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11.1 Metabolic networks

11.1.1 Introduction [7]

The availability of the complete genomes allows many new types of experiments and analysis.
The new approaches and questions that the genomes make possible are usually referred to
as functional genomics. The task is to define the function of a gene (or its protein) in the
life processes of the organism, where function refers to the role it plays in a larger context.

But what are these life processes? The most obvious example is the metabolism of an
organism, the basic chemical system that generates essential components such as amino
acids, sugars and lipids, and the energy required to synthesize them and to use them in
creating proteins and cellular structures. This system of connected chemical reactions is a
metabolic network, and this is the one of the oldest biological network of systems that were
studied. Today it has target on a new direction in light of the genome research technology
rise.

11.1.2 Metabolism

Metabolism is the biochemical modification of chemical compounds in living organisms and
cells. The cell metabolism includes all chemical processes in a cell that produce energy and
basic materials needed for important life processes. This includes the biosynthesis of complex
organic molecules (anabolism) and their breakdown with the release of energy (catabolism).
A substance which participates in a biochemical reaction is called a metabolite (cited from

[1]).

11.1.3 Metabolic Networks

Metabolic networks consist of vertices that represent metabolites and edges that represent
biochemical reactions. A biochemical reaction is catalyzed by an enzyme, which is a protein
and is translated from a corresponding gene. A series of consequent reactions is called a
pathway. In addition, a metabolic network that is constructed out of reactions is not neces-

1Based on scribes by Uri Avni and Liza Potikha, June 02, 2005 and Nir Dil and Liron Levkovitz, January
5, 2006.
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sarily a simple graph, since each enzyme can catalyze more then one reaction. Furthermore,
a single reaction can be catalyzed by a complex of enzymes. This can be represented by a
bipartite graph. The metabolite that starts the reaction(s) is called a substrate, while the

Networks: .—..—..—-.
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resulting one named product. All other metabolites are called intermediates.
Frequently the metabolic network consists of reactions that are not always active. It is
usually mentioned in the graph that displays such a network.
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In addition, the intermediates in a metabolite network are not always known. In such a
case we are interested in the flux of the (sub) network, which is defined as the production
or consumption of mass per unit area per unit time. The flux can be measured relative to a
system boundary.
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The research of metabolic networks/pathways started about a century ago, using mostly
chemical reaction analysis. Since then, much of new data became available, revealing struc-
tures of some networks. One of the examples is denoted in Figure 11.1.
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Figure 11.1: This diagram depicts an example of metabolic networks. Each color of the
pathway represents a different network. Note that the different networks can cooperate with
each other.

11.1.4 Bioinformatics of Metabolic Networks

As was already mentioned, much of the knowledge was gathered in previous years of research
on metabolic networks. Currently, the data continues to be collected and stored in metabolic
network databases.

There are different ideas of how this data can be helpful. The grand challenge is to
use the data in order to reconstruct genome-scale metabolic networks using computational
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methods. A simpler but non trivial task is to analyze existing networks, which means
studying their behavior under different environment/gene perturbations. A slightly different
task is simulating of a cell lifecycle. It goes beyond the metabolic networks reconstruction,
nevertheless metabolic networks play quite a major role in a lifecycle of a cell. In Figure
11.2 there is an example of how complicated the cell model can be.

Figure 11.2: A map introducing chemical reactions processing in a cell. Such maps were used
widely in the biochemical labs prior to computer databases usage. Nowadays the number
of electronics databases of metabolic networks can be found, such as the ExPASy, which
contain maps like these.

11.1.5 Genome-scale metabolic network reconstruction

Referring to the grand challenge, the idea is to collect all of the knowledge and information
from previous studies (books, papers), genome, pathway databases etc. and build up a
metabolic model according to all of these. If the model we build is good enough, it can be
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used to predict behavior of that metabolic mechanism subjected to different environmental
or genome changes. Otherwise, we must return to the initial point and try to improve the
model.

Kinetic Models

Building this kind of model involves a number of steps.

1. System definition

First we choose a number of metabolites and their co-reactions that take a role in the
model. The number is commonly limited to tens or at most hundreds. Regulations are
generally neglected in primitive models, i.e. only chemical reactions are considered.
At this step the system boundary is defined so that flux measurement will be possible.
When the latter is chosen, e.g. cell membrane, the environmental considerations need
to be taken in to account since the system is not self-sufficient and there may be
either diffusion across membranes or active transport systems. The resulting model
can resemble the one in Figure 11.4.

