Analysis of Gene Expression Data Spring Semester, 2007

Lecture 6: May 31, 2007

Lecturer: Gideon Dror Scribe: Yonit Halperin and David Burstein*

6.1 Introduction to Classification

One of the major current applications of microarray technology is using genome-wide ex-
pression data in order to classify samples taken from different tissues. “MammaPrint”, a
microarray that was recently approved by the FDA for diagnosis of breast cancer, is an
example for a novel application of such classification.

Classification as a discipline is usually viewed in the context of Machine Learning [2],
a subfield of Artificial Intelligence. Classification is a form of Supervised Learning, which
is sometimes termed as “learning with a teacher”. The algorithm is first presented with
an initial training set and is expected to extract from it sufficient information in order to
successfully handle never-seen inputs.

6.2 Problem Definition

For simplicity, this lecture will deal solely with binary classification :

Definition The problem of binary classification is defined as:

Input: a set of m examples (z7,4y7), 7 = 1,2...m (the learning set) sampled from some
distribution D, where 27 € R" and 3/ € {—1,+1}. The i-th component of 27, 27, is termed
feature 1.

Output: a function f: R® — {—1,+1} which classifies “well” additional samples {z*}
sampled from the same distribution D.

In the rest of the scribe X; will denote the i-th feature and 27 the value of feature i in
the j-th sample. If ¥/ = —1 the sample will be referred to as a “negative sample”, and if
Y} = +1 it will be referred to as a “positive sample”.

6.3 Example Applications

Example Classification of tissue samples using gene expression data - In this case each
measured gene comprises a feature and the learning set is composed of vectors containing
gene expression measurements for different tissues. The problem can be to classify the tissues
as malignant or healthy (Y = malignant/healthy) or to distinguish between different types

'Based in part on a scribes by Daniela Raijman and Igor Ulitsky March 2005, Simon Kamenkovich and
Erez Greenstein May 2002.
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of cancer. An example of the use of classification with gene expression data can be seen in
Figure 6.1.
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Figure 6.1: Genes distinguishing ALL from AML (two types of leukemia). The 50 genes which give the
most information regarding the ALL-AML class are shown. Each row corresponds to a gene, and the columns
correspond to expression level in different samples. Expression levels for each gene are normalized across the
samples, such that the mean is 0 and the standard deviation is 1. Normalized expression levels greater than
the mean are shaded in red, and those below the mean are shaded in blue. The scale indicates standard
deviations above or below the mean.

Example Detection of spam mail - In this case the X is some vector representation of e-mail
messages (e.g. X; - the number of times the i-th word from some fixed dictionary appears
in the message). The problem is to classify the mail into spam and non-spam. The training
set in this case is list of messages that have been manually classified.

Example Face Detection - the problem of deciding whether a given image (represented as
a vector of pixels) represents a human face. In this case X; can be the color intensity of the
1-th pixel.

Example Signature Recognition - the classifier can be trained to recognize whether a certain
signature belongs to a certain person.

The input to a classification problem can be visualized as in Figure 6.2 as a set of points
in the plane, colored with 2 colors representing the two classes that need to be separated.
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Figure 6.2: Classification in 2D plane. The red points indicate the positive samples, contained in the
training set of the classifier and the blue points indicate the negative ones. The question marks stand for
the locations of the new samples that need to be classified.

6.4 Classification Algorithms

All classification algorithms (termed classifiers) can be generalized as algorithms that
receive a training set and learn a classification function of the form f : R" — {+1,—1}.
This function is then applied to new inputs and its value represents the class to which the
input is classified. Thus, different classification algorithms differ in the form of function
they are capable of learning. The common classification algorithms include: Fisher Linear
Discriminant (6.4.1), KNN (6.4.2), Decision Trees (6.4.3), Neural networks (6.4.4), Naive
Bayes (6.4.5), SVM (which will be discussed in the next lecture) and Adaboost ([6]).

