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BIMAX

11.1 Introduction.

In the course we have already seen different Biclustering methods such as Cheng-Church,
ISA, SAMBA (see scribe 5), OPSM (see scribe 9). The method described in this lecture
is Bimax - an algorithm due to Preli¢ et al. [2]. It uses a simple data model reflecting
the fundamental idea of biclustering, while aiming to determine all optimal biclusters in
reasonable time. This method has the benefit of providing a basis to investigate (1) the
usefulness of the biclustering concept in general, independently of interfering effects caused
by approximate algorithms, and (2) the effectiveness of more complex scoring schemes and
biclustering methods in comparison to a plain approach.

11.2 Model.

The model assumes two possible expression levels per gene: no change and change with
respect to a control experiment (To this end, a preprocessing step normalizes log expression
values and then transforms matrix cells into discrete values, e.g. by using a 2-fold change
cutoff.) Accordingly, a set of m microarray experiments for n genes can be represented by a
binary matrix E™*™, where a cell e;; is 1 whenever gene i responds in the condition j and
otherwise it is 0. A bicluster (G, C') corresponds to a subset of genes G C {1,...,n} that
jointly respond across a subset of samples C' C {1,...,m}. In other words, the pair (G, C)
defines a sub matrix of F for which all elements equal 1. Note that, by definition, every cell
e;; having value 1 represents a bicluster by itself. However, such a pattern is not interesting;
instead, we would like to find all biclusters that are inclusion maximal, i.e. those that are
not properly contained by any other biclusters. In graph theory if we consider representation
in adjacency matrix of the graph (each cell represents if node of the row is connected with
node of the column), the problem translates to finding all the maximal bicliques. A Biclique
is a fully connected bipartite graph where every vertex of the first set is connected to every
vertex of the second set. In our case we present genes as matrix rows and conditions as
matrix columns and seek maximal bicliques between genes and conditions.

11.3 An Incremental Algorithm.

The incremental procedure, see below, is based on work by Alexe et al. [1], who propose a
method to find all inclusion-maximal cliques in general graphs. Shortly summarized, each
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node in the input graph is visited, and all maximal cliques are found that contain that node.
A visit-to-a-node operation comprises an iteration through all other nodes of the graph as
well, and each newly found bicluster is globally extended to its maximality.

1: procedure IncrementalAlgorithm(F)
2: M — 1
3 for 7 «— 1 to n do

4: C*—{jle=1N1<j<m}

5: for each (G,C) € M do

6: C'—Ccnc*

7: if 3(G",C")e M with C" = " then
8: M — M\ {(G",C")}u {(G" u{i},C")}
9: else

10: M« MU{(G U{i},C")}

11: end if

12: end for

13: if A(G",C") e M with C" = C* then
14: M — M U{({i},C")}

15: end if

16: end for

17: return M

18: end procedure

Figure 11.1: An Incremental Algorithm

Algorithm description.

We add the rows one by one to the pool of biclusters (rows with the same condition set
fall into the same bicluster). For each added row we run through all the biclusters in the
pool and concentrate on the common conditions of bicluster group and the current row - C”.
If there is a bicluster in the pool with condition set equals to C’, we add the current row to
it. Otherwise we create a new bicluster: genes set contains the current row and all the genes
of bicluster, with which we calculated C’, and C" as conditions set. After algorithm run we
have set of all possible maximal biclusters, including the one with an empty condition set.

Theorem 11.1 The time complezity of the Incremental Algorithm is ©(nm/flog 3), where
G is the number of all inclusion-mazimal biclusters in E"*™. The space complezity is O((m+

n)B).

