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4.1 The CLICK algorithm

4.1.1 Introduction

CLICK (CLuster Identification via Connectivity Kernels) is a graph-based algorithm for
clustering [16]. The input for CLICK is the gene expression matrix. Each row of this matrix
is an “expression fingerprint” for a single gene. The columns are specific conditions under
which gene expression is measured.

The CLICK algorithm attempts to find a partitioning of the set of elements into clusters,
so that two criteria are satisfied: homogeneity - pairs of elements from the same cluster,
called mates, are highly similar to each other; and separation - pairs of elements from differ-
ent clusters, called non-mates, have low similarity to each other.

The goal is to identify highly homogeneous sets of elements - connectivity kernels, which
are subsets of very similar elements. The remaining elements are added to the kernels by
the similarity to average kernel fingerprints.

We will make use of tools from graph theory and use probabilistic considerations.

4.1.2 Probabilistic Model

We’ll define mates as pairs of genes that belong to the same true cluster.

The CLICK algorithm makes the following assumptions:

1. Similarity values between mates are normally distributed with parameters µT , σT .

2. Similarity values between non-mates are normally distributed with parameters µF , σF .

3. We expect that µT > µF , and that σT , σF are small enough such that the clusters are
distinguishable.

1Based in part on a scribe by David Shafrir, May 2005, and on a scribe by Orly Stettiner and Ron Gabor,
December 2001
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4. We assume that similarity values are mutually independent, and not dependent on
specific genes and/or clusters.

These assumptions are justified empirically by simulations, and in some cases theoreti-
cally (by the Central Limit Theorem).

Parameters for the algorithm can be learned in two ways: from partially known solutions,
or estimated using the EM (Expectation-Maximization) algorithm [13].

4.1.3 The Basic CLICK Algorithm

The CLICK algorithm represents the input data as a weighted similarity graph G = (V, E).
In this graph, vertices correspond to elements and edge weights are derived from the similarity
values (Figure 4.1). The weight wij of an edge (i, j) reflects the probability that i and j are
mates, and is set to be:

wij = ln
p fM(Sij)

(1− p) fN(Sij)

where p is the probability of two genes being mates, and fM(Sij) ( fN(Sij)) is the value of
the probability density function for mates (non-mates) for Sij:

fM(Sij) =
1√

2πσT

e
−

(Sij−µT )2

2σ2
T , fN(Sij) =

1√
2πσF

e
−

(Sij−µF )2

2σ2
F

Figure 4.1: The raw data is translated into a matrix of similarity values. This matrix is then
translated into a Similarity Graph.
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The basic CLICK algorithm is described in Figure 4.2 and exemplified in Figure 4.3.
The main concepts of the algorithm are as follows: given a connected graph G, we would
like to decide whether V (G) is a subset of some true cluster, or V (G) contains elements from
at least two true clusters. In the first case we say that G is pure. In order to make this
decision, we test the following two hypotheses for each cut C in G:

• HC
0 : C contains only edges between non-mates.

• HC
1 : C contains only edges between mates.

G is declared a kernel if H1 is more probable for all cuts. The decision of whether G is a
kernel relies on the following theorem:

Theorem 4.1 G is a kernel iff the weight of MinCut(G) > 0.

Proof: First, we’ll use the assumption that the Si,j-s are independent, and that the mate
relations are also independent.

Then, using Bayes’ Theorem, it can be shown that for any cut C in G

ln
Pr(H1|C)

Pr(H0|C)
= ln

Pr(H1)f(C|H1)

Pr(H0)f(C|H0)
= ln

p|C| ∏
i,j∈C fM(Sij)

(1− p)|C|
∏

i,j∈C fN(Si,j)

=
∑
i,j∈C

ln
pfM(Si,j)

(1− p)fN(Si,j)
=

∑
i,j∈C

wij = W (C)

Obviously, W (C) > 0 iff Pr(HC
1 |C) > Pr(HC

0 |C). If the minimum cut is positive, then
obviously so are all other cuts. Conversely, if the minimum cut is non-positive, then for that
cut Pr(HC

1 |C) ≤ Pr(HC
0 |C), therefore G is not a kernel.
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Basic-CLICK(G(V, E))
if (V (G) = {v}) then

move v to the singleton set R
elseif (G is a kernel) then

Output V (G)
else

(H,H̄, cut) ← MinWeightCut(G)
Basic-CLICK(H)
Basic-CLICK(H̄)

end if
end

Figure 4.2: The Basic-CLICK algorithm

Figure 4.3: Basic scheme of the CLICK algorithm. Split subsets of G, that contain elements
from two kernels.

