan.GO introduction for CS, EBI (2009)

[4] Tanay, Amos. Computational Analysis of Transcriptional Programs: Function and Evolu-

tion. PhD Thesis, Tel Aviv University 2005 http://acgt.cs.tau.ac.il/theses/amos_

phd.pdf

[5] Subramanian et al.: Gene set enrichment analysis: A knowledge based approach for

interpreting genome wide expression pro�les. PNAS Vol. 102 no. 43 October 2005

[6] Dan Scanfeld et al. Motif Discovery: Algorithm and Application web.mit.edu/varun_

ag/www/motif.ppt

11


