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Integrated Analysis of Gene Expression and
Other Data

14.1 Introduction

Over the past weeks, we have seen a number of methods for gene expression profile analysis.
From clustering (see scribe 3-5) via classification (see scribe 7-9) to biclustering (see scribe
6, 10 and 11), all the methods we dicussed dealt solely with the analysis of expression
patterns. We would now like to introduce methods that combine gene expression data with
data from other sources such as protein-protein interactions networks, patient status and
patient clinical parameters. This combination of different data types may help in mapping
the underlying cause of a certain phenotype.

14.2 Analysis of expression profiles and a network

14.2.1 Goal

A large amount of data exists on protein-protein interactions (PPIs), usually presented as a
large network. Since most biological processes are carried out by a set of interacting proteins,
the superimposition of a protein-protein interactions network to a gene expression model can
show which part of the network is active in a particular experiment. Our goal is to detect
active functional modules: a connected subnetwork of genes that are co-expressed.

Figure 14.1: An active functional module (in blue) as a subset of a PPI network
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14.2.2 MATISSE

MATISSE — Modular Analysis for Topology of Interactions and Similarity SEts [1] receives
as input expression data and a PPI network and outputs a collection of modules: connected
PPI subnetworks that have correlated expression profiles.

The probablistic model for expression similarities

For each module, we assume that the data is a mixture of two Gaussians: (1) mates — highly
co-expressed genes and (2) non-mates — genes with low similarity values. We therefore
compare two hypotheses: H); (Module) assumes most of the genes are mates, and Hy
(Null) assumes the number of mates is as expected at random. For a candidate group U,
the likelihood ratio of originating from a module or from the background is:

P(Suxu|Hw) P(Si|Hu)
Wy =log———"——+2 = log———L—"——= = Wy (14.1)
P(Syxv|Hy) (M)EZUW P(Sij|Hn) (i,j)ezz:]w !

The module’s score is the gene group’s likelihood ratio, which is the log likelihood sum over
all gene pairs in U. See [1] for more details.

Front and back nodes

Not all genes may have similarity values. We call the genes that have significant similarity
values front nodes and they may be connected by MATISSE using other genes (back nodes).
Back nodes correspond to unmeasured transcripts, post-translationally regulated genes and
partially regulated pathways (Fig. 14.2).
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Figure 14.2: Toy input example. A toy example of an input problem with two distinct modules and
with front and back nodes. Both modules (circled) are connected in the interaction network and heavy in
the similarity graph. Note that the four front nodes in the left module form a connected subgraph only after
the addition of the back node. Image source: Ulitsky et al. 2007[1]
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Computational aspects

When the PPI network is a clique (a fully connected graph), our problem is to search for
a single module without connectivity constraints. This problem then is to find the heaviest
subgraph with positive and neative edge weights, which is known to be NP-Hard. We shall
describe three heuristics for the problem. All heuristic methods follow three steps: (1)
detection of small high-scoring seeds, (2) greedy optimization and (3) significance based
filtering [1].

Seed generation. Three methods were tested for seed generation:

e Best-Neighbors: High scoring seeds of size k are created by initially ranking the graph’s
nodes, according to the edge weight of their neighbors, iterating over the highest scoring
nodes, and heuristically selecting their k& — 1 best scoring neighbors to the potential
seed.

e All-Neighbors: This method is similar to Best-Neighbors, but instead of selecting k£ — 1
neighbors for a potential seed, in this version, all the neighbors of v with a non-negative
edge score (including neighboring back nodes with zero score) enter the seed.

e Heaviest-Subset: This heuristic is inspired by the Maximum Density Subgraph 2-
approximation algorithm[2]. For each connected component in the constraint graph,
nodes are removed from the graph one at a time until none remain. After each node
removal, the overall score of the remaining graph is recorded. After all nodes are re-
moved, the highest scoring (possibly size-constrained) subgraph that was encountered
is selected as the seed. That subgraph is then removed from the graph and the next
seed is sought. This method is computationally more costly than the other two.

Greedy optimization. MATISSE simultaneously optimizes all the seeds, while not al-
lowing modules to overlap and keeping an upper bound on module size. The optimization is
done greedily, and therefore might reach local maxima. The following steps (Fig. 14.3) are
considered:

e Node addition: addition of an unassigned node to an existing module.
e Node removal: removal of an interrupting node from a module.
e Assignment change: exchange of a node between modules.

e Module merge: forming a new module by taking the union of two existing ones.