Removing Negative Weight Edges The MIN-CUT problem for a weighted graph with
both positive and negative edges is NP-Complete2. In order to use the efficient MIN-
CUT algorithms we can use the following heuristic: We find the minimal cut efficiently
while ignoring all negative edges. When we calculate the total weight of the cut, we
fix it by adding the weight of the ignored edges which participate in it. We consider
this weight as the minimal cut weight (although this is generally not true).

2MIN-CUT can be proved to be NP-Complete by reduction from MAX-CUT [5, page 210].
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Refinements

The Basic-CLICK algorithm divides the graph into kernels and singletons. These kernels
are expanded to the full clustering, using several refinements, while using both fingerprints
and similarity values:

Adoption Step In practice, “true” clusters are usually larger than just the kernel. To
accommodate this, in the refined algorithm, kernels “adopt” singletons to create larger
clusters. This is done by searching for a singleton v and a kernel K, whose pairwise
fingerprint similarity is maximum among all pairs of singletons and kernels. The refined
algorithm iteratively applies the adoption step and then the Basic-CLICK algorithm
on the remaining singletons, stopping when there are no more changes.

Cleaning Step In this step we remove nodes having a low degree. These nodes are usually
not “interesting”, since we are mostly interested in finding large kernels whose nodes
have high degrees. By removing the low degree nodes, we ensure the algorithm will
not waste time removing them one by one, thus making it more efficient.

Merge Step In this step we merge clusters whose fingerprints are similar (in practice,
clusters can contain multiple kernels). The merging is done iteratively, each time
merging two clusters whose fingerprint similarity is the highest (provided that the
similarity exceeds a predefined threshold).

4.1.4 Quality Assessment

When the ”correct” solution for the clustering problem is known, we can evaluate the al-
gorithm’s performance using comparison criteria . The criteria used in [16] are the Jaccard
coefficient and the Minkowski coefficient. Let S, T be two clustering solutions. We mark by
n11 the number of pairs of elements that are mates in both S and T , n01 is the number of
pairs that are mates only in S, and n10 is the number of pairs that are mates only in T . The
Jaccard coefficient is defined by:

J =
n11

n11 + n10 + n10

and the Minkowski coefficient is defined by:

M =

√
n01 + n10

n11 + n10
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One should note that the Jaccard coefficient denotes an optimal solution when its value
is 1, while the quality of the solution improves as the value of the coefficient increases. On
the other hand, the Minkowski coefficient denotes an optimal solution when its value is 0,
while the quality of the solution improves as the value of the coefficient decreases.

Unfortunately, in most cases the ”correct” solution for the clustering problems is un-
known. In these cases we evaluate the quality of the solution by computing two figures of
merit to measure the homogeneity and separation of the produced clusters. For fingerprint
data, homogeneity is evaluated by the average and minimum correlation coefficient between
the fingerprint of an element and the fingerprint of its corresponding cluster. Separation is
evaluated by the weighted average and the maximum correlation coefficient between cluster
fingerprints. Formally:

Definition Homogeneity and separation measures:
We define the fingerprint of a set of elements to be the mean vector of the fingerprints of the
members of the set. Let X1, ..., Xt be clusters, C(u) be the cluster of vertex u, F (X) and
F (u) be the fingerprints of a cluster X and of element u respectively, and let S(x, y) denote
the similarity between fingerprints x and y, then:

Average Homogeneity

HAve =
1

|N |
∑
u∈N

S(F (u), F (C(u)))

Minimum Homogeneity

HMin = min
u∈N

S(F (u), F (C(u)))

Average Separation

SAve =
1∑

i6=j |Xi||Xj|
∑
i6=j

|Xi||Xj|S(F (Xi), F (Xj))

Maximum Separation

SMax = max
i6=j

S(F (Xi), F (Xj))

Logically, a clustering improves when HAve and HMin increase, and when SAve and SMax

decrease.

Another method of quality assessment is setting a certain similarity threshold and mea-
suring the fraction of mates and non-mates above that threshold.