System
" boundary

Figure 11.4: A model system comprising three metabolites (A, B and C) with three reactions
(internal fluxes, v;,7 = 1,..,4 including one reversible reaction) and three exchange fluxes
(b;,j =1,2,3).

2. Mass balance

The edges (reactions) in the graph are signed by numbers, that introduce the amounts
of metabolites (molecules) needed in order to cause a reaction. These numbers are
provided by Stoichiometry, the study of the quantitative relationships between amounts
of products and reactants in a chemical reaction.

Thus, we can look at the resulting weighted graph and compute the delta change rate
at each metabolite per unit of time. That is, an example of the delta change rates are
given by (refer to Figure 11.4) :

dA
E:U1+U4—b2 %:b1—|—l}3—’02—1}1
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3. Evaluation
The equations can be presented conveniently as a multiplication of matrix of coefficients
(Stoichiometry matrix) with the vector of reactions, e.g. Figure 11.5. In general, for
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Figure 11.5: Representation of the network kinetics (Figure 11.4) as a mutiplication of
stoichiometric matrix by a vector of variables.

each metabolite X : d[j?} = >_; Sijvjs, where Sj; is the stoichiometric coefficient of the
reactant X; in the reaction j with the flux v;. It is negative if X; is a substrate, and
positive if it is a product.

Finally, these differential equations can be arranged and solved.

The model introduced here is called a kinetic model. It describes the dynamics of
metabolic behavior over time. It incorporates metabolite concentrations, enzyme con-
centrations and enzyme activity rates (which depend on these concentrations), and is
solved using a set of differential equations.

Currently such models are not feasible for large scale networks, due to the high com-
plexity level and the requirement of specific enzyme activity rates data, which is difficult
to measure. Nevertheless the kinetic models were successfully used to model the activity of
specific pathways such as glycolysis and histidine synthesis in yeast (Figure 11.6).

Flux Balance Analysis

The problems mentioned above brought forward another model type that specifies some
additional assumptions generally agreed upon by biologists, in a way that simplifies the
reconstruction of the metabolic network. The assumption in this case is the Steady State
assumption, i.e. there is a time invariant flux through each reaction: S-v = 0. The biological
argument for it comes from the fact that time constants of growth or other processes are
much larger than those associated with individual reaction kinetics, therefore steady state
can be presumed. This assumption is a type of balance constraint. These are associated with
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Figure 11.6: Glycolytic pathway in yeast (Pritchard & Kell, 2002).

conserved quantities, such as energy, mass, redox potential and momentum, as well as with
phenomena such as solvent capacity, electroneutrality and osmotic pressure.

Hence the null space K of S can be defined by the range of flux distributions under which
the system can operate in steady state. The method that uses the steady state assumption in
order to solve the problem is called Flux Balance Analysis. Figure 11.7 presents an example
of the subsystem of a metabolic network and Figure 11.8 represents its equations and the
stoichiometric matrix.

A non-unique set of basis vectors spanning the null space may be found. Each vector
represents a pathway in the metabolic network by specifying the set of fluxes in the system.
However, not every such pathway is biologically feasible. An example is given in Figure 11.9.

Additional constraints are needed for filtering out feasible solutions. Ones that provide
it are called bounds constraints. They limit numerical ranges of individual variables and
parameters such as concentrations, fluxes or kinetic constraints. Allowed ranges of fluxes
is an example of bound constraints. Such ranges can be determined in several ways, ei-
ther experimentally (commonly by isotope labeling), thermodynamically (irreversibility of a
reaction) or by capacity constraints (such as maximum uptake rate of a transporter). Math-
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Figure 11.7: A part of metabolic network.
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Figure 11.8: The equations and the stoichiometric matrix of the network from Figure 11.7.
The internal flux coefficients are the v;s and the exchange flux coefficients are the b;s.
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Figure 11.9: Of a possible set of basis vectors each one identifies a flow in the network,
however not every one identifies a feasible biological solution.
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ematically speaking we define a set of the form: v,,;, < v; < V.. For irreversible reactions,
Umin = 0. Specific upper limits v,,,, that are based on enzyme capacity measurements are
generally imposed on reactions. Taken together, the balances and bounds described as lin-
ear equations define a biochemically feasible flux distribution space which is a polytope in
a high-dimensional space. All allowable network states are contained in this space (Figure
11.10).

