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11.1 Multi-level Modeling of Transcription Programs

11.1.1 Overview

A transcription program is the process of gene expression regulation by transcription factors.
Our goal is to model a transcription program in details, in a way that corresponds to the
biological reality. The transcription depends on two factors:

1. Concentration of TFs (dose)
2. DNA binding sites in the promoter (TF-gene affinity)

In this work the dependence on these factors is modeled by a two variables function called
DAR function (Data-Affinity-Response) d(d, o) where d is the TF dose and « is its affinity.
Previous works modeled the transcription using gene networks, where every gene is controlled
by a set of other genes (for example the boolean model [1]). This model is depicted in Figure
11.1. The graph was evaluated using genes expression levels.
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Figure 11.1:

1Based partially on scribes by Igor Bogudlov and Vladimir Koushnir, February 2000 , Amos Tanay and
Eyal Zach, January 2002 and Tamir Tuller and Koby Lindzen, July 2002
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In this work the interesting variable is the amount of active protein, instead of gene
expression which measures mRNA level. The suggested model is depicted in Figure 11.2.
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Figure 11.2:

In Figure 11.3 the expression level of gene ¢ is controlled by three sites, s; sy s3, via
a regulation function f,(*,*,x*). Each site activity is determined through a DAR function,
according to TF doses and affinities.

Assumptions

We would like to learn the DAR functions of all the transcription factors, using mRNA
expression levels and prior knowledge about TF-gene affinity. To reduce the problem dimen-
sionality several assumptions about DAR functions are made:

1. Monotonicity - DAR functions monotonically increase with increasing dose and with
increasing affinity.

2. Affinity and expression levels attain discrete values (they will be treated as sequential
numbers, specifying their relative ranking).

3. The same DAR function for one TF applies to all of the genes.

The monotonicity assumption of DAR functions is backed up by experimental data, as seen
in the monotonicity of TF-DNA interaction - GCN4 in Figure 11.4 and the monotonicity
in TF-DNA interaction - MIG1 in Figure 11.5. Under these assumptions the problem of
learning the DAR functions is solvable in polynomial time.
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11.1.2 The full picture

We'll examine a regulation network of genes, where expression levels get discrete values. e,
the expression level of gene g, is usually modeled as a function of ¢’s regulator genes expres-
sion levels, e, = f,(eg,, -, €4, ), OF as a discrete distribution Pr(e, | ey, .., €4, ). Addition of
dose and affinity to the model follows more accurately the biological process, as transcrip-
tion factors are usually the regulator of the transcription, and not genes themselves. The
introduction of these hidden variables adds complexity to the model: the dose and affin-
ity values have to be learned. These values will be initially estimated, and the model will
be optimized using this estimation. Then these parameters will be re-estimated using the
optimized model, and so on alternately, as in the EM procedure.

Activity level of a TF is evaluated as the sum of expression levels of the genes which are
targeted by this TF. A first estimation of TF-Gene affinity levels could be derived from
chip-on-chip experiments. It could also be derived from a PSSM matrix of the relevant
TF. Precise information about active protein doses is not yet available. The doses could be
initially approximated by mRNA levels.

Mean Based Activity

A method of measuring activity level is based on [3]. First the expression matrix is normalized
per condition. To estimate the activity of a TF we’ll examine a subset G of the genes which
are the regulatees of this TF. The mean expression of these genes is distributed normally.
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Figure 11.4: Ranked GCN4 targets from ChIP on chip data (Lee et al. 02) Expression mean
from Ideker et al.
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Figure 11.5: MIG1 consensus variants hits. Expression Mean from Ideker et al.

We'll select a subset S of the conditions, whose mean deviates significantly from the total
mean. Finally use a z-score on S as the activity of GG, and of the TF.

The Activity Score

We would like to give the estimated activity level a log likelihood score. Similarly to SAMBA
[2] we’ll examine the activity relatively to a random background model, and give the activity
a p-value based on a statistical test.