The CLICK algorithm 7

4.1.5 Algorithm Performance Comparisons

This section contains examples of comparisons between CLICK and other clustering algo-
rithms, in various problems, including expression data, oligo-fingerprinting data and protein
similarity data (Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and Figures 4.4, 4.5). Analysis of the re-
sults (see Table 4.7) shows that CLICK outperforms all the compared algorithms in terms
of quality. In addition, CLICK is very fast, allowing clustering of thousands of elements in
minutes, and over 100,000 elements in a couple of hours on a regular workstation. Figure
4.6 shows the result of a comparison in which the authors of each clustering algorithm were
allowed to run the test on their own. The graph shows a trade off between the homogeneity
and separation scores; The further the algorithm is from the origin the “better” its overall
performance.

In addition, CLICK was tested in simulations which included varying cluster structures
and different distribution parameters. Similarity values for mates and non-mates were dis-
tributed normally: for each cluster structure, standard deviation σ was set at 5 for both
mates and non-mates, while the difference between the means of mates µT and non-mates
µF was set at t× σ for t = 2, 1, 0.8, 0.6. Results are shown in Table 4.8, evaluated using the
Jaccard coefficient. As expected, the larger the distance between the means of mates and
non-mates, the better the performance of the algorithm. It also seems that better results
are obtained when cluster sizes are larger.

Program (algorithm) # Clusters Homogeneity Separation
HAve HMin SAve SMax

CLICK 30 0.8 -0.19 -0.07 0.65
GENECLUSTER 30 0.74 -0.88 -0.02 0.97

Table 4.1: A comparison between CLICK and GENECLUSTER [18] on the yeast cell-cycle
dataset [3]. Expression levels of 6,218 S. cerevisiae genes, measured at 17 time points over
two cell cycles.

Program #Clusters Homogeneity Separation
HAve HMin SAve SMax

CLICK 10 0.88 0.13 -0.34 0.65
Hierarchical 10 0.87 -0.75 -0.13 0.9

Table 4.2: A comparison between CLICK and Hierarchical clustering [4] on the dataset of
response of human fibroblasts to serum [10]. Human fibroblast cells starved for 48 hours,
then stimulated by serum. Expression levels of 8,613 genes were measured at 13 time points.



8 Analysis of Gene Expression Data c©Tel Aviv Univ.

Program #Clusters #Singletons Minkowski Jaccard Time(min)

CLICK 31 46 0.57 0.7 0.8
HCS 16 206 0.71 0.55 43

Table 4.3: A comparison between CLICK and HCS on the blood monocytes cDNA
dataset [8]. 2,329 cDNAs purified from peripheral blood monocytes, fingerprinted with 139
oligos. Correct clustering is known from back hybridization with long oligos.

Program #Clusters #Singletons Minkowski Jaccard Time(min)

CLICK 2,952 1,295 0.59 0.69 32.5
K-Means 3,486 2,473 0.79 0.4 –

Table 4.4: A comparison between CLICK and K-means [9] on the sea urchin cDNA dataset.
20, 275 cDNAs purified from sea urchin eggs, and fingerprinted with 217 oligos. Correct
clustering of 1,811 cDNAs is known from back hybridizations.

Minkowski Jaccard

CLICK 0.88 0.39
ProtoMap 0.89 0.39

Table 4.5: A comparison between CLICK and ProtoMap [20] on a dataset of 72,623 proteins.
Correct clustering of 17,244 single domain proteins is known.

Program #Clusters #Singletons Homogeneity Separation

CLICK 9,429 17,119 0.24 0.03
SYSTERS 10,891 28,300 0.14 0.03

Table 4.6: A comparison between CLICK and SYSTERS on a dataset of 117,835 pro-
teins [11]. Measures are based on similarity when no correct solution is known: For a fixed
threshold t, homogeneity is the fraction of mates with similarity above t, and separation is
the fraction of non-mates with similarity above t.
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Elements Problem Compared to Time(min) Improvement

517 Gene Expression Fibroblasts Cluster [4] 0.5 Yes
826 Gene Expression Yeast cell cycle GeneCluster [18] 0.2 Yes

2,329 cDNA OFP Blood Monocytes HCS [8] 0.8 Yes
20,275 cDNA OFP Sea urchin eggs K-Means [9] 32.5 Yes
72,623 Protein similarity ProtoMap [20] 53 Minor
117,835 Protein similarity SYSTERS [11] 126.3 Yes

Table 4.7: A Summary of the time performance of CLICK on the above mentioned datasets.
CLICK was executed on an SGI ORIGIN200 machine utilizing one IP27 processor. The
time does not include preprocessing time. The “Improvement” column describes whether
the solution of the CLICK algorithm was better than the compared algorithm.