Proof: We maintain the set M in a lexicographic order according to the sets C'. For each
row the algorithm performs the following:

e calculates C* — in O(m) time

e iterates through O(f3) biclusters and for each bicluster:
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— calculates the intersection with C' — in O(m) time

— seeks in M a bicluster with C” = C’ — this takes O(mlog3) time by binary
search on M

— updates M by removing at most one bicluster and adding to it at most two keeping
sorted order. Each of teh three operations takes O(mlog 3) time

Hence, for each row the algorithm performs O(mlog ) operations, and in total the time
complexity is O(nmlog 3). Note that since § < 2™(»™) _ 1 we have log 3 < min(n,m).
Replacing log § in the complexity we receive O(nmmin(n,m)3), and if m < n the total
complexity becomes O(nm?3). The Space complexity is O((m + n)3), since for each of the
O() biclusters we need to record the sets of size at most m and n. m

11.4 Bimax algorithm.

A key problem in the above algorithm is the space complexity. We now decribe the Bimax
algorithm due to Preli¢ et al. [2] that is more space efficient. The algorithm realizes the
divide-and-conquer strategy. Rows are added one by one. When a row is added, the column
set is partitioned into Cy — the columns in which the new row has ones, and its complement
Cy (compare Figure 11.2%). The row set is split into Gy — the rows that have only ones in
Cy, Gy — those that have ones in Cy only, and Gy - those that have ones in both. Let U
be the submatix (Gy U Gy, Cy) and let V' be the submatix (Gw U Gy, Cy).

& e
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rearrange rows

Figure 11.2: Bimax Algorithm run example.

Special operations are required for processing the V' submatrix. The algorithm needs to
guarantee that only optimal, i.e., inclusion-maximal biclusters are generated. The problem

!The source of all figures in this scribe is Preli¢ et al. [2]
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arises because V' contains parts of the biclusters found in U, and as a consequence we need
to ensure that the algorithm only considers those biclusters in V' that extend over CYy .
The parameter Z serves this goal. It contains sets of columns that restricts the number of
admissible biclusters. A bicluster (G, C) is admissible, if (G, C') shares one or more columns
with each column set C* in 7, ie., VOt € Z:CNCT # 0.

The code of the algorithm is presented in Figure 11.3 below.

Theorem 11.2 Algorithm Bimax can be implemented in O(nmmin(n,m) time and
O(nmlog 3) space.

Proof: In the procedure reduce, one can observe that the number of column sets stored in
Z is bounded by the number of rows, n, and each column set contains at most m elements.
If Z is implemented as a list and C* is represented by an array, the If statement in line 49
can be executed in O(nm) time. Accordingly, one call to reduce takes O(n?m) steps resp.
O(m?n) steps, if n > m and the transposed matrix is considered. Overall, the running time
complexity is of order O(nmmin(n,m)). The partitioning of a submatrix is accomplished
by the procedure divide.We assume that all sets except of C* are implemented using list
structures, while C* is stored in an array. Thereby, the inclusion tests can be performed
in time O(m), and the entire loop takes O(nm) steps. Overall, the running time of the
procedure including reduce is O(nmmin(n,m)).

We now calculate conquer time complexity excluding recursive calls. The main procedure
conquer requires O(nm) steps to check whether (G, C) represents a valid bicluster (lines 7
to 9), and O(1) steps to perform the union operations at lined 18 and 21, again assum-
ing a list implementation. Altogether, one invocation of conquer including divide takes
O(nmmin(n, m)) time.

The question now is how many times conquer is executed. Taking into account that
every invocation of conquer returns at least one inclusion-maximal bicluster, there are at
maximum [ procedure calls that do not perform any further recursive calls. In other words,
the corresponding recursion tree, where each node represents one instance of conquer and
every directed edge stands for a recursive invocation, has at most 3 leaves. Each inner node
of the recursion tree has an outdegree of 1 or 2, depending on whether Gy and Gy are empty
(Gy is always non-empty except of the special case that E contains only 0-cells).
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Suppose an instance of conquer in the tree
that only has one child to which the subma-
trix U is passed. U has at least one row that
contains a 1 in all columns of U; this is the
row according to which the partitioning in the
parent is performed. Now, either there is an-
other row in U that contains both Os and 1s
(line 25) or all remaining rows only contain
1s. In the former case, the partitioning of U
produces a non-empty set Gy, and therefore
the outdegree of the child is two. In the latter
case, the submatrix resulting from the parti-
tioning contains only 1s, which in turn, means
that the following invocation of conquer is a
leaf in the recursion tree. Therefore, at least
one half of all inner nodes have an outdegree
greater than 1.

