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Lecture 5: November 19, 2009

Lecturer: Ron Shamir Scribe: Renana Meller

5.1 Minimizing the maximum intracluster distance

5.1.1 Introduction

There are many variations of the clustering problem. One of the main differences among
these problems is in their objective function. Most of the common clustering algorithms are
heuristic algorithms that very little has been proven about their merits. In this section we
will discuss the clustering problem of minimizing the maximum intracluster distance and
present two algorithms for it. The advantage of this objective is that it has a provable poly-
nomial approximation algorithm, when the input satisfies the triangle inequality.

Formally the problem of minimizing the maximum intracluster distance is defined as
follows:
Given a weighted undirected graph G = (V, E, W) with edge weight function W : E — IR*,
and an integer k, partition V into k sets, (Bj,..., Bx) so that maxg{w(i,j)|i,j € By} is
minimum.

5.1.2 FPF

FPF (Furthest Point First) is a polynomial algorithm for the above clustering objective
introduced by Gonzalez [6]. When the weight function satisfies the triangle inequality, it
guarantees a 2-approximation. The FPF works in iterations. In each iteration it keeps a
subset of nodes called heads and partitions V' into clusters according to their distance from
the heads. In each iteration the algorithm will choose the furthest point from the current
set of heads as the new head.

FPF Algorithm:
e Initialization:

1. Pick an arbitrary point, mark it as head; - the head of cluster 1.

2. Assign all points to cluster 1.

e Iteration i (i =2,..., k)
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1. Pick the furthest point from the current set of heads.
2. Designate it head,;.

3. Move to cluster i every point closer to head; than to its current head.

See Figure 5.1 a-c for illustration.

Complexity: At the beginning of each iteration we have the distance of every point from its
head. We search for the maximum distance in O(n) to find the new head. Then we compare
for each point’s the distance from its current head to the distance from the new head and
update the point head if necessary. Therefore there is O(n) work in each iteration. Since
there are k iterations the time complexity of FPF is O(kn).

Theorem 5.1 FPF guarantees a 2-approximation if the weight function satisfies the triangle
mequality.

Proof: Let h'(x) by the head of the cluster containing z in iteration i. Let z* denotes the
furthest point from its head when the algorithm terminates, and let A = w(z*, h¥(z*)).

Observe that after each iteration the distance between any point and its head can only
become smaller: w(z, h'(z)) > w(x, hit(x)). In particular it is true for x*. Therefore for
every i, w(z*, h(xz*)) > /. Also observe that since z* was never chosen as head, the distance
of all heads form each other is at least A. From the two observations we get that when the
algorithm ends there are at least k£ + 1 points that are more than A apart (the k final heads
and z*). Therefore in any way we will partition V into k sets we will have at least one cluster
that contains two points that are more than A apart. This implies that OPT(G) > A.

On the other hand, the maximum distance between a point and its head after the al-
gorithm terminates is AA. Therefore according to the triangle inequality the distance be-
tween any two points in any cluster is at most 2A. Therefore FPF(G) < 2/, hence the
2-approximation ratio (see Figure 5.1 d-f). m

Gonzalez actually shows that this approximation ratio is tight:

Theorem 5.2 (Gonzalez, 1985 [6]) 2 — ¢ approximation is NP-hard for all € > 0 when the
weights are distances between points in a three dimensional space.

5.1.3 K-Boost

K-Boost is a clustering algorithm that uses the FPF idea combined with stability based
method for determining a plausible number of clusters [4]. K-Boost runs FPF with several
values of k and estimates the predictive strength of each partition.
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Figure 5.1: Illustration of the FPF algorithm with k = 3, and its proof.