Properties of a Classifier

Training speed The amount of time the classifier needs in order to learn the classification
function given a training set of a certain size.

Accuracy The accuracy of a classifier can be evaluated using a test set with known class
derivation for every item. The classification error can be tested using varying schemes,
which will be discussed in 6.7.1.

Transparency Some classification functions are very clear (for example a threshold func-
tion), making it possible to derive important insights about the problem or the data.
On the other hand, some functions are very complex, making any such conclusions
infeasible. A common example for a classification function which lacks transparency is
the classification performed using Neural Networks.

Hyper-parameters These are parameters that are not being learned by the algorithm and
are part of its input. High number of hyper-parameters might improve the classifier
accuracy, but will lower transparency and increase its level of complication.
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6.4.1 Fisher Linear Discriminant

Fisher Linear Discriminant is one of the simplest classification algorithms [3]. The method
finds a direction w in the n-dimensional space (a vector in R").

Given a sample that needs to be classified, the Fisher classifier calculates the projection of
the sample onto w. The idea is to find a direction which, after the projection, will mazimize
interclass variability and minimize intraclass variability. It can be achieved by maximizing
the following function:

2
J(w) = |m12—7mé|
S$1° + So

where m; and mo are the mean value of the projected positive and negative samples respec-
tively. s; and s, are the standard deviations of the projected samples.

In the simple two-dimensional case, after the points are projected onto the line, the two
classes are transformed into two sets of points upon the line. The interclass variability in this
case is the distance between the class centers, and the intraclass variability is the distance
of class members from their class centers.

Different criteria can be employed to determine the class for a new sample, for instance:

e (Calculating the distance from the point to the means of the projections of the training
classes.

e As above, but adding a weighting scheme in order to minimize the bias caused by the
relative sizes of the training classes

The advantage of Fisher linear discriminant scheme is that the vector w can be found
swiftly using a simple procedure.

6.4.2 k Nearest Neighbors

The k nearest neighbors (KNN) classification scheme employs a more local method of clas-
sification. The method requires no initial processing of the training data, and new samples
are classified based on their k£ nearest neighbors in the training set. The KNN classifier
has numerous variants, as the concept of proximity can be defined in various manners, as
well as the decision rule of the new sample class based on the neighboring samples. For
example, a simple variant of KNN would find the neighbors based on euclidian distance
and use the majority rule to set the classification of the new sample. Another variation is
giving each neighbor a weight according to its distance from the sample. In KNN £ is the
only hyper-parameter of the algorithm. The KNN scheme is depicted in Figure 6.3. This
kind of classifier is able to learn a relatively complex separation function. A drawback of
this method is that in some practical problems, the euclidian distance is inappropriate, and
the “correct” distance metric is difficult to define. Another problem is that as the method
performs no preprocessing of the sample, the major computational complexity occurs while
classifying unseen samples, a stage which should usually be swift.
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Figure 6.3: Classification using KNN. The class for each new sample (represented by question marks) is
set based on its k (3 in this case) closest neighbors.

6.4.3 Decision Tree

The Decision Tree method constructs a tree representing the classification process. The
leaves of the tree represent one of the classes and the internal nodes contain some sort of
decision function of the input sample with a boolean value. In the simplest case, this function
is a predicate on one of the feathers, e.g. x1 > 3 or x5 < 7. Since the problem of building the
most compact tree compatible with training examples is NP-complete, the algorithm applies
heuristic methods for the tree construction. One of the simplest heuristics is selecting the
most informative feature X; at every step and constructing an internal node in the tree,
discriminating based on this feature. A sample decision tree is presented in Figure 6.4. One
of the advantages of the decision tree model is the relative classification speed.In its basic
form this is one of the simplest algorithms, as it has no hyper-parameters.
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Figure 6.4: Classification using a decision tree. The tree presented in the left half of the figure describes
the decision process, which in this case contains two simple predicates on the features X; and Xs. The figure
on the right depicts the separation encoded in the tree.
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6.4.4 Neural Networks

A neural network [1] is a combination of inter-connected networks where the nodes correspond
to neurons and the arcs correspond to synaptic connections in the biological metaphor. A
neural network represents a function, which is encoded in the weights of the arcs. The
hyper-parameter in this case is the structure of the network.