Thus, any vector can be represented as a non-negative combination of the generating vec-

Figure 11.10: Solution space representation. (a) The mass balance constraint S-v = 0 limits
the solution space to a subspace of R". (b) Thermodynamic constraints v; > 0 further limit
the solution space to a convex cone. (c¢) Capacity constrains v; < Vg, again further limit
the solution space to a bounded convex cone.

tors of the cone, fi: F ={v e R"v=> arfr, ar > 0}.

Sometimes there are additional constraints that are applied, e.g. we know dependencies
among components of some of the flux vectors in the system. Occasionally we also want to
allow possible reversible reactions: v < 0.

When all the constraints are added to the system an appropriate solution space may
be found. Our goal is to find the suitable solution(s) from the given solution space. One
of the approaches is to define an objective function and optimize it (find either minimum
or maximum) in the given solution space. For instance, one possible goal is to maximize
the biomass production. Considering this, we have an optimization problem with linear
constraints. Hopefully, the target function is a linear, which results in linear problem with
linear constraints and this can be solved through Linear Programming techniques. Observe
that an optimal solution can be either unique or there may be multiple solutions (see Figure
11.11).

The choice of an objective function is usually obtained by our understanding (or intuition)
of this specific biological mechanism, but we should be careful not to choose too complex
mathematical function which will make the task of finding optimal solutions too difficult.

As soon as convex solution space is found we can then analyze the consequences of
removing genes (i.e. remove reactions). The different approaches of usefulness of this solution
space are mentioned in the Figure 11.12. They all contribute to a better understanding and
more precise modeling of metabolic networks.
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11.2 Interactive Inference and Experimental Design

This section is based on a paper by Ideker, Thorsson and Karp [5]. Our goal is to infer
the underlying genetic network from a series of steady-state gene expression profiles, using
as few perturbation profiles as possible (where one, two or three genes can be perturbed
in one experiment). We assume the Boolean genetic network model for the gene network.
Moreover, we shall restrict ourselves only to acyclic networks. In the case of acyclic networks
there is no need for assumptions about the time delays of the components. Moreover, even
if most networks do have feedback loops, there are generally few of them, and the main
pathway is often acyclic. The analysis of cyclic networks is complicated by the possibility
of oscillatory behavior. For cyclic networks, one may adopt either a synchronous model in
which each component has a fixed, known delay, or an asynchronous model in which the
delays are unknown and even nondeterministic.

The proposed strategy is based on repeated and interactive application of two analytical
methods: the predictor and the chooser. According to this strategy, the underlying network
of interest is exposed to an initial series of genetic and/or biological perturbations and a
steady-state gene expression profile is generated for each.

Next, a method called the predictor is used to infer one or more hypothetical Boolean
networks consistent with these profiles. When several networks are inferred, the predictor
returns only the most parsimonious, as measured by those networks having the fewest number
of interactions. Depending on the complexity of the genetic network and the number of initial
perturbations, numerous hypothetical networks may exist. Accordingly, a second method
called the chooser is used to propose an additional perturbation experiment to discriminate
among the set of hypothetical networks determined by the predictor.

The two methods may be used iteratively and interactively to refine the genetic network:
at each iteration, the perturbation selected by the chooser is experimentally performed to
generate a new gene expression profile, and the predictor is used to derive a refined set of
hypothetical gene networks using the cumulative expression data.

11.2.1 The Predictor

The predictor is a method for inferring Boolean networks using the expression data given
by the matrix E (Figure 11.13). Every line represents an experiment conditions. First line
introduces a steady-state, natural state of a system. The second line represent the experiment
where X was knock-out, in the third X; was knock-out,... , in the last experiment X3 had
over-expression.

We seek for a Boolean function f,, independently for each node a,,. To this end, we first
pick the input variables to f,,: we determine a minimum set s,, of nodes, whose levels must
be input to f,, in order for s, to explain the observed data E. Then, we construct a truth
table using these nodes as inputs.
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Figure 11.13: The initial expression matrix.

Specifically, the function for node a,, is determined according to the following procedure:

1. Build sets S;; of nodes with different values in rows ¢ and j. Consider all pairs of rows
(7,7) in E in which the expression level of a,, differs, excluding rows in which a,, was
itself forced to a high or low value. For each such pair, find the set S;; of all other nodes
whose expression levels also differ between the two rows (7, 7). Because the network
is self-contained, a change in at least one of these genes or stimuli must have caused
the corresponding difference in a,. Therefore, at least one node in this set must be
included as a variable in f,.