Structure 2σ 1σ 0.8σ 0.6σ

6× 50 1 1 0.98 0.85
10× 30 1 0.96 0.71 0.1
10, ..., 80 1 1 0.97 0.83

Table 4.8: CLICK simulation results (mean Jaccard score over 20 runs). The test included
various cluster structures (rows) and distances between µT and µF (in each column, the
distance appearing in the title was used as a factor of the standard deviation σ. The first
column denotes a distance of 2σ, etc.).
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Figure 4.4: Source: [16]. CLICK’s clustering of the yeast cell-cycle data [3]. x-axis: time
points 0-80, 100-160 at 10-minute intervals. y-axis: normalized expression levels. The solid
line in each sub-figure plots the average pattern for that cluster. Error bars display the
measured standard deviation. The cluster size is printed above each plot. Cluster 3 (the late
G1 Cluster) is shown in zoom in the lower image. The cluster found by CLICK contains 91%
of the late G1-peaking genes. In contrast, in GeneCluster 87% are contained in 3 clusters.
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Figure 4.5: Source: [16]. CLICK’s clustering of the fibroblasts serum response data [10].
x-axis: 1-12: synchronized time-points. 13: unsynchronized point. y-axis: normalized
expression levels. The solid line in each sub-figure plots the average pattern for that cluster.
Error bars display the measured standard deviation. The cluster size is printed above each
plot.
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Figure 4.6: Comparison of clustering algorithms using homogeneity and separation criteria.
The data consisted of 698 genes, 72 conditions [17]. Each algorithm was run by its authors
in a “blind” test.

4.2 Hierarchical Clustering

An agglomerative approach attempts to place the input elements in a tree hierarchy structure
in which the distance within the tree reflects element similarity. The elements are located
at the leaves of the tree. Thus, the closer the elements are in the tree, the more similar they
are.

Advantages of hierarchical methods :

1. A single coherent global picture.

2. Intuitive for biologists (similar representation is used in Phylogeny).

Disadvantages of hierarchical methods :

1. There is no explicit partition into clusters.

2. A human biologist with extensive knowledge might find it impossible to make sense of
the data just by looking at the tree, due to the size of the data, and the number of
errors.

3. The hierarchical structure is not natural for genes (as the basic rules of evolution do
not apply to genes).

4. Forces all elements to fit a tree/dendrogram.
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4.2.1 Hierarchical Representations

As was explained, a hierarchical representation uses a tree structure, in which the actual
data is represented at the leaves. The tree can be either rooted or non-rooted. A particular
tree representation is a dendrogram. The algorithms for hierarchical clustering recursively
merge similar clusters, and compute the new distances between the merged cluster and all
other clusters. This hierarchical tree-like structure implies that if i is clustered with j, and
both are not similar to r, then D(i, r) = D(j, r) even though D(i, j) > 0. (D(n, m) is the
distance function) (See Figure 4.8).

Figure 4.7: Hierarchical data represented as a rooted/non rooted tree

Figure 4.8: In a dendrogram, distances are represented on the y-axis. Denote the leaves
a, b, c, d (from left to right). Then D(a, b) = 2.8 , D(a, c) = D(b, c) = 4.5, D(b, d) =
D(c, d) = 5.0
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4.2.2 UPGMA Algorithm

UPGMA, or Unweighted Pair Group Method with Arithmetic mean [14], is a clustering
procedure, which is simple and intuitive. It works by clustering the genes, at each stage
merging two clusters, and at the same time creating a new node on a tree. The tree can
be imagined as being assembled upwards, each node being added above the others and the
edge lengths being determined by the difference in the heights of the nodes at the top and
bottom of an edge.
UPGMA algorithm:
Let d be the distance function between gene expression fingerprints, we define the distance
Di,j between two clusters of expressions Ci and Cj as follows:

Di,j =
1

ni + nj

∑
p∈Ci

∑
q∈Cj

d(p, q)

where ni = |Ci| and nj = |Cj|.
• Initialization:

1. Initialize n clusters with the given expressions, one expression per cluster.

2. Set the size of each cluster to 1: ni ← 1.

3. In the output tree T , assign a leaf for each expression.

• Iteration: combine two clusters to form a new cluster.