We first give an upper bound for the num-
ber of inner nodes with more than one child,
and for this purpose disregard all nodes with
outdegree 1. Consider a tree where all inner
nodes have an outdegree of 2 and the number
of leaves equals (3. Then the number of inner
nodes is less than 2002+l = 23 For the
recursion tree, this means that there are at
maximum 2 - 23 inner nodes, and as a conse-
quence the overall number of nodes and invo-
cations of conquer is O((3). By combining the
two main results, (i) one conquer call needs
O(nmmin(n, m)) steps and (ii) there are at
maximum O(f) invocations of conquer, we
obtain the upper bound for the running-time
of the Bimaz algorithm.

We now show that the space complexity
is O(nmlog ) or O(nmmin(n,m)). As it is
shown above, the number of conquer invo-
cations is O((3). Having two invocation in a
conquer call, the depth of the recursion tree is
not more than O(log3). In each invocation
we need to maintain the set Z of size less
than n x m, hence total space consumption
is O(nmlog 3). m

1: procedure Bimaz(F)

2: Z 10

3: M «— conquer(E,({1,...,n},{1,...,m}), Z)
4 return M

5: end procedure

6: procedure conquer(F, (G,C), Z)

7: ifVie G,j € C:e;j =1then

8: return {(G,C)}

9: end if

10: (GU,- Gv, GVV,- CU y Cv) = di’Uide(E, (G O) Z)
112 ]\'[U «— @, ]\'[V «— @

12: if Gy # ( then

13: My COHQ’U,Q’I‘(E, (GU UGw,Cu),Z)

14: end if

15: if Gy # 0 A Gy = () then

16: My «— conquer(E,(Gyv,Cv), Z)

17: else if G- # 0 then

18: 7' — ZU{Cy}

19: My — conquer(E,(Gw UGy, Cy UCy),Z")
20: end if

21: return My UMy
22: end procedure

23: procedure divide(E, (G,C), Z)
24: G — reduce(E,(G,C), Z)
25: choose i € G" with 0 < Zje(—, e;; < |C]

26: if suchan i € G’ exists then

27: Cu—{jljeCney =1}
28: else

29: OU = O

30: end if

31: OV —C \ OU
32: Gu —0, Gy <0, Gw —0
33: for each i € G’ do

34: C*<—{j\j€(7/\eij:1}
35: if C* C Cp then

36: Gy «— G U {L}

37 else if C* C Cy, then

38: Gy «— Gy U{i}

39: else

40: GVV «— GVV @] {L}

41: end if

42: end for

43: return (G[],Gyf,Gwr, C[;,O\/)
44: end procedure

45: procedure reduce(E, (G, C), Z)

46: G — 0

47: for each i € G do

48: O**—{j‘jEO/\ejjzl}

49: ifC* £DAYCT € Z:Ct N C* # ) then
50: G'=G"U{i}

51: end if

52: end for

53: return G’

54: end procedure

Figure 11.3: Bimax Algorithm
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11.5 Testing the Bimax algorithm

11.5.1 Validation Approach

Theoretically the number of inclusion-maximal biclusters for n x m matrices is 22" but
practically the numbers seem much smaller. The average number for random matrices with
6000 genes and varying number of columns and densities is shown in the table 11.4. Each
number gives the average over 100 matrices. The last row comprises the theoretical upper
bounds for the number of inclusion-maximal biclusters.

density | number of samples m
DEO0Dx.- | 50 150 250 350 450
1% 530.0 34755 75942 12405.5 17919.9
2% 1468.7 118292  28938.8  53438.2 86657.3
3 % 2490.1 21693.7  62005.3 1324358  238598.5
4% 3933.7 44463.7 1559298 367228.8 694202
5% 6554.9 100213.8 390835 956255 1838979.7

|1.13e+15 1.43e+45 18let+75 2.29e+105 29le+135

Figure 11.4: Actual Number of Bics in the Randomized Matrix with given percentage of 1s

Therefore, as one can see the number of biclusters is really modest compared to the theoretical
upper bounds, and comparing the solution is not too expensive practically.