Significance filtering. After optimizing each seed, the modules created are filtered in a
two-step process. First, the significance of each module is tested by randomly sampling gene
groups of the same size, and comparing module scores (Eq. 14.1). In a second step, to avoid
possible bias in the score, module significance is tested using only expression similarity scores.
The same sampling procedure is performed using the raw expression pairwise similarity
values, and modules whose average similarity is not sufficiently high compared to the sampled
sets of the same size are removed.
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Figure 14.3: Examples of the moves performed by the optimization algorithm. (a) Node addition;
(b) Node removal; (c) Assignment change; (d) Module merge. Image source: Ulitsky et al. 07 [1]

Advantages of MATISSE

MATISSE has several advantages over previous methods. First, there is no need for confi-
dence estimation on individual measurements. Second, MATISSE works even when only a
fraction of the genes’ expression patterns are informative, by employing back nodes. The
method can handle similarity data, and there is no need to pre-specify the number of mod-
ules.

14.2.3 Performance comparison

MATISSE, Co-clustering [3], CLICK [4], a method producing random connected modules
and a method producing random modules of the same sizes were tested on data for osmotic
shock response in S. cerevisae [1]. The network consisted of 6,246 genes, with 65,990 protein-
protein and protein-DNA interactions. The expression of the genes was measured in 133
different conditions — response of perturbed strains to osmotic shock. In the MATISSE
solution, 2,000 genes were selected as front nodes, based on their variation, and the size of
the modules was limited to 120 proteins. It is visible (Table 14.1) that MATISSE obtained
the highest edge density of all methods (together with the random connected graph) and
very good homogeneity. CLICK had a better homogeneity score, as it disregards the network
structure. CLICK and Co-Clustering tend to produce highly fragmented modules.
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Solution Expression Edge Density | Connected
Homogeneity components

MATISSE 0.361 0.035 1.00
Co-Clustering 0.354 0.010 89.67

CLICK 0.438 0.011 77.61

Random connected 0.063 0.036 1.00

Random 0.033 0.003 89.78

Table 14.1: Methods comparison. The right column is the average number of connected
components per module.

Next, we check the enrichment of the modules with biological annotations (GO, MIPS
and KEGG) for each solution (Fig. 14.4) and the portion of biological annotations that are
enriched in the modules. MATISSE has a significant advantage over other methods.
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Figure 14.4: Performance comparison. The left chart depicts the percent of modules with category
enrichment at a p-value < 1072. The right chart depicts the percentage of annotations with enichment at a
p-value < 1072 in modules.

14.3 Analysis of expression profiles, network and
patient status

14.3.1 Goal

The most popular human expression studies compare two cohorts of individuals, for exam-
ple, sick and healthy ones. Alternatively, two disease subtypes are compared. Hundreds of
comparison studies were published over the last decade and were used for patient classifi-
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cation and for selection of biomarkers. In order to improve our understanding of disease
mechanisms, we can integrate case-control profiles with network information. It is possible
to extract dysregulated pahways specific for the cases, i.e., ones that are altered in diseased
individuals compared to controls. A meaningful pathway should be a connected subgraph of
the original graph and a good solution should account for heterogeneity among cases.
Note: for simplification, we will refer to two groups as case and control, even though the
methodology hereinafter is applicable for any other pairwise comparison.

14.3.2 Methods

The following section was derived from a study on the detection of disease-specific dysregu-
lated pathways (DPs) from the analysis of clinical expression profiles[5], published in 2008.
In the study, the expression data are preprocessed, a mathematical problem is formulated
and solved using approximation algorithms and heuristics.

Preprocessing

The initial input is the gene expression matrix in which the columns correspond to samples
taken from case and control patients and the rows correspond to genes. For each of the genes,
we use the distribution of its values among the controls to decide if the gene is dysregulated
in each of the cases (Fig. 14.5 B). This way, we obtain a binary matrix of cases vs. genes.
An additional input is the protein-protein interactions network, with nodes corresponding
to proteins and edges corresponding to interactions. Each gene in this pattern now has a
dysregulation pattern, which is simply its row in the binary matrix (Fig. 14.5 C).

Problem formulation

The known gene network is presented as an undirected graph, where each node (gene) has a
corresponding set of elements (samples) in which it is differentially expressed (Fig 14.5 C).
Our goal is to detect a minimal connected subnetwork with at least k£ nodes differentially
expressed in all but [ analyzed samples (I thus denotes of the number of allowed ’outliers’).
We call such submetwork a dysregulated pathway (DP).

Formalization follows. We are given an undirected graph G = (V, F) and a collection
of sets {S,}vev over the universe of elements U (the gene rows from the binary matrix),
with |U] = n. For ease of representation, we will use, in addition to G, a bipartite graph
B = (V,U, E?) where (v,u) € E,v € V,u € U if and only if u € S, (Fig 14.5 D). A set
C CV is a connected (k,1)-cover (denoted CC(k, 1)) if C' induces a connected component in
G and a subset U’ C U exists such that |U'| = n — [ and for all v/ € U’, |[N(v') N C| > k,
i.e., in the induced subgraph (C,U’) the minimal degree of nodes in U’ is at least k (N (z)
is the set of neighbors of x in B). We are interested in finding a CC(k,1) of the smallest
cardinality. We denote this minimization problem by MCC(k,1).