The ASAP Score

The ASAP (Activity Score Approximated P-val) score calculates a p-value on the distribution
of weights in a gene set. The weights don’t distribute normally, so a p-value will be calculated
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heuristically. The weights distribution function is learned by sampling gene sets of the same
size. Every condition is examined separately, and the scores are summed over all conditions.
This process is depicted in Figure 11.6
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Figure 11.6:

Active TF discovery framework

In order to asses TF initial doses and/or TF-gene affinities, we assume that a functionally im-
portant TF is characterized by a typical promoter motif. The following framework discovers
active DNA motifs, and assesses their relative activity across experimental conditions.

To measure the activity of a binding site motif, we first identify the set of genes that contain
it in their promoters. We then evaluate the level of co-expression of that set in the data using
a novel scoring method, which takes into account the individual expression distribution of
each gene and condition. Motifs are defined in a more descriptive way than the commonly
used PSSMs by taking into consideration their location distribution along the promoter. This
method is used in a screening procedure that combines exhaustive search for k-mer seeds
and their refinement to high-activity motifs. This procedure may be useful independently of
the complete TP model inference algorithm. A position specific substitution matrix (PSSM)
is a standard way of representing DNA motifs. A PSSM P is a vector of distributions over
ACGT denoted PI0...1] : ACGT — [0,1]. In practice, many binding sites motifs tend to
concentrate in particular regions within the promoter, as in Figure 11.7. To model this
phenomenon, we extend the standard PSSM definition by adding to it a distribution of its
location: A Localized PSSM (LPSSM) is a PSSM with an additional location distribution
P,. The likelihood of an LPSSM match with a sequence s in location j is simply the product
of profile probability and location probability: Pr(P,s, j) = Pi(j) [1y<i<; P(i, s[i + j]). The
matching likelihood of a string s and an LPSSM P is M L(P, s) = max; Pr(P, s, j).

The LPSSM model is found in an EM-like motif optimization algorithm, which is detailed
in [13].
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Figure 11.7: Activity score of known yeast PSSMs localized to different offset windows (100
bp)

11.1.3 Learning Dose-Affinity-Response Function

We would like to evaluate a model score using the gene expression levels, to
determine how well the model predicts experimental data. For example, the
prediction for expression level of gene ¢ which depends on 3 TFs is e, =
Fg(DARtf1<th1, Ag:tfl)a DARth(thg, Ag:tf2)> DARtfg(thg, Ag:tfg)), where D is dose and
A is affinity (See Figure 11.8).

TF1 dose TF2 dose TF3 dose
Active
TF Doses

TF- gene affinity

\ 1 ’/ — Promoter

Site
Activity

} Promoter organization |r\

—. O\\" l_’ Transcription

Predicted Expression = F(bind(TF,), bind(TF,), bind(TF))

Figure 11.8:

Scoring a topology

We first focus on the dependency between sites and genes. We assume that both site activities
and transcription rates attain values in a discrete alphabet C' = {1..C} and that their
regulatory logic is a collection of unconstrained combinatorial functions. Specifically, the
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regulation of g is assumed to be via a regulation function f, : C IN@G)I — C which determines
the transcription rate of g as a function of the activity levels of its regulator sites, N(g).

A transcription program topology is a bipartite graph M = (T, V,S) consisting of a
set T of active TFs, a set V' of genes and a set S of binding sites (or edges) connecting TFs
and genes. Assume we are given a topology M and a set E of experimental conditions, where
each condition u € U has a vector of gene expression levels e¢*. ey € C' is the expression
level of gene ¢ in condition v and E = {e“|u € U}. Suppose we also have the set A of
(measured or predicted) activity levels r of each site s € S under each condition u € U.
A topology score will be a real valued function in the form of ¢(M, E, A), that assesses the
dependencies among site levels and gene expression levels given the topology M. The score
is decomposable - it can be expressed as a sum of separate contributions from individual

genes, i.e. ¢(M,E,A) =" 1 O(rnw), €v)-

Denote by n? the number of conditions u € U in which v’s regulator sites N(v) attain
the specific combination of activity values r (7 is a vector of size N(g)). Denote by n%/ the
number of conditions meeting the previous criterion which also have e}; = j. Also denote by
n the number of conditions |U] and by n*’ the number of times e equals j. For a given
gene g, we’ll examine how many conditions in U achieve transcription rate ¢ € C. This is
done once using the experimental data, and once under the topology model. The results
of this counting are two vectors of length |C|, which express the distribution of expression
levels under the model and in the data. These vectors will be compared using their mutual
information. Mutual information under a combination of regulator sites activity values r is

defined as

v,j

nvd - pvd n’ n’ nod  nY
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Expression fit score of gene g equals x? value of the mutual information between the predic-
tions and the observations. Model Score is then the sum of fit scores for all the genes.