To evaluate the performance of Bimazr compared to other methods, five prominent biclus-
tering methods have been chosen according to three criteria: (1) to what extent the methods
have been used or referenced in the community, (2) whether their algorithmic strategies are
similar and (3) whether an implementation was available or could be easily reconstructed
based on the original publications. The selected algorithms, which all are based on greedy
search strategies, are Cheng and Church’s algorithm CC [3]; Samba (Tanay et al. [4]); Order
Preserving Submatrix Algorithm, OPSM (Ben-Dor et al. [5]); Iterative Signature Algorithm,
ISA (Thmels et al. [6, 7]); xMotif (Murali and Kasif [8]).

All of the selected methods have been re-implemented according to the specifications in
the corresponding papers, except of Samba for which a publicly available software tool, Ex-
pander (Sharan et al., 2003), has been used. The OPSM algorithm has been slightly extended
to return not only a single bicluster but also the ¢ largest biclusters among those that achieve
the optimal score; ¢ has been set to 100. Furthermore, the standard hierarchical clustering
method (HCL) in MATLAB has been included in the comparison. HCL uses single linkage
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in combination with Euclidean distance. For the reference method, Bimax, the discretiza-
tion threshold has been set to (max(EzpressionValues)+min(ExpressionValues))/2. The
output filtering procedure adopted here follows a greedy approach: in each step, the largest
of the remaining biclusters is chosen that has less than 25% of its cells in common with any
previously selected bicluster; the algorithm stops if either 100 biclusters have been selected
or none of the remaining ones fulfills the selection criterion.

11.5.2 Building Synthetic Data

The artificial model used to generate synthetic gene expression data is similar to an approach
proposed by Thmels et al. [6]. In this setting, biclusters represent transcription modules;
these modules are defined by (i) a set G of genes regulated by a set of common transcription
factors, and (ii) a set C' of conditions in which these transcription factors are active. More
specifically, we consider

e a set of t transcription factors;

e a binary activation matrix A™"™ where a;; = 1 iff transcription factor 7 is active in
condition j;

e a binary regulation matrix R™™" where r;; = 1 iff transcription factor i regulates gene
J;

The Prelic¢ et al studied two synthetic scenarios: disjoint biclusters with varying noise levels
and noiseless overlapping biclusters. In the first scenario, 10 non-overlapping transcription
modules, each extending over 10 genes and 5 conditions are created. Each gene is regulated
by exactly one transcription factor and in each condition only one transcription factor is
active. The corresponding data sets contain 10 disjoint implanted biclusters and have been
used to study the effects of noise on the performance of the biclustering methods.

For the second scenario, the regulatory complexity has been systematically varied: here,
each gene can be regulated by d transcription factors and in each condition up to d tran-
scription factors can be active. As a consequence, the original 10 biclusters overlap where d
is an indicator for the overlap degree; overall, nine different levels have been considered with
d=0,1,...,8.

For each scenario two types of biclusters were concidered: (i) constant biclusters and (ii)
additive biclusters. In the first case, the corresponding gene expression matrix F is defined
by setting the expression value e;; = maxi<p<; 74 - ag;j; £ is a binary matrix where the
cells contained in biclusters are set to 1. In the second case, E is constructed as follows:
e;j = m+ (j — 1) for (¢,7) that imply max;<g<; 7 - ag; 7# 0; otherwise e;; is a uniformly
randomly chosen integer in the interval [0,m — 1].

In order to assess the performance of the selected biclustering approaches, the following
gene match score is used:

Definition Let M, M, be two sets of biclusters. The gene match score of M; with respect
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to My is given by the function

1 GinNnGg
Se:(My, M) = — max G NGy
| M| (Gr.onyenr, (G2:C2)EM: |G1 U Gy
which reflects the average of the maximum match scores for all biclusters in M; with respect

to the biclusters in Ms.