(a-c) Three iterations in the FPF algorithm. (d) z* is the furthest point from its head when
the algorithm terminates. Its distance from its head is A. (e) head;, headsy, heads and z*
are more than A apart from each other. Therefore OPT(G) > A. (f) For any two points
y, z that have the same head, head,, the distance between y and z to head, is at most A.
Therefore the distance between y and z is smaller than 2A. Hence FPF(G) < 2A.
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Weight Function
The Pearson Coefficient is a very popular measure of similarity in the context of gene ex-
pression microarray data clustering. Pearson Coefficient, P(p;, p;), given by

n; Pit — Ki)\Dje — Ky
P(pi,pj): Zt 1( t N)( j,t NJ)

VO iy — 13)?) O (Pie — 145)?)

where p; and p; are the means of p; and p;, respectively. However, since Pearson correlation
is not a distance function, it can not be used within algorithms that assume the triangle
inequality like the FPF algorithm. To overcome this problem, K-Boost uses d(p;,p;) =

1 — P(pi,pj) as distance measure. We will show that d(p;, p;) is proportional to the Eu-
clidean distance between p; and p;. Let’s define ¢; = (p; — p;)/0:. Notice that ||¢;|| = 1 and

P(pi,pj) = ¢; * q;. Hence:

I

g — ¢l =@ * ¢+ q; *q; — 2¢; * ¢; = 2(1 — P(ps, pj))

L

Therefore after normalizing d(p;, p;) is 7

times the Euclidean distance between p; and p;.
Speeding-up The FPF Algorithm

K-Boost calls the FPF algorithm several times. To improve running time unnecessary com-
parisons should be avoided. When head; is added to the group of heads, the FPF algorithm
checks for every point if it is closer to head; than to its current head. To avoid unnecessary
comparisons all the points associated with a specific head are ordered according to their
distance from it. When checking points in cluster ;7 we will scan them in decreasing order
from head;. We will stop checking when we reach a point p that satisfies d(p, head;) <
td(head;, head;). The triangle inequality guarantees that d(p, head;) < d(p, head;). This
improvement does not change the worst case time complexity but can save time in practice.

Using Prediction Strength To Determine £

To obtain estimation of k a stability-based method suggested by Tibshirani at el. [11] is
used. The method uses a random subset S of V. For each k the subsets S and V — S are
clustered separately and the resulting partitions are compared. Assuming that when the
correct value of k is used the two partitions will be similar.

Prediction Strength Procedure:
e Initialization:
1. Sample S C V, define T'=V — 5.

e Iterationi (i =1,...,n)
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1. Partition S into i sets B = (By, ..., B;).
2. Partition 7T into i sets C = (C4, ..., C;).

3. Use the heads of the clusters (C4,...,C;) to partition 7" again into i sets C' =
(cy,....,CY).

4. Compute for each cluster in C' the fraction of its genes that remain mates in
partition C’. PS(7) is the minimum fraction among all clusters. More formally:
PS(Z) = Hlil’llgjgi PS] (Z) where

PSI(i) = L\{(x,y)\(az:‘,y) € Cj and 3z s.t. (z,y) € CL}|

(2
o k= argmax;-1{PS(i)}

See Figure 5.2 for an illustration of the prediction strength procedure.
K-Boost uses the prediction strength algorithm with two differences:

e Instead of choosing k as the global maximum of PS(7), k is the first local maximum
of PS(i) different from k£ = 1. This heuristic is supported by experimental results (see
Figure 5.3).

e To improve the robustness of the solution two fold validation is used to estimate k.
K-Boost Algorithm First Phase (finding k):
e Initialization:

1. Partition V' to three disjoint groups Sr, Sg and T" = V — (S U Sg) so that
1Sl =[Skl =n=Vn.

e Iterationi (i =1,...,n)
1. Partition Sy, into ¢ sets B = (By, ..., B;) using FPF.
2. Partition 7" into ¢ sets C' = (C4, ..., C;) using FPF.
3. Use the heads of C' to partition 7" again into i sets C' = (C1, ..., C})
4

. Compute for each cluster in C' the fraction of its genes that remain mates in
partition C’. PS(7) is the minimum fraction among all clusters.

5. Stop when PS(i —2) < PS(i — 1) > PS(i) and assign k;, =1 — 1.
e Perform the iterations on Sk and calculate kg.

o k= [average(kr,kr)].
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Figure 5.2: Hlustration of the prediction strength procedure on the FPF algorithm.