2. Find a minimum cover set Sy,;,, of {S;;} Identify the smallest set of nodes \S,,;,, required
to explain the observed differences over all pairs of rows (i, 7), i.e., Sy, is such that
at least one of its nodes is present in each set S;;. This task is a classic combinato-
rial problem called minimum set cover, which can be solved by a branch and bound
technique. More than one smallest set S,,;,, may be found, in which case a distinct
function f,, is inferred and reported for each such set.

3. Determine truth table of a,, from S,,;, and E. Once S,,;, has been determined for the
node a,,, a truth table is determined for f,, in terms of the levels of genes and /or stimuli
in Sy, by taking relevant levels directly from E. If all combinations of input levels are
not present in E, the corresponding output level for gene a,, cannot be determined and
is represented by the symbol ”*” in the truth table (see Figure 11.14).

If a node has more than one minimum cover set, several networks are inferred, each with a
distinct function corresponding to each set. If several such nodes exist, a separate network
hypothesis is returned for each combination of functions at each node. The minimum set
cover ensures that only the most parsimonious networks will be returned.

11.2.2 The Chooser

The chooser procedure takes as its input the L hypothetical networks generated by the
predictor. Its goal is to choose a new perturbation p, from a set of allowed perturbations P,
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Figure 11.14: The Predictor procedure example.

which best discriminates between the L hypothetical networks.
The following entropy-based algorithm is used for the chooser:

1. For each perturbation p € P compute the network state resulting from p for each of
the L networks. A given perturbation would result in a total of S distinct states over
the L networks (1 < S < L). Evaluate the following entropy score H,, where [, is the
number of networks giving the state s (1 < s < 5), as follows:

S ls lS
Hp = Z ZZOQQ(Z)

s=1
2. Choose the perturbation p with the maximum score H, as the next experiment.

The entropy measure H,, describes expected gain in information when performing the pertur-
bation p. The more distinct states the networks produce, the more information is obtained.
According to the predictor procedure, a network may have the ”*” symbol in its truth table,
meaning that any function value is equally probably for a given node and input. In this case
the chooser randomly assigns either 0 or 1 to to replace the ”*”. In addition, when L is
large, it may be infeasible to calculate the entropy for all the hypothetical networks. In this
case the entropy is calculate by Monte-Carlo procedure, over a random sample.

The best perturbation returned by the chooser is then performed on the network, and the
new measured gene expression values are added to E. A new, narrower set of parsimonious
networks is then inferred by the predictor, and so on. This design process proceeds iteratively,
choosing a new perturbation experiment in each iteration, until either a single parsimonious
network remains (L = 1), or no perturbation in P can discriminate between any of the L
networks (H, = 0).

11.2.3 Evaluation of the Technique

A series of experiments have been performed by the authors of [5] to evaluate the applicability
of the method. The evaluation criteria and results are presented below.
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Predictor Evaluation

The predictor procedure was evaluated using both random and non-random simulated net-
works. In random simulations acyclic genetic networks of size N and maximum in-degree
k were randomly generated. The expression matrix E consisted of the wild-type (without
any nodes forced to high or low) and all single perturbations. In addition, a number of
non-random networks, modeled after known biological networks were simulated. For each
such network, the most parsimonious models were created by the predictor.

The similarity between each inferred network and its target was evaluated with regard to
sensitivity, defined as the percentage of edges in the target network that were also present in
the inferred one, and specificity, defined as the percentage of edges in the inferred network
that were also present in the target network. The following figures show the results.

Each measurement is an average over 200 simulated target networks. As one can see,
the specificity was always significantly higher than sensitivity, and both steadily decreased
as N and k were increased (figures 11.15 and 11.16). The number of nodes whose functions
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Figure 11.15: Sensitivity and specificity in percents vs. number of nodes.
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Figure 11.16: Sensitivity and specificity vs. maximum in-degree.

had only a single minimal solution was approximately 90% for & = 2, independent of N.
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Thus, although the number of inferred networks grew exponentially with N, this number
was subjected to ambiguities at just 10% of the nodes (figures 11.17 and 11.18).
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Figure 11.17: The average number of nodes whose functions have only a single minimal
solution.
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Figure 11.18: The number of inferred networks vs. number of nodes.