Now, let M,,; denote the set of implanted biclusters and M the output of a biclustering
method. The average bicluster relevance is defined as S& (M, M,,;) and reflects to what extent
the recovereded biclusters represent true biclusters in the gene dimension. In contrast, the
average module recovery, given by Sg (Mo, M), quantifies how well each of the true biclusters
is recovered by the biclustering algorithm under consideration.

11.5.3 Artificial Data Results

The first artificial scenario, where all biclusters are non-overlapping, serves as a basis to
assess the sensitivity of the methods to noise in the data. Noise is imitated by adding
random values drawn from a normal distribution to each cell of the original gene expression
matrix. The noise level, i.e. the standard deviation o, is systematically increased, and
for each noise value, 10 different data matrices have been generated from the original gene
expression matrix F.

In the absence of noise, ISA, Samba and Bimax are able to identify a high percentage
(> 90%) of implanted modules; as expected, the same holds for the hierarchical clustering
approach, if the number k of clusters to be generated corresponds to the actual number of
implanted modules. In contrast, the scores obtained by CC and xMotif are substantially
lower. CC tends to find large groups of genes extending over a few columns only, which
owes to the used greedy heuristic. Since xMotif is mainly designed to find biclusters with
coherent row values, the underlying bicluster problem formulation is not well suited for the
second bicluster type. A similar argument applies to OPSM which seeks clear trends of up-
or down-regulation and cannot be expected to perform well in the scenarios with constant
biclusters.

The only method that fully recovers all hidden modules in the data matrix is by design
the reference method, Bimax. Among the remaining methods, Samba provides the best
performance: most of the biclusters found (> 90%) represent hidden modules; however,
not all implanted modules are recovered. While OPSM is not significantly affected by the
overlap degree (only the non-constant bicluster datasets have been considered as OPSM
cannot handle identical expression values), ISA appears to be more sensitive to increased
regulatory complexity, especially with the second bicluster type. As to CC, the performance
increases with larger overlaps degrees, but the gene match scores are still lower than the
ones by Bimax, Samba and ISA. xMotif shows the same behavior on the data matrices with
constant biclusters. Comparing the biclustering methods with HCL, one can observe that
already a minimal overlap causes a large decrease in the performance of HCL, even if the
optimal number of clusters is used.
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Figure 11.5: Results for the artificial scenarios: non-overlapping modules with increasing noise levels for
(a) constant and (b) additive biclusters, overlapping modules with increasing overlap degree and no noise
for (c) constant and (d) additive biclusters. Y-axis is average match score, X-axis of (a) and (b) shows noise
level, X-axis of (c) and (d) shows the overlap degree. The first row of charts shows relevance of biclusters
and the second row shows the recovery of modules.
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11.5.4 Real Data Results

The biclustering algorithms were also tested on real datasets, normalized using mean center-
ing, and the biological relevance of the obtained biclusters was evaluated with respect to GO
annotations, metabolic pathway maps and protein-protein interaction data. Unfortunately,
testing data details are not covered in the article, so it is impossible to tell, for example, how
big the matrix was.

Enrichment with GO Biological Process Category

[ : = 0.001 %
Elc=01% |

100

90

80|
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50

40

Proportion of biclusters per signif. level, o. (%)

OPSM BiMax ISA Samba CC xMotif k=15 k=30 k=50 k=100
Biclustering algorithms and HCL

Figure 11.6: Proportion of biclusters significantly enriched by any GO Biological Process category
(S.cerevisiae) for the six selected biclustering nethods as well as for hierarchical clustering with k& €
{15, 30,50,100}. The columns are grouped method-wise, and different bars within a group represent the
results obtained for five different significance levels .

The histogram in Figure 11.6 reflects for each method the proportion of biclusters for
which one or several GO categories are overrepresented at different levels of significance. Best
results are obtained by OPSM. However, the comparison to other method is not meaningful,
since only 12 modules were generated by OPSM, while all other methods produced 100
modules.

Bimax, ISA and Samba also provide a high portion of functionally enriched biclusters,
with a slight advantage of Bimax and ISA (> 90% at a significance level of 5%) over Samba
(> 80% at a significance level of 5%). In contrast, the scores for CC are considerably lower
( 30%) due its greedy nature. Except for xMotif, though, all biclustering methods achieve
higher scores than HCL.