(a) Randomly partition V' to S and T. (b) Partition T to three groups using FPF. (c)
Partition S to three groups using FPF. (d) Use the heads obtained in the partition of S to
divide T" again. For each of T”’s original clusters the fraction of genes that remain mates in
the second partition of 7" is computed. The measure of predictive strength is the minimum
fraction among all clusters. Notice that both partitions of 7" are the same except for 2 genes
(marked with a x). Therefore the predictive strength is determined according to the cluster

1 and equals to PS(3) = (62)1;1
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Figure 5.3: Plotting z-score as a function of k for the Cho et al. data set [1]. One can notice
a decreasing trend after the first peak. Notice that here z-score and not P.S is used as the
evaluation criterion. Source: [4].

K-Boost Algorithm Second Phase (clustering):
e Start with the partition C' = (C}, ..., Ck) and corresponding heads heady, ..., heady.

e For each C}, rank its genes in increasing distance from head;. Order all genes by
interleaving the ranks.

e Add the rest of the genes to the partition according to that order, assigning each gene
to the cluster with the closest centroid. When adding a gene to a cluster update its
centroid.

Complexity: It can be shown that the time complexity of K-Boost is O(knm), where n is
the number of genes and m is the number of conditions.

Algorithm Performance Comparisons:

K-Boost results were compared with CLICK and FPF-SB, an earlier version of the K-boost
[3]. All three algorithms are able to determine a plausible number of clusters. Furthermore,
since FPF-SB, CLICK, and K-Boost usually suggest a different number of clusters, the ro-
bustness of their proposed number of clusters was evaluated by feeding them to three other
clustering algorithms: FPF, HAC [2] and k-means. (They were chosen as popular clustering



8 Analysis of DNA Chips and Gene Networks (©)Tel Aviv Univ.

algorithms for microarray gene expression data that require k as an input parameter.)

The results were evaluated by both internal and external measures of quality. Homo-
geneity and separation were used as internal measures, while zs... [5], which measures the
homogeneity of the gene annotations within each cluster, served as an external measure.
Higher values of homogeneity and z,.,.. and lower values of separation indicate higher qual-
ity of the clustering.

The algorithms were tested on three well-studied yeast data sets. The first is the yeast
cell cycle data set described in Cho et al. [1]. The second data set, described in Spellman
et al. [10], is a catalog of yeast expression profiles under various cell cycle conditions. The
third data set, described in Eisen et al. [2] consists of an aggregation of expression profiles
from experiments on the budding yeast Saccharomyces cerevisiae (including time courses of
the mitotic cell division cycle, sporulation, and the diauxic shift).

The results of comparing K-Boost with CLICK and FPF-SB are presented in Table 5.1.
K-Boost achieves a significantly better z,... on all the three yeast data sets using less com-
putation time. The results of using the k computed by FPF-SB, CLICK and K-Boost as
an input for FPF, HAC, and k-means is presented in Tables 5.2, 5.4 and 5.3. FPF, HAC,
and k-means always attain significantly better performance in terms of z,.,.. and separation
when fed with K-Boosts estimate of k; on the other hand, Clicks estimates leads to better
homogeneity figures.

Clustering is still an open and active research area, and there is no universally recom-
mended method of choice. Since there is no algorithm that gets better result in all quality
measures, one might prefer methods that are stronger in separation or those that are stronger
in homogeneity and zs..... Notice that all the quality measures used to estimate the cluster-
ing results are global measures. However, focused biological analysis is usually done over a
small fraction of the resulting clusters. A quality measure that evaluates clustering method
according to the few top scoring clusters might estimate the algorithms abilities better.

5.2 Principal Components Analysis

5.2.1 Data Reduction

High dimensional data could be difficult to analyze. Data reduction is a procedure that
reduces a matrix X, to a new matrix Y}, that is a more compact representation of X.
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Cho et al. Eisen et al. Spellman et al.
Method k| Sg | T | zscore | k | Sg| T | zscore | k | Sg | T | zscore
CLICK 30 | 136 | 540 | 62.47 8 0 165 | 42.26 | 27 | 17 | 3000 | 73.93
FBF-SB | 14 0 16 61.93 12 0 19 57.90 16 0 59 58.20
K-Boost | 10 0 21 | 79.00 | 8 0 23 | 69.03 | 19 | 0 134 | 78.60

Table 5.1: Comparison of three clustering algorithms on three yeast data sets. For each
algorithm and data set the table presents: k - the number of clusters, S¢g - the number of
singleton data points (unclustered elements) , 7" - the running time in seconds, and the zsre
computed by ClusterJudge. The results shown for zy.... are the average of three independent
runs. Source: [4].