A simple neural network with one layer and a single output neuron is termed Perceptron

and it is capable of distinguishing between classes which can be separated by a straight line
(hyperplane, as shown in Figure 6.5). In this aspect the perceptron is somewhat similar to
the Fisher linear discriminant classifier. More complex neural networks with multiple layers
and multiple output neurons are theoretically capable of separation using any continuous
surface. However, the neural network model suffers from several drawbacks:
(1) The function constructed by the neural network lacks transparency, making it almost
impossible to deduce conclusions regarding the data. In other words, the neural network is a
“black box”, which performs well in some situations. (2) The iterative algorithm employed
for learning the classification function may converge slowly or not at all for some problems.
(3) As any gradient-based iterative optimization search algorithm, the learning of the neural
networks is susceptible to local minima. (4) Neural networks tend to be influenced by noise,
and are prone to overfitting.
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Figure 6.5: Separation by neural networks. The straight line depicts the separation achieved by a simple
Perceptron and the curve the separation by a multi-layered network (left), which is in theory able to learn
any separating function.

6.4.5 Naive Bayes

The Naive Bayes classifier is based on the concepts of Bayesian decision theory, which is
closely related to hypothesis testing. The two classes are treated as the two hypotheses: A is
“this sample belongs to class A” and B is “this sample belongs to class B”. In Bayes theory,
the decision between the two hypotheses is based on the log-likelihood ratio: LR(x?) =

é;‘gj; If LR(Data) > logi532, 27 is classified to class A. X in this case is the prior

log
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probability that 27 belongs to class A. In this case it is assumed that the costs of deciding A
when B is correct and vise versa are identical. For a detailed explanation of the naive Bayes
method see [4].

6.5 Dimensionality Reduction

Up to this point in the lecture we have dealt solely with n-dimensional data, n being the
original dimension of the input data. A reduction of the data dimension can provide with
several important advantages for both learning and classification.

6.5.1 Dealing with Overfitting

One of the major problems encountered by all classifying schemes is overfitting of the data.
The data in the learning set can be viewed as containing general information characterizing
the population, along with information specific to the sampled training set. An ideal classifier
is supposed to work only on the general characteristics. This is usually termed as performing
generalization. If the classifier adheres strongly to signals specific to the learning set it is
said to overfit it. For example, in the decision tree classifying scheme, a large tree containing
multiple complex functions with a single training sample at each “leaf” will probably perform
superbly on the training set, but poorly on new samples.

Overall, any complex separating function is vulnerable to overfitting, as can be seen in
Figure 6.6. Reducing the dimensionality of the data can usually help overcome the maladies
of overfitting by allowing the classifier to focus on the important features.

Figure 6.6: A classification function which overfits the training set.

6.5.2 Merits of the Dimensionality Reduction

e As described above, overfitting is reduced and generalization is improved .
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A well-performed dimensionality reduction can improve the performance of the clas-
sifier, by removing features that do not contribute to the classification, and may cir-
cumvent it with misleading noise.

e Several classification algorithms suffer from difficulties when dealing with high-
dimensional data.

e In all classification schemes, a high dimensionality of the data causes greater
time/memory consumption in the learning and classification phases.

e The use of fewer dimensions improves the clarity of the classification, allowing a better
understanding of the meaningful signals found in the data.

e In the context of gene expression data, it is significantly easier, cheaper and more
accurate to deal with expression measures from a small number of genes (e.g. 50)
instead of a whole-genome survey (including up to 60,000 probes).