1. Find the i and j that have the smallest distance Dij.

2. Create a new cluster – (ij), which has n(ij) = ni + nj members.

3. Connect i and j on the tree to a new node, which corresponds to the new cluster
(ij), and give the two branches connecting i and j to (ij) length

Di,j

2
each.

4. Compute the distance from the new cluster to all other clusters (except for i and
j, which are no longer relevant) as a weighted average of the distances from its
components:

D(ij),k = (
ni

ni + nj

)Di,k + (
nj

ni + nj

)Dj,k

5. Delete the columns and rows in D that correspond to clusters i and j, and add a
column and row for cluster (ij), with D(ij),k computed as above.

6. Return to 1 until there is only one cluster left.

Complexity: The time and space complexity of UPGMA is O(n2), since there are n − 1
iterations, with O(n) work in each one.
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Molecular Clocks and Ultrametric Property of distances

UPGMA produces a rooted tree of a special kind - a clocklike, or ultrametric, in which the
total branch length from the root to any leaf is equal. In other words, there is a “molecular
clock” that ticks in a constant pace, and all the observed expressions are at an equal number
of ticks from the root. If there is a molecular clock (i.e., the solution is a clocklike tree),
then UPGMA is guaranteed to return the optimal solution. Actually, UPGMA implicitly
assumes the existence of an ultrametric tree, which explains why the new node, (ij), is the
mean of the two nodes that were joined to create it, as shown in Figure 4.9. It is therefore
not surprising that for substantially non-clocklike trees, the algorithm might give seriously
misleading results.
As we do not assume that this attribute holds for gene-expression clustering data, the UP-
GMA algorithm is a problematic choice.

Figure 4.9: A clocklike tree, showing the clustering (ab) of the two nodes a and b by UPGMA
and by the Neighbor-Joining algorithm.
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4.2.3 Neighbor Joining Algorithm

This simple algorithm, based on neighbor merging, is due to Saitou and Nei [15]. The input
matrix is the distance matrix between elements. Initially each element is a cluster. At each
iteration we merge similar elements, and compute the new distances for the merged elements.
When the algorithm finishes, we represent the results as a tree in which similar elements are
near.

The Neighbor Joining Algorithm :

1. Input : The distance matrix Dij.

2. Find elements r,s such that Drs = minij(Dij) .

3. Merge clusters r,s.

4. Delete elements r,s, and add a new element t with :

Dit = Dti =
Dir + Dis −Drs

2

5. Repeat, until one element is left.

6. Present the hierarchy as a tree with similar elements near each other.

The reason to define the new element t the way we define it is explained by the following
argument: We look at the tree in Figure 4.10 in which i, s and r are leaves, and t is the
parent of s and r. The distance between two nodes is defined to be the weight of the path
between them. Therefore the distance between the nodes i and t is:

Dit = c + d =
(c + d + a) + (c + d + b)− (a + b)

2
=

Dir + Dis −Drs

2
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Figure 4.10: The graph that gives the rational behind the distance equation in the Neighbor
Joining algorithm.

4.2.4 A General Framework

Lance and Williams, [12] also designed a general framework for hierarchical cluster merging
algorithms. In their framework the distance calculating function is :

Dit = Dti = αrDir + αsDis + γ|Dir −Dis|

In the Average Linkage algorithm :
γ = 0

αr =
nr

nr + ns

αs =
ns

nr + ns

4.2.5 Hierarchical clustering of gene expression data

A series of experiments were performed on real gene expression data, by Eisen et al. [4].
The goal was to check the growth response of starved human fibroblast cells, which were
given serum. 8,600 gene levels were monitored over 13 time-points (about two cell cycles).
The original data of test-to-reference ratios was first log-transformed, and then normalized,
to have mean 0 and variance 1.
Formally:
tij− fluorescence levels of target gene i in condition j.
rij− same for reference.
Dij = log(

tij
rij

).

D∗
ij =

Dij−E(Di)

std(Di)
- the normalized levels of gene i in condition j. The similarity matrix was

constructed from D∗
ij as follows :

Skl =

∑
j D∗

kj ·D∗
lj

Ncond
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Where Ncond is the number of conditions checked.