Non-Random Simulation

A number of non-random target network topologies modeled after known biological net-
works were also simulated and inferred. The well-studied networks responsible for bacterial
chemotaxis, galactose induction in yeast, and yeast meiosis were encoded using our network
representation, and expression levels from the wild-type state and all single perturbations
were simulated as before. In all three cases several parsimonious networks were inferred,
some of which resembled or corresponded exactly to the original simulated network.
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Chooser Evaluation

In order to evaluate the performance of the chooser the following simulation was performed:
A network with 20 nodes, 24 edges and maximum in-degree 4 was generated. The expression
matrix E consisted of the wild-type and all single perturbations. Next, 8 parsimonious
networks were inferred, all with 21 edges, which were consistent with E. The chooser was
used to select a double perturbation which had maximal entropy score over the 8 networks,
and the process was repeated iteratively until only a single network was inferred.

Figure 11.21 tracks changes in the number of inferred networks, the number of edges in
each inferred network, average sensitivity, and average specificity as new double perturba-
tions were added over each iteration of the design process. This characteristic pattern of
jumps and decays in the number of network solutions, correlated with a monotonic increase
in the number of inferred edges, was observed consistently over many other simulations using
a wide range of different target networks.
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Figure 11.19: CPU time (sec) vs. number of nodes (500MHz PIII).
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Figure 11.20: CPU time (sec) vs. maximum in-degree (500MHz PIII).
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Figure 11.21: Progress through experimental design.

Effect of Network size

A theoretical lower bound on the number of gene expression profiles which must be observed
to uniquely specify a genetic network has been reported to be klog,(N/k) for N >> k [3].
In order to characterize the performance of this methods in relation to this lower bound, the
50 target networks T for each of several values of N with £ = 2 was generated. The wild-type
state and all single perturbations were simulated on each T, and as before the chooser was
used iteratively in conjunction with the predictor to select a series of double perturbation
experiments to refine the network hypotheses until the iteration terminated. The average
number of double perturbation experiments required for each N is shown in Figure 11.22.
These preliminary results show evidence of logarithmic behavior.

Future work

There are number of extensions that may be done for the described Chooser/Predictor
method: First, in nearly all cases of practical interest some knowledge of network genes and
interactions is available. In this regard, pre-existing information about the network may be
incorporated during the inference process.

Second, the observed levels of gene products and other macromolecules may be such that a
two-level description misses important features of the network. In these cases, a multi-level
description (greater than two) may be adequate to describe the data. It may also be possible
to extend the method for use with continuous (rather than discrete Boolean or multi-level)
gene expression data.

Third, as was already mentioned, only genetic networks which do not contain cycles were
considered. This restriction may be sufficient to describe certain biochemical networks, but
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Figure 11.22: Average number of perturbation experiments vs. network size for in-degree =
2, with bars indicating standard error.

biological examples of cyclic gene networks are also known. Therefore, another future direc-
tion is to allow cyclic solutions in the inference procedure.

Fourth, we currently do not allow for noise or other imperfections in the gene expression data
sets used for network inference. Gene expression levels measured with DNA microarrays or
other technologies are subject to an appreciable amount of experimental variability, and the
impact of this variability on our method should be evaluated. The inference method could
be modified to account for noisy data.

Finally, proposed methods may be used in conjunction with existing software for grouping
genes. For instance, a clustering algorithm might be used to reduce the apparent size of the
network by grouping genes according to similar expression level over the series of pertur-
bations performed, and then one representative from each cluster could be supplied to the
network inference method.

11.3 Modeling and Expansion of Regulatory Pathways

11.3.1 Introduction

There is a common design template of gene expression experiments whose goal is a gene
network reconstruction.
We start from the designing of experiment which includes a set of perturbations or differ-
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ent environmental conditions, and perform it by growing cells under these conditions. The
results of the experiment are gene profile expressions, which are compared to the expected
expressions, provided by an existing presumed model of this network. The estimated ‘good-
ness’ of the model is the computed. According to the quality achieved, the directions to
improve model can be ascertained and the input for a new experimental design is realized.
These stages are depicted on Figure 11.23.

Design new per ! periment to
information gain about model

Set of perturbations / Cell population executing Observed
econditions pathway of interest gene expression profiles

oA 3 e

Determine
"goodness of fit"

Mathematical model of Predicted

Meodel parameters " .
pathway gene expression profiles

abec

: _—L. . pert.1 4’
mn.m.’

o Box

Refine model parameters to
improve fit Trey Ideker

Figure 11.23: Design template for gene network modeling experiments.

As can be observed, standard approaches for gene expression analysis are gene cluster-

ing, biclustring or gene network reconstruction. Much of the data is gathered using these
techniques, which can be helpful in the analysis of the presumed models. The prevailing
paradigm for data analysis is shown in the Figure 11.24.
An ultimate goal is to take into consideration all the information that is known about the
biology of the system in order to construct an improved model (see Figure 11.25). How-
ever, biological data is generally qualitative and not quantitative, i.e. the great part of it
is located in papers and not in databases, therefore quantifying that data becomes a rather
complicated issue.