6.5.3 Approaches to Dimensionality Reduction
Feature Construction

In the Feature Construction approach, n features of the input are transformed into [ other
features using some linear/non-linear transformation (e.g. rotation). For example, in the
application to face recognition problem, the n pixels extracted from the image can be reduced
to a set of distances between points with distinctive colors. A common method in feature
construction is PCA - Principal Component Analysis [3], an analytical method which finds
a linear transformation that chooses a new coordinate system for the data set. In the new
coordinates, the greatest variance by any projection of the data set comes to lie on the first
axis (termed the first principal component), the second greatest variance on the second axis,
and so on. Other linear methods are ICA (independent component analysis, )[8] and Fisher
linear discriminant. Examples for non-linear methods are non-linear component analysis,

Kernel PCA [7] and LLE (Local linear embedding)[5].

Feature Selection

In Feature Selection, given a training set of n dimensional samples, we’re interested in select-
ing [ features, which maximize some trait of interest. This can of course be the performance
of the classification process, but can also be some other trait, for instance detecting the
important features (e.g., genes) in the training set.

An exhaustive search among the possible sets of selected features is infeasible in almost
all practical cases, so heuristics are commonly employed. The integration of those with the
classifier can be divided into three cases, which are depicted in Figure 6.7:

Filter The features are selected in a separate process before the classifier is trained. This
method will be elaborated in 6.5.4
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Wrapper In an iterative manner, the learning process alternates between selecting features
and learning a classification function, improving the feature selection process based on
the feedback from the classifier. Various optimization techniques can be used here, such
as hill climbing. Two possible variations of hill climbing are: (a) Forward selection:
keep adding features one at a time until no further improvement can be achieved; (b)
Backward selection: start with the full set of predictors and keep removing features
one at a time, until no further improvement can be achieved.

Embedded The selection process is embedded in the classifier. The difference from the
Wrapper scheme is that in this case the two processes cannot be separated into two
iteration phases. For example, the learning process of the decision trees includes an
implicit selection of the features that appear in the node functions.
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Figure 6.7: The three basic options of introducing feature selection to a classifier. (a) Filter (b) Wrapper
(c) Embedded.

As can be seen from the definition, while the classifier is ignored in the filter method,
the wrapper and embedding techniques can accommodate themselves to maximize the per-
formance of a specific classifier.

6.5.4 Features Filtering

Even though the filtering approach does not take into consideration properties specific to
the classifier, it can accomplish surprisingly good results. The filtering is usually based on
extracting features X;, which are more informative regarding the association of the samples
to class Y. This notion of information can be captured by several means:

e Pearson correlation p(X;) = % : Using this measure, features that are highly

correlative to the class will be extracted. An example of such a feature can be seen in
Figure 6.8.

e 2 : This measure will extract features whose distribution is similar to that of Y.
+ .
e Fisher criterion F(X;) = ———=——= > C : p¥,, px, are the mean values of the i-th

feature in the positive and negative samples, respectively, and a}i, o, are the standard
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deviations of the i-th feature in the positive and negative samples. This measure prefers
features with distinctively different distributions between the two target classes.

L ko —ny
o Golub criterion F(X;) = ——4——

= o > (' : Similar to Fisher criterion.
(o loa
X X

e Mutual information 1(X;,Y) = > P(X;,Y) log% : A quantity derived from

Information Theory that measures the mutual dependence of the two random variables.
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Figure 6.8: An example of a classification problem where the feature X; will be selected using Pearson
correlation, as the feature is highly correlated with Y.

For all the measures described above, the most prominent [ features are extracted from
the original n features.
The filtering method suffers from a few drawbacks:

e The filtering performs well when the features are independent, since each feature is
considered separately. When the dependencies between features and the targets are
informative, filtering performance might decrease . A classic example of an ill perfor-
mance of filtering is the XOR problem (see Figure 6.9)

e As mentioned above, the filtering disregards the classifier.

Nevertheless, the filtering method is very fast, thus allowing multiple filtering schemes to
be efficiently tested in order to select the one giving the best performance results. For many
practical purposes, filtering performs well, as can be seen in Figure 6.10.