The Average Linkage method was applied on the similarity matrix, where genes with low
activity (70%) were excluded from the analysis. The tree is presented by ordering the leaves
according to increasing subtree weight (see Figure 4.11 ). The weight can be the average
expression level, time of maximal induction, or any other.

Figure 4.11: Source: [4]. The left image is the dendrogram resulting from the starved human
fibroblast cells experiment. Five major clusters can be seen, along with many non clustered
genes. The genes in the five groups serve similar functions : (A) cholesterol biosynthesis,
(B) the cell cycle, (C) the immediate-early response, (D) signaling and angiogenesis, and (E)
wound healing and tissue remodeling. In the right image, the same data is presented before
and after random permutation of rows (random 1), of columns (random 2), and both (random
3). This should demonstrate the biological origins of patterns seen in the data. Indeed, the
data is clustered visually, only when the ”real” data was used (i.e. the ”clustered” column).
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4.3 Introduction to Biclustering

As we have seen in so far, the main method in the field of gene expression data analysis is
clustering. Clustering algorithms are used to transform a very large matrix of expression val-
ues to a more informative collection of gene or condition sets. The members of each cluster
are assumed to have a common functionality or form some biological module. Clustering is a
global technique and as such has several limitations. First, clustering partitions the elements
into groups, so each element may appear in at most one group. Second, when clustering
gene expression data, we group the genes according to their behavior over all experiments
(similarly for conditions). This may be problematic when working with large databases that
may include many different conditions, only few of which trigger some common gene behavior.

Suppose we are studying yeast cell biology. We may try to use gene expression data in
order to identify functional modules, i.e., large sets of genes sharing some important cellular
function or process. Clustering the genes may give good results as long as we are targeting
a very concrete subsystem. Indeed several works ([17, 6]) used clustering to vastly expand
our knowledge on cell cycle or stress response. However, many genes, even in our particular
example, are important to both stress response and cell cycle as the two systems are inti-
mately related, so clustering the joint data set would have to create some arbitrary partition
of the two systems, loosing information on their common parts.

A second example for the limitations of clustering comes from clinical studies of cancer.
We may cluster tissues of many patients suffering from several types of cancer in order to
try and identify clinically important subclasses. We may also try to compare our classes
with some additional information on the patients (age, sex, type of cancer, smoking years,
prognosis). When using global clustering of the tissues we can only find one (hopefully the
most significant) signal in the data, for example we may identify the different cancer types.
Other signals, which may be important, will be missed since we are associating tissues with
a single effect.

To try and address these shortcomings, the concept of biclustering was introduced to
gene expression analysis. Biclustering was first defined in the seventies [7] and was applied
to several domains before Cheng and Church [2] coined its usage in computational biology.
Given a gene expression matrix, we search for sub-matrices that are tightly co-regulated ac-
cording to some scoring criterion. We do not require the identified sub-matrices to be disjoint
or to cover the entire matrix. Instead we wish to build a diverse collection of submatrices
that will capture all the significant signals in our data.

Before going into details, we state again the basic reasoning of using biclustering and
the key differences between biclustering and standard clustering. Biclustering is a local
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technique by nature, i.e., we try to find local, significant signals in the data. Clustering, on
the other hand, tries to model the whole dataset by reducing it to a collection of subsets.
A successful collection of biclusters will provide a more detailed model of the data and can
uncover more biological implications of it. However, biclustering results will be harder to
interpret.

4.4 Cheng and Church’s Algorithm

The first application of biclustering to gene expression data was the work of Cheng and
Church [2]. Stating its goal as the ability to find signals more delicate than clusters, the
methodology is based on a simple uniformity goal (the Mean Residue Score, defined below)
and uses a greedy algorithm to find one bicluster. This process is repeated to produce a
collection of biclusters.

4.4.1 The Algorithm

Notations

• A = (aij) - The input matrix of expression data.

• R - The row set.

• C - The column set.

• AIJ(I ⊆ R, J ⊆ C) - Sub-matrix

• aIj =
P

i∈I aij

|I| - Sub column average

• aiJ =
P

j∈J aij

|J | - Sub row average

• aIJ =
P

i∈I,j∈J aij

|I||J | - Sub-matrix average

• RSIJ(i, j) = aij − aIj − aiJ + aIJ - The Residue Score of an element aij in a submatrix
AIJ

• H(I, J) =
∑

i∈I,j∈J

RS2
ij

|I||J | - The Mean Residue Score of the submatrix
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Observations

• A completely uniform matrix will score zero.