Despite the difficulties mentioned, there is good reason to choose this approach. For
example suppose we know about the existence of two TF-s, which are bound to a promoter
of the specific gene (Figure 11.26). The result is mRNA which is translated into a protein of
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Figure 11.24: The prevailing data analysis paradigm.
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Figure 11.25: An alternative paradigm for gene expression data analysis.
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the catalyzing enzyme type, which in its turn participates in a metabolic pathway. Perhaps
the loop is closed by some feedback to the TF. Note that only part of whole information
about the system is available.

On the other hand we have experimental data of gene expressions of the system given above,
and the goal is to improve the model of this system. The improvement comes about by the
integration of these two types of data.

1 Metabolic
= 3 <\ ey
Q catalyzing |
iR enzyme . : Data
@ K@' ‘ Experimental procedure
—: y +
Promoter aty measurements
Feedback '

Integrate existing knowledge with the
high-throughput data

Figure 11.26: The scheme of the integration of experimental data with the existing knowl-
edge.

Once the system we are interested in is defined and the suitable information (e.g. from
papers) is found, the translation of this knowledge to the mathematical model is needed.
Suppose this task is completed. Then what do we have? What kind of questions would we
like to find answers?

In simplistic models we assume that the expression of mRNA exactly identifies the ex-
pression of the specific protein. With a more complex approach we can answer the question
of whether this is true or not. This reduced to a prediction of the protein variable in the
given model when its value is unknown but the value of the mRNA is known. Following the
discovery of the expression level of the proteins, we would like to predict the activity level
of the TF. This and the former example of prediction variables are called single variable
inference because the goal is to predict the value of a single variable for a given model.

The model improvement is a difficult challenge, though. It is performed in one of two
ways: either the function of a variable in the model is changed, or the model is expanded.
The first case implies functional or topological changes in the model, but its framework
remains the same. In the second case we change the framework, i.e. new elements are added
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to the model. The model improvement scheme is depicted below in Figure 11.27.
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Figure 11.27: Two ways of model improvement. Either model refinement (green arrow) -
only the logic of the model is changed (a new connection is added), or expansion (pink arrow)
- two new elements are added.

11.3.2 Methodology

Overview

The first step is to build a model according to the available knowledge and it requires a
thorough reading of the appropriate literature. Then the relevant data needs to be obtained.
These are combined in the final modeling (Figure 11.28).

One of the challenges that exists when creating the initial model is to translate the bi-
ological knowledge taken out of papers into a mathematical model, as mentioned above.
Throughout this task one is expected to convert biological event into logical functions. How-
ever, the logical functions that are available from the literature are usually a significant
simplification of reality. Moreover, the relationship between elements is not always stated
clearly. These problems complicate the whole procedure.

The Model

Initially a network of variables with discrete states is constructed. Each variable may be a
regulator of one or more other variables. The combination of regulator states determines
the regulated entity’s state via regulation logic. The logic and topology constructs based on
prior qualitative knowledge can be expressed as discrete deterministic functions.
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Figure 11.28: Overview of the methodology to gene network modeling.
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Usually the logical function is not entirely known and the reliability of the information
about the function that is known is limited, therefore a probabilistic model that estimates
the variable’s values as a function of its regulators is used. An example of such a model that
was proposed in [4] will be used throughout the lecture is displayed in Figure 11.29.

AlB] ¢ A B
0 Certainty [0 [0
- level
1 111
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Deterministic Beliefs on logical relations
logical function are modeled as &¢

Figure 11.29: The topology and part of the deterministic logic is obtained from prior knowl-
edge. The logical structure is transferred to the probabilistic model when all missing data
are supplied with appropriate probability values.

A priori regulation logic is described as 0(X;, Pa;) = Pr(X;|Pa;), where X; is a possible
value of X (the regulatee - C in Figure 11.29) and Pa; is a possible regulator values combi-
nation (parent’s values - A B).

Note that the resulting function still has deterministic values, but these are not exactly
known therefore probabilities for each possible value exist. Also, observe that values range
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from 0 to 2 (3 possibilities). This rule was used because more possibilities (4 or 5) do not
improve the model significantly.