FBF-SB estimate CLICK estimate K-Boost estimate
Method k [ T [ Zscore [ Hom [ Sep k [ T [ Zscore [ Hom [ Sep k [ T [ Zscore [ Hom [ Sep
FPF 14 5 56.5 0.572 | 0.011 | 30 10 52.43 | 0.645 | 0.016 | 10 4 60.63 | 0.548 | -0.025
HAC 14 103 53.1 0.517 | -0.143 | 30 103 56.57 0.617 | -0.059 10 102 61.00 | 0.511 | -0.151
k-means | 14 18 74.6 0.655 | -0.035 | 30 | 38 67.80 | 0.703 | -0.001 | 10 10 95.33 | 0.631 | -0.056

Table 5.2: Experimental results on Cho et al. data set. Comparing algorithms that take k
as input with the values computed by FPF-SB, CLICK, and K-Boost. Source: [4].

FBF-SB estimate CLICK and K-Boost estimate
Method k [ T [ Zscore [ Hom [ Sep k [ T [ Zscore [ Hom [ Sep
FPF 12 [ 53.4 0.483 | 0.079 | 8 4 56.87 | 0.524 | -0.076
HAC 12 7 34.3 0.440 | 0.042 8 7 37.10 0.439 -0.292
k-means 12 14 62.3 0.528 | 0.102 8 10 | 64.86 | 0.572 | -0.021

Table 5.3: Experimental results on Eisen et al. data set.

as input with the values computed by FPF-SB, CLICK,

Comparing algorithms that take k

and K-Boost. Source: [4].

FBF-SB estimate CLICK estimate K-Boost estimate
Method k [ T [ Zscore [ Hom [ Sep k [ T [ Zscore [ Hom [ Sep k [ T [ Zscore [ Hom [ Sep
FPF 16 19 62.2 0.456 | 0.188 | 27 32 46.16 0.489 0.066 19 22 62.47 | 0.481 0.054
HAC 16 | 92 55.8 0.420 | 0.176 | 27 | 92 56.63 | 0.463 | -0.018 | 19 | 92 | 57.00 | 0.448 | -0.017
k-means | 16 | 83 | 80.10 | 0.507 | 0.149 | 27 | 130 | 79.66 | 0.559 | 0.047 | 19 | 75 | 81.07 | 0.538 | 0.035

Table 5.4: Experimental results on Spellman et al. data set. Comparing algorithms that
take k as input with the values computed by FPF-SB, CLICK, and K-Boost. Source: [4].
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Data reduction should balance two objectives:

e Reduce the number of dimensions so the resulting data will be easier to understand
and general trends will be easier to distinguish.

e Minimize the loss of important data.

5.2.2 PCA

PCA (Principal Components Analysis) is a popular data reduction method invented by Pesr-
son [9] and Hotelling [7]. To understand the objective of the PCA one should be familiar
with the concept of variance and covariance.

Given n samples each consisting of p variables, the variance of each variable is estimated
as the squared deviation of the sample values from the variable mean. When the variable
mean is unknown it is estimated by the variable average. Therefore the the variance of
variable X is estimated as:

1 —
Vi = D (Xim — X0)?

n—1
m=1

where X; is the average of variable X;. Since the mean of X; is unknown and estimated
by its average the sum is divided by n — 1 and not by n, to get unbiased estimator of the
variance. The covariance of two variables ¢ and j is the degree which those variables are
linearly correlated. Formally the covariance of variable 7 and j is estimated as:

1 — —
Cij=—— D Kim = X)(Xjm — X))
m=1

When the covariance of two variable is zero we say that these variables are uncorrelated.
(Again, n is replaced by n — 1 to avoid biased estimation).

PCA is a mathematical procedure that given n samples with p correlated variables uses
a linear transformation to generate uncorrelated variables called principal components. The
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principal components are ordered by their variability. So by taking the first k principal
components we will obtain the maximal variation possible by k components.