• A submatrix in which all entries are the sum of a column parameter and a row param-
eter (aij = bi + cj) would also score zero.

• A random sub-matrix (normally distributed with any parameter) would have the vari-
ance of the distribution as its expected score.

We define a δ bicluster to be a submatrix (I, J) for which H(I, J) ≤ δ. The biclustering
algorithm will search for a δ-bicluster assuming that the parameter δ was chosen appropri-
ately to avoid random signal identification. For example, we may choose δ as the minimal
(i.e. best) score of the output of a clustering algorithm.

The optimization problem of identifying the largest δ-bicluster (the one for which |I| = |J | is
the largest) is NP hard as can be seen by a simple reduction from BALANCED COMPLETE
BIPARTITE SUBGRAPH. We are thus interested in heuristics for finding a large δ bicluster
in reasonable time. We next present such heuristic which is a greedy algorithm in essence,
show how to speed it up and use it as a subroutine for finding many biclusters.

A naive greedy algorithm for finding a δ-bicluster may start with the entire matrix and
at each step try all single row/column addition/deletion. We apply the best operation if it
improves the score and terminate when no such operation exists or when the bicluster score
is below δ. However, simply recalculating all averages and mean residues for each operation
may be too expensive for large matrices. Cheng and Church’s algorithm uses the structure
of the mean residue score to enable faster greedy steps. The idea is based on the following
lemma:

Lemma 4.2 The set of rows that can be completely or partially removed with the net effect
of decreasing the mean residue score of a bicluster AIJ is :

R = {i ∈ I;
1

|J |
∑
j∈J

RSI,J(i, j) > H(I, J)}

In words, it is safe to remove any row for which the average contribution to the total score
is greater then its relative share. The same argument is correct for columns and gives rise
to the following greedy algorithm that iteratively remove rows/columns with the maximal
average residue score (Figure 4.12).

Note that since a 1 by 1 submatrix is always a δ-bicluster we should hope that the deletion
algorithm will terminate with a large bicluster. It is natural to try and add rows/columns
in an analogous way, using the equivalent lemma and algorithm (Figure 4.13):
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Input: Expression matrix A on genes S, conditions C
and a parameter δ.
Output: AIJ a δ-bicluster.
Init: I = S,J = C.
Iteration:
Calculate aIj, aiJ and H(I, J). If H(I, J) ≤ δ output I, J .
For each row calculate d(i) = 1

|J |
∑

j∈J RSI,J(i, j).

For each column calculate e(j) = 1
|I|

∑
i∈I RSI,J(i, j).

Take the best row or column and remove it from I or J .

Figure 4.12: Single node deletion algorithm.

Lemma 4.3 The set of rows (columns) that can be completely or partially added with the
net effect of decreasing the score of a bicluster AIJ is :

R = {i /∈ I;
1

|J |
∑
j∈J

RSI,J(i, j) ≤ H(I, J)}

Input : Expression matrix A, the parameter δ and I, J specifying a δ bicluster.
Output : AI ′, J ′ - a δ-bicluster with I ⊆ I ′, J ⊆ J ′.
Iteration
Calculate aIj, aiJ and H(I, J).
Add the columns with 1

|I|
∑

i∈I RSI,J(i, j) ≤ H(I, J).

Calculate aIj, aiJ and H(I, J).
Add the rows with 1

|J |
∑

j∈J RSI,J(i, j) ≤ H(I, J).

If nothing was added, halt.

Figure 4.13: Node addition algorithm.

This heuristic is not necessarily optimal for any situation. For example, the algorithm
presented here is tailored for cases where the number of rows is much greater than the number
of columns.

The Cheng-Church algorithm suggests two additional improvements to the basic deletion-
addition algorithm. The first improvement suggests a multiple node deletion in cases
where the data set is large. This is done by removing at each deletion iteration all rows/columns
for which d(i) > αH(I, J) for some choice of α. The idea is to perform large steps until
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the submatrix is relatively small and indeed it is shown that such steps can be done safely
(without increasing the score).

The second algorithmic improvement involves the addition of inverse rows to the matrix,
allowing the identification of biclusters which contains co-regulation and inverse co-regulation
(i.e., cases where two genes always change in opposite directions).