The probabilistic model we will use is: Pry,(X) = 1], 0*(X;, Pa;), as proposed by the
Bayesian Network chain rule (see lecture 10), with the addition of some normalizing factor
z that will not be discussed here in detail. In contrast to the Bayesian model, we will allow
loops in the resulting network, so that z needs to be an enhanced normalizer since the
Bayesian probability analysis is disrupted in cases of cyclic graphs. This extension of the
Bayesian graph model is called a Factor graph model [4].

The subsequent step is to gather new useful data by performing appropriate experiments.
Gene knockout is one of the experimental options. The outcome is a network that has
endured topological transformation in the form of the removal of the input edges of the
element that represents the chosen gene, and its expression is forced to have a zero value
(see Figure 11.30).

KD —2%3 F—GD O
Xa nockout X3 “gp)

Figure 11.30: The modified network as a consequence of knockout to X3 gene.

A Microarray analysis gives us noisy estimations of the mRNA levels. This forces us
to use some additional probabilistic methods to handle experimental data in a correct way.
Discretization of the observed values must be made, and one way to do it is to use Gaussian
distributions (assuming their distribution is Gaussian), one per possible value of a variable,
because we assume that each discrete value corresponds to a different distribution (see Figure
11.31).

Continuing with the example from Figure 11.29, consider that we measure X; and X,
variables as a result of the knockout of the X3 gene. The results we get emphasize the
probabilities of how close the observed value is to each of the possible discrete states (Fig.
11.32).

This way the likelihood score for comparison between model and the data is assembled,
resulting in the following:

Iy = Pr(X,Y|M) =[]6(X;, Pa;) - ' (Y3, z;)

As mentioned in the model overview, the result of this comparison is insight in to model
improvement. Let’s take for example a possible model refinement, e.g. an addition of some
arc (see Figure 11.33). The acceptance of the change depends on a significant likelihood
score improvement relative to the original model. The threshold of a decision is estimated



26 Analysis of Gene Expression Data (©)Tel Aviv Univ.

mixture of
Gaussians

|
PYpx =1

Figure 11.31: A discretization function for the observed gene expression values: *(Y;, ;)
denotes the joint distribution of the received data (Y;) and the logical state (x;). Pr(z;) is
estimated using an expectation-maximization (EM) algorithm.
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Figure 11.32: The experiment and the measurement process: The observed value of X, for
example, indicates that there is an 80% probability that the value is 1, 12% that the value
is 0 and 8% that the value is 2.
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using a non-parametric paired Wilcoxon test on the distribution of likelihood scores.
Clearly, the model refinement or expansion is based, first of all, upon a biological intu-
ition/understanding, while of the likelihood function indicates how close this understanding
is to reality.

Null hypothesis M1 Alternative hypothesis M2

2
||

Improvement score: Ly — Ly = Threshold

O

Figure 11.33: Example of model refinement. An alternate model score is computed and
accepted only if it is significant enough (the difference of the scores is greater than some

threshold).

11.3.3 Results

The osmotic stress response to the yeast was chosen as the target of this model [2]. This
organism has been researched for many years and much relevant data are available. The
model that was constructed from the literature identifies how the yeast responds to calcium
and hyper-osmotic stresses. For each pathway, the model includes the environmental stresses,
the signaling cascades, the transcription factors, and their known targets (Figure 11.34).

At first, model refinement was made. As a result three new connections were revealed.
They were not included in the original model because the literature did not contain significant
evidence for this correlated behavior. However some evidence was still mentioned in the
literature, suggesting that the final improved model was actually closer to reality with a
high probability (see Figure 11.35).

Model expansion is a more difficult task. As described above, there are lots of genes
outside of the model, therefore choosing the right one is not trivial. Nevertheless, much data
is available on this gene network, and many perturbation experiments of this network were
performed, which provided a division of this network into 12 sub-paths (see Figure 11.36).

Each pathway defines a different logic module. The question is then whether or not there
are genes outside of the model (there are 5700 genes outside) that are also regulated by the
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Figure 11.34: A model of the yeast response to osmotic and calcium stress. Arrows in the
figure point to knockouts that were performed on the genes of the system during experiments
(single or double knockouts were done at each experiment). Double ovals indicates known

transcription factors.
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Figure 11.35: The refined model. Three new connections (dotted lines) were added to the

original model.
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Figure 11.36: Subdivision of the network into 12 pathways. The x-es define the elements
that were perturbed in experiments.

same subgroups. Checking all the possibilities of genes vs. all the possible regulators outside
of the group is impossible (; million possible expansions). To overcome this problem, the
search is not for a single gene, but for a group of genes that are regulated by one of the given
subgroups. Such a group is called a Regulatory module - a set of target genes regulated by
the same regulators via the same logic.