Under the assumption that the structure of a metabolic pathway map, respectively, a
protein-protein interaction network is somehow reflected in the gene expression data, the
degree of connections number of the genes associated with a bicluster can be used to assess
its biological relevance. In particular, one may expect that both the number of disconnected
gene pairs and the average shortest distance between connected gene pairs tend to be smaller
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for the biclusters found than for random gene groups. Although for most methods, the
biclusters are better connected than random gene groups, the differences to the random case
are not as striking as for the average gene pair distance.

Method Proportion of disconnected gene pairs Average shortest distance in the graph

Smaller Greater Smaller Greater

MPM PPI MPM PPl MPM PPI MPM PPI
Bimax 58.9 14.0 19.5 64.0 853 58.0 34 16.0
cc 70.0 52.0 15.0 20.0 70.0 42.0 15.0 34.0
OPSM 42.8 18.8 28.6 50.0 929 56.3 0.0 43.8
Samba 41.6 0.0 375 100.0 75.6 25.6 13.1 46.2
xMotit 49.0 2.0 17.0 92.0 84.0 4.0 3.0 72.0
ISA 25.0 58.0 25.0 22.0 50.0 70.0 25.0 22.0

Figure 11.7: Biological relevance of biclusters with respect to a metabolic pathway map (MPM) for A.
thaliana and a protein-protein interaction network (PPI) for S.cerevisiae.

The results for the corresponding comparison for the protein-protein interaction, though,
are ambiguous, Figure 11.7. In this table for each bicluster, a Z-test is carried out to check
whether its score is significantly smaller or greater than the expected value for random
gene groups; the table gives for each method the proportion of biclusters with statistically
significant scores (significance level a = 1073). The results for HCL are omitted as all scores
equal 0%. As to the degree of disconnectedness, there is no clear tendency in the data
which can be attributed to the fact that not all possible protein pairs have been tested for
interaction. Focusing on connected gene pairs only, ISA and Bimax seem to mostly generate
gene groups that have a low average distance within the protein network in comparison
to random gene sets; for xMotif, the numbers suggest the opposite. Preli¢ et al conclude
that overall the differences between the biclustering methods demonstrate that special care
is necessary when integrating gene expression and protein interaction data: not only the
incompleteness of the data needs to be taken into consideration, but also the confidence in
the measurements has to be accounted for.

We note, however, that the method by which the randomized networks were generated is
flawed, since it does not take into account the high variability in node degrees. Reevaluation
should be done after degree-preserving randomization.

11.6 Conclusions

e Meaningful biological results with ISA;, SAMBA, OPSM.

On the real datasets, ISA, Samba and OPSM provide similarly good results: a large
portion of the resulting biclusters is functionally enriched and indicates a strong cor-
respondence with known pathways.

e Similar performance. SAMBA slightly more robust to overlaps, more sensitive to noise.
OPSM (still) oriented to find a single bic.
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In the context of the synthetic scenarios, Samba is slightly more robust regarding
increased regulatory complexity, but also more sensitive regarding noise than ISA.
While Samba and ISA can be used to find multiple biclusters with both constant and
coherently increasing values, OPSM is mainly tailored to identify a single bicluster of
the second type. The scores for CC and xMotif are significantly lower than that for
the other biclustering methods under consideration.

BIMAX gets similar results. How come naive binarization works?

The Bimax algorithm achieves similar scores as the best performing biclustering tech-
niques. But from the data we do not see obvious evidence that this algorithm is much
better than other five prominent methods. An advantage of Bimax is that it is capable
of generating all optimal biclusters, given the underlying binary data model.

We are making progress, but still far from fully understanding the problem and for-
mulating it well.

The reference method can be useful as a preprocessing step by which potentially rele-
vant biclusters may be identified; later, the chosen biclusters can be used, e.g. as an
input for more accurate biclustering methods in order to speed up the processing time
and to increase the bicluster quality.
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