As mentioned in the introduction, the goal of a biclustering algorithm is to identify all
(or many of) the signals in the data set, so clearly, finding one bicluster is not enough. The
Cheng-Church solution to this requirement uses the δ-bicluster algorithm as a subroutine
and repeatedly applies it to the matrix. In order to avoid finding the same bicluster over
and over again, the discovered bicluster is masked away from the data, by replacing the
values of its submatrix by random values. One should note that this masking scheme lowers
the chances of finding overlapping matrices. The general biclustering scheme is outlined in
Figure 4.14.

Input : Expression matrix A, the parameter δ, the number of biclusters to report n
Output : n δ-biclusters in A.
Iteration
Apply multiple node deletion on A giving I ′, J ′.
Apply node addition on I ′, J ′ giving I ′′, J ′′.
Store I ′′, J ′′ and replace AI′′,J ′′ values by random numbers.

Figure 4.14: Cheng-Church biclustering algorithm.

4.4.2 Experiments

We next describe some of the experiments done by Cheng and Church to validate their ap-
proach. Experiments were done using two datasets, one of human lymphoma [1] and the
other of yeast data [19]. Working with the yeast data, the parameter δ was chosen to be a
bit more then the minimal score of the reported clusters. A large set of random submatrices
of varying sizes was then scored and compared to the selected threshold. As we can see in
table 4.9 , small δ-biclusters have a considerable chance of being random (15% for 3 by 6
matrices, 0.06% for 10 by 6 matrices), but larger δ − biclusters may be far from random.
The use of δ = 300 is justified by the negligible percentage of large random δ-biclusters with
a score lower than 300.

The results of the yeast data experiment by Cheng and Church were compared to the
results of Tavazoie et al. ([19]). As we can see in figure 4.15, 12 biclusters that were found by
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rows columns low high peak tail

3 6 10 6870 390 15.5%
3 17 20 6600 480 6.83%
10 6 110 4060 800 0.0624%
10 17 240 3470 870 0.002%
30 6 410 2460 960 < 10−6

30 17 480 2310 1040 < 10−6

100 6 630 1720 1020 < 10−6

100 17 700 1630 1080 < 10−6

Table 4.9: Score distribution on random submatrices. The rows correspond to the number
of rows and columns of the submatrices, the lowest and highest score, the score that was
given the most, and the percentage of submatrices with score below 300.

Cheng and Church subdivide Cluster 2, found by Tavazoie et al., into similar but different
sub-clusters. They also include 10 genes from Cluster 14 of Tavazoie et al. and 6 from other
clusters. All but one of the twelve clusters contain all 17 conditions, indicating that they
form a tight cluster, with respect to the genes included in the table.

In the right side of Figure 4.15 we can see biclusters with lower number of conditions.
They are also related to the Clusters of Tavazoie et al.. For example, Bicluster 93 corresponds
to Cluster 9 of Tavazoie et al.. Some biclusters have less than half of the 17 conditions and
thus represent shared patterns in many clusters discovered by using all the conditions.

In the second Experiment, Cheng and Church worked with data of human B-cell lym-
phomas ([1]) , consisting of 4026 genes and 96 conditions. One of their main hopes was
to be able to differentiate between different types of cancer by examining biclusters with
a relatively low number of conditions. In the left side of figure 4.16 we can see 12 of the
biclusters found. In order to compare their result with the hierarchical clustering of Alizadeh
et al., they considered how the found biclusters are divided by the major bipartition of the
hierarchical clustering. They defined the mix of a bicluster by the percentage of the genes
misclassified with respect to the bipartition. As we can see in the right side of figure 4.16,
biclusters with few conditions or small row variance contain finer information than the one
corresponding to the main bipartition.
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Figure 4.15: Source: [2]. In the left image are 12 biclusters with a large number of conditions,
and in the right image there are 6 biclusters with a lower number of conditions. The biclusters
numbers indicate the order in which they were discovered.
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Figure 4.16: Source: [2]. In the left image are 12 biclusters discovered in the order labeled
from the human expression data. Mirror images can be seen in most of these biclusters. In
the right image is a plot of the first 100 biclusters in the human lymphoma data. Three
measurement are involved. The horizontal axis is the square root of the row variance. The
vertical axis is the mix. The digits used to represent the biclusters also indicate the size of
the condition sets in the biclusters. The digit n indicates that the number of conditions is
between 10n and 10(n + 1) percent of the total number of conditions.
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