6.6 Model Regularization

One of the methods for avoiding overfitting is regularization, enforcing the simplicity of
the model used by the classifier. In decision trees classifiers, regularization can be applied



Performance Assessment 11

® X2
ges *%e,
X4
°
:f. ! ....f.z.

Figure 6.9: The XOR problem, using only z; or z3, will result in poor separation of the samples, while by
using both features a good separation can be achieved.
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Figure 6.10: Results of applying the filtering feature selection on a dataset of e-mail messages classified
to spam/non-spam. The classifier in this case is KNN and the precision of the classifier is plotted against
the number of features used (in this case every unique word is a feature). The graphs represent different
measures for filtering: CHI.max - x? measure, MI.max - Mutual information. As it can be seen, the
optimal filtering is performed using x? and selecting about 2000 features.

by pruning - limiting the depth of the tree, and ensembling - building several trees and
averaging their outputs. In order to avoid a too complex function in neural networks, arcs
with a weight lower then some threshold are deleted, and the total sum of the weight squares
is limited.

6.7 Performance Assessment

A crucial part of building a classifier lies in evaluating its performance. This evaluation is
very important, as the classifier usually employs several parameters whose optimal values
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can be found using the assessment process. Also, in most problems several classifiers are
available and the optimal choice is selected through trial and evaluation. In the context of
feature selection, the number of features selected is usually determined using performance
assessment.

6.7.1 Measures of Performance

There are several measures to quantify the performance of a classifier:

Error rate The most naive measure is simply the fraction of samples that were misclassified.
This measure might not reflect the performance reliably. For example, in a population
with 99% healthy people, a classifier that classifies every sample to “healthy”, will have
an error rate of 0.01.

Balanced error rate 1(££ + £V where P, N are the total number of samples that were
classified as positive or negative respectively. F'P,FN, are the number of samples
that were misclassified as positive or negative respectively (false positives and false
negatives). In the previous example the balanced error rate is 0.5.

Area under ROC curve The ROC (receiver operating characteristic) curve is a graphical
plot of the fraction of false positives vs. the fraction of true positives encountered
during the classifier testing (see Figure 6.11). It can be used for classifiers that assign
for each sample a score representing the classification confidence rather than a binary
output. The ROC curve can used for calibrating a threshold that will discriminate
positive from negative samples. Note that a better classifier has a more convex ROC
curve. The area under the ROC curve represents the probability of a random positive
sample to receive a better score than a random negative sample. The expected area
for a random classifier is 0.5.

6.7.2 Test Set Estimation

A naive and wrong approach to performance assessment is to use the same data set for
training the classifier and assessing its performance. This approach holds a grave problem,
as it introduces a downward bias. After a complex enough learning procedure many
classifiers are capable to perfectly classify the training data, yet perform poorly on new
data (a symptom of overfitting). In order to overcome this, the classifier is trained using
some part of the learning set, termed training set, and its performance is evaluated using an
independent test set. The construction of those two sets can be performed using two main
approaches:

e The initial learning set is divided into two distinct groups - L; (training set) and L
(test set). In order for this method to perform well, L; and Ly must be approximately
independently distributed. The main drawback of this method is the fact that the
effective size of the learning set, the number of samples used for training, is reduced,
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Figure 6.11: A ROC curve, plotting the fraction of false positives vs. the fraction of true positives

thus harming the training process. In addition only a small portion of the data is used
as a test set, thus the performance assessment is less reliable.

e The method of m-fold cross validation randomly divides the learning set into m distinct
portions of nearly the same size. The learning is composed of m iterations, where in
each iteration one portion from the learning set is put aside, and the training is based
on the rest of the samples. The performance is then evaluated based on the samples
set aside. After m iterations the average performance is calculated. A special case of
the m-fold cross validation occurs when m equals the number of samples - it is called
Leave-one-out cross validation (LOOCYV).

When feature selection is incorporated in the classification (Embedded scheme), the feature
selection must be performed only by using the learning set in order to avoid a downward
bias.
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