PCA geometrical meaning:
Given n points in a p-dimensional space PCA will perform two affine transformations:

1. Translation of the coordinate system so the average of each dimension is 0.

2. Rigid rotation of the axes so their new positions (principal axes) will have the following
properties:

e Principal axis 1 has the highest variance, axis 2 has the next highest variance, ....
and axis p has the lowest variance

e Covariance among each pair of the principal axes is zero (The principal axes are
uncorrelated).

PCA uses Euclidean distance calculated from the p variables as the measure of dissimilarity
among the n objects. The first principal component is the direction of the maximum variance
of the n objects in the p-dimensional space. The second principal component is in the
direction of the next highest variance subject to the constraint that it has zero covariance
with the first principal component. The p principal component has the lowest variance and
it has zero covariance with all the previous p—1 principal components. When taking the first
k principal component they define k-dimensional hyperplane that represents the maximal
possible variance that could be achieved in k£ dimensions. A 2-dimensional illustration of the
PCA procedure is presented in Figure 5.4.

5.2.3 PCA Algorithm

The principal components are determined by eigenvectors of the covariance matrix. The
covariance matrix is a positive semi-definite matrix whose (7, j) entry is:

Eij_{ Vi if (i =)

Ci otherwise

Notice that X, = ﬁ)?)?T where

X; — E(Xy)

X, — E(Xy)
X =

Xp - E<Xp)

pXxXn
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Figure 5.4: Hlustration of the PCA procedure on 2-dimensional data.

(a) Vriables X; and X, have the following properties: X; = 8.35, Xy = 4.91, V| = 6.67,
Vo = 6.24 and C} 5 = 3.42. (b) Each variable is adjusted to a mean of zero (by subtracting
the mean from each value). (c) Rigid rotation of the axes creates the principal components.
The highest variance is along the direction of the first principal component (9.88). The
variance along the second principal component is lower (3.03) and the covariance of the two
principal components is zero. The first principal component is also the direction of the least-
squares regression line (the squared distance of the points from the first principal component
is minimal). Source: http://www.plantbiology.siu.edu/PLB444 /PCA.ppt.
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Since X is a symmetric matrix it could diagonalized as follows:
¥ =UDU"

Where D = Diagonal(Ayq, ..., Ap) is a diagonal matrix of the eigenvalues, and U is orthonor-
mal matrix (U’s columns are an orthonormal basis). Furthermore U’s columns are the
eigenvectors of . We will order the columns of U according to their respective eigenvalues
and denote them as Uy, ...Up, so the eigenvalue of U is the largest.

The first principal component is U;, the second principal component is Us, and so on.
U ... U, satisty the following requirements:

e All of these vectors are normalized (Ul U; = 1 since the columns of U are orthonormal

basis).

e X in the direction of U; is orthogonal to X in the direction of U, for each 7 # j . Since
the columns of U are orthonormal basis U U; = 0. Therfore:

(UIX)(UTX)T = UTXXTU; = UTSU; = UTAU; = 0

e The variance of X in the direction of U, is v/\; since:
| ULX |?= (UF X)(UFX)T = UFXXTU, = UF'SU, = UTAU; = A
Therefore variance of X along the direction of U ... U, is decreasing.

To translate the original data to the k-dimension space spanned by the first k& principal
components use the following multiplication:

X1
Xo
Uy Y,
. : — .
UE kxp Yk kxn
Xp pXn

Preprocessing Data:

Using covariances among variables only makes sense if they are measured in the same units.
Even then, variables with high variances will dominate the principal components. These
problems are generally avoided by standardizing each variable to unit variance and zero
mean before performing the PCA procedure.

/ JR—
Xim -
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5.2.4 Examples

PCA is a useful method to visually validate clustering results (as illustrated in Figure 5.5).
PCA could also help to visualize the difference between samples (as illustrated in Figure

5.6).
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Figure 5.5: PCA results support clustering results done by CLICK. The different clusters
(shown by different colors of points) are located on different areas with very little overlaps.
Source: http://acgt.cs.tau.ac.il/expander /screenshots.html.

Figure 5.6: Gene expression of 21 samples using 7,913 genes was reduced to 3-dimensions
using PCA. Red points: good prognosis (upper right), Blue points: bad prognosis (lower
left). It’s highly noticeable that the good prognosis samples were separated from the bad
prognosis samples. This result could in principle be used in predicting the outcome of other
samples. Source: [8].
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