Hardness Without connectivity constraints, i.e., when G is a clique, MCC(k = 1,1 = 0)
is Set Cover, MCC'(k > 1,1 = 0) is Set k-Cover and MCC(k = 1,1 > 0) is Partial Set Cover.
All these problems were shown to be NP-Hard. For a general G, MCC(1,0) is the Connected
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Figure 14.5: From case-control profiles to dysregulated pathways. (A) The initial input: a gene
expression matrix. (B) Data is preprocessed and the dysregulation pattern is determined. (C) A second
input is a protein interaction network. The row next to each gene is its dysregulation pattern. The goal is to
find a smallest possible subnetwork in which, in all but [ cases, at least k genes are differentially expressed. In
this example, the circled subnetwork satisfies the condition with k =2, 1 =1: (i) A and C are dysregulated
in case 1; (ii) A and B are dysregulated in case 3. (D) The bipartite graph representation of the data. Genes
(left) are connected to the cases (right) in which they are differentially expressed. Edges between genes
constitute the protein interaction network. The genes of the minimal cover and the samples covered by them
are in green. Image source: Utilsky et al. 08 [5]

Set Cover problem, which was recently studied in the context of wavelength assignment of
broadcast connections in optical networks [6]. It was shown to be NP-Hard even if at most
one vertex of G' has degree greater than two.

Greedy algorithms for MCC(k,1)

Two variants of the classical greedy approximation for Set Cover were tested for the approx-
imation of this problem. For simplicity we will describe them for M CC(1,0).

Expanding Greedy The first algorithm, FapandingGreedy works as follows: Given a
partial cover W C V and the set of corresponding covered elements X C U, the algorithm
picks a node v € V that is adjacent to W and that covers the largest number of elements
of U\ X, adds v to the cover and adds N(v) \ U to X. Initially W = (), X = () and the
first node is picked without connectivity constraints. Unfortunately, FxpandingGreedy can
be shown to give a solution that is 6(]V]) times the optimal solution. Specifically, it runs
into difficulties in cases where all the nodes in the immediate neighborhood of the current
solution have equal benefit, and the next addition to the cover is difficult to pick.
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Connecting Greedy The second algorithm, ConnectingGreedy, first uses the simple
greedy algorithm [7] to find a set cover C' that ignores the connectivity constraints and
then augments it with additional nodes in order to obtain a proper cover. The diameter of
a graph is the maximum length of a shortest path between a pair of nodes in V. Connect-
ingGreedy guarantees an approximation ratio of O(Dlogn) for MCC(1,0), where D is the
diameter of G, since we can connect C' using |C| — 1 paths of length < D each.

The CUSP Algorithm

We next describe an algorithm called Covering Using Shortest Paths (CUSP). Let d(v,w) be
the distance in edges between v and w in GG. For each root node r and for each element u € U
the algorithm computes distances (M|[r, ul, ..., M[r,ul;) and pointers (P[r,ulq, ..., P[r, u]x)
to the k nodes closest to r that cover u. This can be done by computing the distances from r
to all the nodes in V' that cover u, and then retrieving the k closest nodes, which is an instance
of the selection problem and can be solved in expected linear time [8]. Now take X, the union
of the paths to the nodes covering the n—1 elements for which maz {d(r, P[r,u],),1 < ¢ < k}
is the smallest. The final solution is X = argmin,|X,|.

Claim 14.1 X, is a proper CC(k,I)

Proof: (a) X, is a subtree of 7" and thus induces a connected component in G; (b) n —1
elements of U are covered k times by the corresponding {P[r,u];} m

Claim 14.2 CUSP yields an n-approzimation for MCC(1,0).

Proof: Let Copr be the optimal solution and let Copygp be the CUSP solution. Choose
some vopr € Copr. Since Copr is a cover, every vertex u € U has a neighbor w, in Copr.
Let w} be the vertex for which d(vopr,w}) is maximal. Copr must contain all the vertices
along some path from vopr to wy.

|Copr| > d(vopr, wi)+1 = maz,cy{d(vopr, w,)|(wy, u) € EP}+1 = maz,eu {M[vopr, u]}+1