Optimizing DAR functions

We are given a transcription program M, site affinities oy, and a set of experiments U =
(e*,d}). The goal is to find a set of DAR functions, giving rise to site activities A =
r | uw e U, s € S, such that the topology score ¢p(M, E, A) is optimized.

Suppose we have determined the DAR functions for all transcription factors except for
one. We will optimize the DAR of the remaining TF, while fixing all the others. We represent
the dose-affinity plain as a matrix with a column for each affinity value and a row for each
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dose value (see Figure 11.9). The following algorithm represent a single DAR optimization
as a longest path problem in an appropriate grid graph built over that matrix.

For simplicity we’ll assume that the DAR function has two activity levels. Suppose that
we have a partial DAR model except for one DAR function d;. Let w...uy be the set of
experiments sorted by increasing doses, and let gy, ...g, be the genes regulated by TF t via
sites s1, ..., S, respectively, where genes and sites indices are sorted by increasing site affinities.
We build a grid graph with horizontal edges between adjacent genes,((u;, ¢;), (4}, gi+1)), and
vertical edges between adjacent conditions, ((u;,¢;), (uj—1,9;)). We'll add a new artificial
condition w41 and a new gene g, to be consistent on the borders of the graph. A
horizontal arc ((u;, g;), (u;, gi+1)) represents a dose threshold between the low and the high
values of the function J, in the i’th affinity level. Given this dose threshold we can determine
the contribution of gene g; to the total score, ¢(ryg,),€,). This score will be used as the
weight of the horizontal arc ((u;, ¢;), (uj, gi+1)). The weight of vertical arcs is set to zero.

A path in the grid from (uyj4+1,91) to (41, gny1) defines the monotone DAR function o,
fully, by determining a dose thresholds for every affinity level (See Figure 11.10).
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Figure 11.10:

We find the optimal DAR function by solving the longest path problem in the directed
acyclic graph. This could be done in O(E + ViogV') [4]. When the DAR function has more
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than two activity levels we’ll build a similar grid graph in a higher dimension. There is an
exponential dependency on the number of activity levels.

To optimize the set of DAR functions we’ll start with some arbitrary set of DAR functions
and repeatedly select one TF, re-optimize its DAR function, and add it to the current set
of functions. The new obtained set must have a score that is equal or higher than that of
the previous one. Hence, the whole process is monotonically improving, and convergence to
a local optimum is guaranteed. Optimizing simultaneously more than one DAR function is
NP-Hard [13].

Dose optimization

We would like to tune the initial evaluation of TF doses. This is done heuristically by
repeatedly optimizing the dosage of one TF in one condition at each step. In a given
experimental condition the dose of a TF is the same across all genes. Our goal is to find
an ordered list of the conditions according to the TF doses. To improve a given conditions
list we’ll select a pair of conditions wuy, us such that swapping their locations in the list gives
the maximal raise to the topology score ¢ (See Figure 11.11). Applying this step repeatedly
converges to a local optimum.
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Figure 11.11:

By alternating between model optimization and dose optimization, we finally converge
to a locally optimal solution.

11.1.4 Results

The data used in the results section are 61 gene expression profiles on yeast carbohydrate
metabolism from [9], [12], [5]. TF binding chip? data was taken from [11]. Length of
promoters: 600bp upstream. Known PSSMs were taken from TRANSFAC.
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Table 11.1: Transcriptional program for the Galactose system
Motif Activity | Remarks
CGG(11IN)CCG | 30.8 GAL4
TGACTCAWT | 22.57 GCN4
TGGGGTA 22.13 ADR1/MIG1
CANCCCC 26.92 U1l
CCG(BN)CCG | 26.6 U2
TT(ON)CCCC | 22.03 U3

The whole process of finding k-mers, motif creation, and optimizing DARs and doses was
applied to the data, using only 23 experiment profiles from Ideker et al. Thereafter we
applied active TF screening framework, by checking the contribution of each TF to the final
score. If the contribution is neglegable, this factor can be removed. The algorithm detected

6 sites above noise level. 3 of the detected sites are known, and 3 are putative sites. Results
are described in Table 11.1

The most significant discovered factor is GAL4. Figure 11.12 describes the genes controlled
by this factor. The isolated genes in the figure are controlled solely by GAL4, and the rest
of the genes are controlled by GAL4 and by additional factors, as depicted.