Indeed, seeking for such regulatory modules turned out to be successful, as groups with
relatively large sizes were found (more on the algorithm can be found at [2]). The statistical
significance of these results had to be proved, therefore the comparison with randomized
model results was carried out. The randomized model was build by permuting the model

logic and seeking for the regulatory modules again. The comparison is introduced in Figure
11.37.

The decision was to choose module sizes of 20 in order to make statistically significant
choices. Then the results of the analysis can be seen in Figure 11.38.

11.3.4 Summary

(Cited from Gat-Viks I. and Shamir R. [2]).A large amount of curated qualitative knowledge
on biological systems is available today. The formulation of such knowledge is shown here
to be surprisingly instrumental in improving biological understanding. This computational
framework enables modeling of the existing knowledge in the presence of feedback loops
in the network, formalization of the uncertainty in this knowledge, and integration of high
throughput data. In addition, the model can accommodate partial noisy measurements of
diverse biological entities ([4]). We make major modeling simplifications: The regulatory
relations are discrete logical functions, and the model describes the steady state of the sys-
tem. As expected, the prediction and improvement processes that we propose here also
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Figure 11.37: Comparison of the true and the random models in seeking regulatory modules.
Note that the random model’s maximal module size is 3, in contrast to module sizes in the
true model that goes beyond 30.

have limitations: They are sensitive to the size and complexity of the model (e.g., number
of variables, interactions, and feedback loops), the certainty in the logics, and the amount
of data available. The robustness of the described methods to these parameters still needs
further exploration. Strong positive indication for the robustness of the prediction process
and logical refinement procedure on small networks were achieved ([4]). The robustness of
the expansion procedure is yet needed to be systematically explored, although the biological
validations in this study are highly promising. In the future, hopefully this study will lead
to creation of more sophisticated mathematical models and robust improvement algorithms
for the analysis of genome-wide datasets. A key advantage of the module identification ap-
proach overviewed here is that a discriminative scoring scheme is used which specifically
identifies modules along with their model regulators. Consequently, modules on a finer level
than was previously possible can be detected (for example, novel HOG pathway-dependent
repressed modules). This method outperforms extant methods mainly because it exploits
prior knowledge on the signaling pathways and on the experimental procedure. This prior
knowledge helps to detect minute expression differences that are the result of distinct reg-
ulatory mechanisms, and thus the method can discard better differences that are due to
noise. The main limitation in this module identification approach is that it requires high
quality of prior knowledge on the signaling pathways, whereas many biological systems are
only partially known. To overcome this obstacle, the model should be corrected by applying
a refinement procedure before elucidating the modules. In the current study, refinement
steps that cause global effects, such as novel feedbacks or disconnected networks were not
allowed. Hopefully, within the formalism of the presented model, it will be possible to de-
velop techniques to handle those cases as well. Although there is much to be developed
both in the modeling and the algorithmic parts, by extending the concepts derived here, it
is clear that simultaneous analysis of qualitative knowledge with high throughput data is a
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Figure 11.38: Expansion of the osmotic network model [2]. The expansion algorithm assigns
known and novel target genes to known modules (black diamonds). Each module is repre-
sented by a matrix showing the expression of its target genes (rows) across the 106 conditions
(columns). Known target genes that were assigned to their module correctly /incorrectly are
marked with white/black dots to the right of the corresponding row (known targets were
excluded from the model before expansion, to allow validation and to avoid circularity). The
predicted expression levels in each condition appear as a separate row above the matrix.
The logic of each module, obtained by the refinement procedure, appears near the matrix.
Only logic entries with significant improvements in score are colored. In general, there is
high agreement between model predictions and observed levels. The few cases of disagree-
ment (e.g., columns marked by blue arrows in the Stel2 module) highlight our incomplete
understanding (and hence modeling) of the biological system.
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useful approach. The approach is applicable to other types of perturbations, such as siRNA,
to other environmental conditions, such as pharmaceutical agents, and to other molecular
data, such as protein activity levels measured by microarrays. High throughput phospho-
rylation measurements might allow an automated construction of kinase signaling modules
using known signaling pathways. As new databases of curated knowledge on signaling path-
way are developed (such as BioModels [8], Reactome [6], and SPIKE [9]), it will be easier
to obtain the prior information on many biological systems and apply the methodology to
them.
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