(14.2)
CUSP minimizes over all the |X,|s and therefore | X, .| > |Covusp|. Xvopy Is a union of
shortest paths from vertices for which M[vppr, ] is minimal. The number of vertices in
each of these paths < maz,cy{M [vopr,u]} + 1 and for n paths:

|Covsp| < n(mazyev{Mvopr,ul} +1) < n|Copr| m

Note that n is the number of cases and is often much smaller than |V| — in human data,
usually |V| > 10,000 and n < 100. In the general case, this algorithm can be proved to give
a k(n — [)-approximation for MCC(k,l). In terms of computational complexity, the total
amount of work for each choice of r is O(|V| + |E| + |E®]), by simply using DFS, and the
overall complexity is O(|V|(|[V] + |E| + |E?|)). See [5] for some biomedical applications of
the method.
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14.4 Analysis of expression profiles, network and
clinical parameters

14.4.1 Goal

We would now like to expand the model by adding clinical parameters for each patient. Clin-
ical parameters can be either logical — for example, the gender of the patient, the mutation
status of a certain gene — or numerical — for example, the age of the patient, the size of the
tumor or the patient’s metastasis free survival period. We report here on a study that aims
to analyze both types of parameters [9)].

14.4.2 Handling clinical parameters

For each parameter, we compute a profile P; across all patients. For a numerical parameter,
the profile will be its normalized expression pattern (Fig. 14.6 A). For a logical parameter,
we construct a seperate pattern for each value (Fig. 14.6 B).

A [Age [60 [42 |71 |35 ] |Mean=0,5|andarddeviatiorb Pt
—

B |Grade |A‘A| B| B‘ B|C| [ Sepamlepauemforeachv@ —D——*
L .

Figure 14.6: Handling clinical parameters. (A) Handling numerical parameters. (B) Handling logical
parameters.

For genes 7, 7, and a clinical parameter k£ with profile Py, we compute pairwise similarities:

Sdsz(l7.7) + /\Scorr(imj)
14+ A

S(i,j) = (14.3)

where Syirf(4, j) = min{Corr(Pattern(i), Py), Corr(Pattern(j), P;)}

and Seor (7, j) = PartialCorrelation(Pattern(i), Pattern(j)|Px)

Hence, Sgisr is the lower of the two correlations of the gene’s pattern with the profile (we
take the minimum as it would be meaningful only if both correlations are high) and Sc..
is the correlations of the two gene patterns after correcting for their individual correlations
with Pj. A is a weighting factor.
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14.4.3 Study outline

After transforming the clinical parameters to profiles, they are used together with the gene
expression patterns (Equation 14.3) to form a new gene similarity matrix. This matrix,
along with the pairwise protein interaction network are input for MATISSE [1] (see above).
The modules extracted are then filtered for redundancies (Fig. 14.7).
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expression interaction
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Figure 14.7: Clinical parameters study outline.

14.4.4 Breast cancer study results

Expression profiles of 99 breast cancer tumor samples were analyzed [10]. Ten clinical pa-
rameters such as the age at diagnosis, tumor size, mutation status of certain genes, etc. were
used to compile a similarity matrix. A human protein-protein interaction network of 10,033
proteins and 41,633 interactions was used.

Results Significant modules were identified for 9 of the 10 clinical parameters. After filter-
ing, 10 modules were obtained, ranging from 84 to 118 genes each. Six of the modules were
enriched with more than one biological process, and seven of the modules had enrichment
for more than one breast cancer related gene set. Here are some observations on interesting
modules:

e Module no. 1 - Age related:

— Positively correlated with age at diagnosis.
— Enriched with genes upregulated in aged Rhesus.

— Contains genes from the PKC pathway that activates NF-xB, a transcription
factor that was implicated in aging [11].
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e Module no. 3 - Estrogen receptor:

— Negatively correlated with tumor size.
— Enriched with estrogen receptor (ER) targets (p = 1.13 x 107%).
— The module itself contains two estrogen receptors (ESR1 and ESR2).

— Hypothesis: increased ER transcription factor activity could result in smaller
tumors.

e Module no. 7 - Ribosomal proteins:

— Expression correlated with longer metastases-free survival.
— Enriched with ribosomal proteins (RPs).
— High expression of RPs is indicative of milder ovarian tumors.

— Supports finding that RP expression is correlated with longer survival.

14.5 Summary

We have just described several methods for use in the field of systems biology. Since the
methods use protein-protein interactions graphs, we encounter many graph problems. As
these tend to be NP-Hard, we also encounter approximation methods and heuristics. On a
more theoretical level, seeing that additional information improves the analysis, an important
challenge here is the integration of even more diverse data sources. The latter should be an
important component in computational systems biology tools developed in the future.

Note that the methods we covered are generic, for example, when dealing with clinical
parameters, we simply integrated them with expression profiles to fit as MATISSE input.
To summarize, the above methods - as well as others - may provide shortcuts in search for
good hypotheses, but we have to keep in mind that the decisive proof of the utility of the
methods will eventually be done via experimental validation.
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