Xt pairs <Z>

Figure 11.12: The galactose system: GAL4 regulated genes

The DAR functions discovered for these factors as well as the functional role of the factors
are shown in Figure 11.13. Gene sets that are activated by the same factor are related to
a certain functionality, as follows from a GO score. The contribution of the factors to the
total score is shown in Figure 11.14.
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Figure 11.14: Testing TF's contribution

A different method of motif detection was applied in [10] on yeast data independently. This
method uses cross-specie DNA comparison to find significant motifs. The results validated
the discovery of one of the discovered sequences (U2), as seen in Figure 11.15.

Wrap-Up and future work

Basic network models that we have already mentioned in the overview section make two
critical assumptions on the regulatory system: a) the regulators states can be represented
using the expression rate of the genes encoding them, and b) the relation between a
potential regulator and a regulatee is a binary attribute (either there is an arc or there is
none). The described model relaxes both assumptions in an attempt to build a mecha-
nistic model which can follow more faithfully our knowledge on biological regulatory systems.

One of the key points of the model is exposing the hidden variables - activity levels of
regulators sites - that are predicted by the model from TF doses.

Future work may include using more biological data sources and applying more biological
constraints (for example, constraining the combinatorial functions to a class of biologically
reasonable logics (Cf. [6])).
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Table & discovered by analysis
No. Category* Category-based motift Interpretation Sconet
; o Exp.: cluster 37 YCCCTTAAA New: cluster 37 (Msn2/4-like) (8.5)
2 ChIP: FHL1 in YPD ATGTACGGATG New: Rap1 altemate 7.6]
: o oo oy s o
5 GO: g s T New: gycolysisigycogenssis B0
I’ Exp.: cluster 37 CGGRNNNCGG New: cluster 37 1]
9 ChiP: STES2 in butanol fT Known: Teo 4
‘Cat!qtfvsedw's&n: . o B ) ) o ’ )
1Symbols as in Tables 2 and 3.
$Category-based enrichment score.
Motif Total Activity | Renfarks
C6G(11N)CCE | 30.8 AL4
TGACTCAWT | 22.57 /e = =
/ Sequencmg and comparison of
TGGGETA 22.13 = = =
/ yeast species to identify genes
a2 S kit and regulatory elements
(SN)CCG 26 6 l Manolis Kellis* , Nick Patterson*, Matthew Endrizzi*, Bruce Birren* & Eric S. Lander" {
TT(ONCCee | 22.03 NATURE | VOL 423 | 15 MAY 2003 | www.nature.com/nature

Figure 11.15: Validation of CCG(5N)CCG
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11.2 Interactive Inference and Experimental Design

This section is based on a paper by Iddeker, Thorsson and Karp [8]. Our goal is to infer
the underlying genetic network from a series of steady-state gene expression profiles for a set
of perturbations. We assume the Boolean genetic network model for the gene network. We
restrict ourselves only to acyclic networks. This has a technical advantage: in the case of
acyclic networks there is no need for assumptions about the time delays of the components.
From the other hand acyclic networks description will mostly stay biologically informative:
even if most networks do have feedback loops, there are generally few of them, and the main
pathway is often acyclic. (The analysis of cyclic networks is complicated by the possibility
of oscillatory behavior. For cyclic networks, one may adopt either a synchronous model in
which each component has a fixed, known delay, or an asynchronous model in which the
delays are unknown and even nondeterministic.)

The proposed strategy is based on repeated and interactive application of two analytical
methods: the predictor and the chooser. According to this strategy, the underlying network
of interest is exposed to an initial series of genetic and/or biological perturbations and a
steady-state gene expression profile is generated for each of them.

Next, a method called the predictor is used to infer one or more hypothetical Boolean
networks consistent with these profiles. When several networks are inferred, the predictor
returns only the most parsimonious, as measured by those networks having the fewest number
of interactions.

Depending on the complexity of the genetic network and the number of initial perturba-
tions, numerous hypothetical networks may exist. And this is why, a second method called
the chooser is used to propose an additional perturbation experiment to discriminate among
the set of hypothetical networks determined by the predictor.

The two methods may be used iteratively and interactively to refine the genetic network:
at each iteration, the perturbation selected by the chooser is experimentally performed to
generate a new gene expression profile, and the predictor is used to derive a refined set of
hypothetical gene networks using the cumulative expression data.

11.2.1 The Predictor

The predictor is a method for inferring Boolean networks using the expression data given
by the matrix E. We seek for a Boolean function f, independently for each node a,. To
this end, we first pick the input variables to f,: we determine a minimum set s,, of nodes,
whose levels must be input to f,, in order for s,, to explain the observed data E. Then, we
construct a truth table using these nodes as inputs.

Specifically, the function for node a,, is determined according to the following procedure:

1. Build sets S;; of nodes with different values in rows 7 and j
Consider all pairs of rows (7, j) in E in which the expression level of a,, differs, excluding



14 Analysis of Gene Expression Data (©)Tel Aviv Univ.

rows in which a,, was itself forced to a high or low value. For each such pair, find the
set S;; of all other nodes whose expression levels also differ between the two rows (3, j).
Because the network is self-contained, a change in at least one of these genes or stimuli
must have caused the corresponding difference in a,. Therefore, at least one node in
this set must be included as a variable in f,.

2. Find a minimum cover set S, of {S;;}
Identify the smallest set of nodes S,,;, required to explain the observed differences over
all pairs of rows (i, j), i.e., Spin is such that at least one of its nodes is present in each
set S;;. This task is a classic combinatorial problem called minimum set cover, which
can be solved by a branch and bound technique. More than one smallest set S,,;, may
be found, in which case a distinct function f,, is inferred and reported for each such
set.

3. Determine truth table of @, from S,,,, and F
Once S, has been determined for the node a,,, a truth table is determined for f,, in
terms of the levels of genes and/or stimuli in S,,;, by taking relevant levels directly
from E. If all combinations of input levels are not present in E, the corresponding
output level for gene a,, cannot be determined and is represented by the symbol 7*”
in the truth table.

If a node has more than one minimum cover set, several networks are inferred, each with
a distinct function corresponding to each set. If several such nodes exist, a separate network
hypothesis is returned for each combination of functions at each node. The minimum set
cover ensures that only the most parsimonious networks will be returned.

11.2.2 The Chooser

The chooser procedure takes as its input the L hypothetical equiprobable networks gener-
ated by the predictor. Its goal is to choose a new perturbation p, from a set of allowed
perturbations P, which best discriminates between the L hypothetical networks. Allowed
perturbations are the practical once: only non-lethal perturbations, with just several genes
to be forced may be performed.

The following entropy-based algorithm is used for the chooser:

1. For each perturbation p € P compute the network state resulting from p for each of
the L networks. A given perturbation would result in a total of S distinct states over
the L networks (1 < § < L). Evaluate the following entropy score H,, where [, is the
number of networks giving the state s (1 < s < 5), as follows:
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Hy= =3 Zlog(7) (11.1)
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2. Choose the perturbation p with the maximum score H, as the next experiment.

The entropy measure H,, describes expected gain in information when performing the
perturbation p. The more distinct states the networks produce, the more information is
obtained.

According to the predictor procedure, a network may have the symbol in its truth
table, meaning that any function value is equally probably for a given node and input. In
this case the chooser randomly assigns either 0 or 1 to to replace the ”*”. In addition, when
L is large, it may be infeasible to calculate the entropy for all the hypothetical networks. In
this case the entropy is calculate by Monte-Carlo procedure, over a random sample.

The best perturbation returned by the chooser is then performed on the network, and the
new measured gene expression values are added to E. A new, narrower set of parsimonious
networks is then inferred by the predictor, and so on. This design process proceeds iteratively,
choosing a new perturbation experiment in each iteration, until either a single parsimonious
network remains (L = 1), or no perturbation in P can discriminate between any of the L
networks (H, = 0).

99 %99

11.2.3 Evaluation of the Technique

A series of experiments have been performed by the authors of [8] to evaluate the applicability
of the method. The evaluation criteria and results are presented below.

Predictor Evaluation

The predictor procedure was evaluated using both random and non-random simulated net-
works. In random simulations acyclic genetic networks of size N and maximum in-degree
k were randomly generated. The expression matrix E consisted of the wild-type (without
any nodes forced to high or low) and all single perturbations. In addition, a number of
non-random networks, modelled after known biological networks were simulated. For each
such network, the most parsimonious models were created by the predictor.

The similarity between each inferred network and its target was evaluated with regard to
sensitivity, defined as the percentage of edges in the target network that were also present in
the inferred one, and specificity, defined as the percentage of edges in the inferred network
that were also present in the target network. Figures 11.16 and 11.17 show the results.

Each measurement is an average over 200 simulated target networks. As one can see, the
specificity was always significantly higher than sensitivity, and both steadily decreased as N
and k were increased.
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The number of nodes whose functions had only a single minimal solution was approxi-
mately 90% for k = 2, independent of N. Thus, although the number of inferred networks
grew exponentially with N, this number was subjected to ambiguities at just 10% of the
nodes.
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Figure 11.17: (a) Percentage of networks with one solution (b) Number of inferred networks
vs. number of nodes.

Chooser Evaluation

In order to evaluate the performance of the chooser the following simulation was performed:
A network with 20 nodes, 24 edges and maximum in-degree 4 was generated. The expression
matrix E consisted of the wild-type and all single perturbations. Next, 8 parsimonious
networks were inferred, all with 21 edges, which were consistent with E. The chooser was
used to select a double perturbation which had maximal entropy score over the 8 networks,
and the process was repeated iteratively until only a single network was inferred. The results
are summarized in the figure 11.20. They show a pattern of jumps and decays in the number
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69 (0.7) 9%*10~7 38 (04) 31(0.3) 35%

Figure 11.19: Summary of predictor evaluations.
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of network solutions, correlated with an increase in the number of inferred edges.
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Figure 11.20: Source: [8]. Summary of chooser evaluation: progress through experimental
design.

Lower Bound Comparison

The following theorem, due to Hertz, specifies a lower bound on the amount of data needed
to specify a network:

Theorem 11.1 ([7]) A lower bound on the number of gene expression profiles which must be
observed in order to uniquely specify a genetic network with N nodes and maximum in-degree
k where N > k is klogs(%).

It is therefore interesting to characterize the behavior of the predictor-chooser strategy with
respect to the lower bound. For this purpose 50 networks for each of several values of N with
k = 2 were generated. The wild-type perturbation and all single ones were simulated on each
network. The chooser was used iteratively in conjunction with the predictor to refine the
network hypotheses. The results, shown in Figure 11.21, indicate a logarithmic behavior.
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Figure 11.21: Source: [8]. Average number of perturbations vs. network size N for k=2 with
bars indicating standard error.

Future work

There are number of extensions that may be done for the described Chooser/Predictor
method:

First, in nearly all cases of practical interest some knowledge of network genes and inter-
actions is available. In this regard, pre-existing information about the network may be
incorporated during the inference process.

Second, the observed levels of gene products and other macromolecules may be such that a
two-level description misses important features of the network. In these cases, a multi-level
description (greater than two) may be adequate to describe the data. It may also be possible
to extend the method for use with continuous (rather than discrete Boolean or multi-level)
gene expression data.

Third, as was already mentioned, only genetic networks which do not contain cycles were
considered. This restriction may be sufficient to describe certain biochemical networks, but
biological examples of cyclic gene networks are also known. Therefore, another future direc-
tion is to allow cyclic solutions in the inference procedure.

Fourth, we currently do not allow for noise or other imperfections in the gene expression data
sets used for network inference. Gene expression levels measured with DNA microarrays or
other technologies are subject to an appreciable amount of experimental variability, and the
impact of this variability on our method should be evaluated. May be inference method
could be modified to account for noisy data.

Finally, proposed methods may be used in conjunction with existing software for grouping
genes. For instance, a clustering algorithm might be used to reduce the apparent size of the
network by grouping genes according to similar expression level over the series of perturba-
tions performed, then one representative from each cluster could be supplied to the network
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inference method.
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