Analysis of Gene Expression Data Spring Semester, 2005

Lecture 10: May 19, 2005

Lecturer: Roded Sharan Scribe: Daniela Raigman and Igor Ulitsky

10.1 Protein Interaction Networks

In the past we have discussed different types of biological networks. For example, in the
context of gene expression we discussed networks in which each node represents a gene and
an edge represents a similarity of gene expression profiles. In this lecture, protein interaction
networks will be discussed. Protein interaction networks are graphs in which each node
represents a protein, and an edge between two nodes represents an evidence for the presence
of a physical interaction between the two proteins. A small subset of such a network can
be seen in Figure 10.1. For example, such a physical interaction can be a kinase protein
which phosphorylates another protein. The network does not contain information about the
nature of the interaction (activation, de-activation, two proteins which participate in the
same complex, etc.). The use of protein interaction networks has recently expanded due
to the development of high-throughput technologies measuring these interactions, and the
availability of large data sources containing interaction evidence for different species.

10.2 High-Throughput technologies for measuring protein-
protein interactions

10.2.1 Yeast Two-Hybrid

The Yeast Two-Hybrid method [3] for detection of protein-protein interactions utilizes the
fact that Transcription Factors commonly require two domains - a DNA binding domain and
an activation domain promoting transcription. In order to find out which proteins interact
with a certain protein of interest (termed bait), the bait is fused to a DNA binding domain
which binds to the promoter of a reporter gene, while the other proteins (termed prey) are
fused with an activation domain. When a physical interaction between the bait and some
prey occurs, an expression of the reporter gene can be detected. Even transient interactions
can be detected using this method. The method is summarized in Figure 10.2.

10.2.2 Protein colmmunoPrecipitation (colP)

In this method, the bait protein is marked by a tag. At a certain point in time an antibody
which recognizes the tag is used to trap the bait protein and precipitate it. In the precipita-
tion process any protein which is in a physical contact or in the same complex with the bait
is precipitated as well. Following this, mass spectrometry is used to determine the identity
of the prey proteins. The advantage of this method is in its ability to discover interactions
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Figure 10.1: A small part of the budding yeast (Saccharomyces cerevisiae) protein interaction
network [].
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Figure 10.2: The Yeast Two-Hybrid technology for detecting protein-protein interactions.
An interaction between a protein containing a DNA binding domain (bait) and an activation
domain (prey) can be detected by measuring the expression level of the reporter gene.
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between a single bait and multiple prey proteins which require no manipulation. The draw-
back here is that it is unknown which protein has been in a direct physical contact with
which protein. Direct interactions can not be distinguished from interactions mediated by
other proteins in a complex. A summary of this method can be seen in figure 10.3.
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Figure 10.3: The colmmunoPrecipitation technology for detecting protein-protein interac-
tions. A binding site for an antibody (TAP epitope) is inserted into the bait protein and it
is used for precipitating proteins found in complex with the bait in the cell.

10.3 Scale-Free Networks

There are multiple ways by which networks can be characterized. One way is to analyze
the network by the distribution of the node degrees. Recently it was noticed that most
naturally occuring networks are scale-free [9]. Scale-free networks are characterized by a
small number of high-degree nodes, which are termed hubs, and a large number of small-
degree nodes. The distribution is of the form P(k) = k¢ where ¢ is a constant. This in
contrast to a random graph, where the degree distribution is binomial. The scale-free nature
of the protein interaction networks (¢ ~ 2.5) can be seen in Figure 10.4.

10.4 Data Processing

10.4.1 Protein Interaction Data Quality

Using protein interaction data, we would like to be able to infer biological complexes and
pathways, uncovering the cellular machinery. However, the interaction data is noisy and
incomplete, an issue that must be addressed for all purposes.

Figure 10.5 shows the overlap between interactions discovered in different experiments in
yeast. The overlap is very small, even considering the fact that there is an estimated number
of 20,000 interactions in yeast. It is currently believed that only about 50% of interactions
are known, and that of the known interactions about 50% are incorrect.
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Figure 10.4: Distribution of node degrees in networks constructed from different large-scale
experiments in yeast (log-scale). In all the experiments, regardless of the technique, linearity
is maintained
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Figure 10.5: The overlap between the various studies containing protein interaction data
Ito:[10], Uetz:[6], Fromont:[5], Newman:[4],.

10.4.2 Noise and Reliability Estimation
Study Reliability Estimation

One method of estimating the credibility of the data is to use an independent dataset, and
estimate the percentage of true interactions, denoted as r (referring to the reliability of the
data) . The assumption, based on several experiments, is that there is a correlation between
expression similarity and physical interaction, meaning that a pair of proteins which interact
are likely to have similar expression patterns for their corresponding genes. Under this
assumption, for each interaction the correlation between the expression of the genes which
code for the interacting proteins is measured. The correlations are divided into k bins. In
each bin we expect to see true interactions (with probability r) and non-true interactions
(with probability 1 — 7). Let us denote by p the probability of a true interaction being in
the k-th bin, and by ¢; the probability of a non-interaction being in the k-th bin (of size ny).
Pk = 1.>rq = 1. ps and gs are assumed to be independent. The value of r is picked
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such that the the likelihood of the data is maximized:

L(r) =] (rpx + (1 = r)q)™

The reliability estimation results for several major studies can be seen in Table 10.1.

Table 10.1: The reliability (r) of protein interaction studies.
’ Data H Interactions ‘ r ‘

Uetz 1436 0.53
Ito2 1469 0.56
Ito8 276 0.88
TAP 17962 0.59

Edge Reliability Estimation

Another approach is to estimate for each interaction the probability that it is a true interac-
tion. This is done using SVM as a classifier which can classify interactions as being true or
false. For each interaction a vector of information is constructed : the number of times the
interaction was observed, the gene expression correlation, the number of common neighbors
of the interacting proteins have in the interaction network, etc. The information vectors are
used as the input data for the classification, and the classifier is trained using a training set
- interactions for which the true or false nature is known.

Logistic Regression

Instead of an SVM classifier, logistic regression can also be used for the classification. The
1

logistic function P(z) = logit(x) = 17,= has a sigmoidal form (Figure 10.6). The motivation
behind the use of the logistic function for classification is that the more evidence we have,
the less each individual evidence contributes to our decision. The logistic function is a
discriminative model - it models the probability of the label (true or false). The posterior
belief is modelled using the logit function. Parameters are learned using a training set, and
the given a new observation x it can be classified as being true or false. The learning of
the parameters is done by maximizing the likelihood of the data. The advantage is that the
likelihood function in this case is concave, and therefore the best parameters can be found

using a greedy algorithm.

10.5 Algorithms on Single Networks

10.5.1 Pathway Extraction

Once we obtain a processed network with a probability assigned for each edge, we want to
find pathways (signalling pathway, metabolic pathways, etc.) in the network. A pathway is
a heavy path in the network (a path with high-probability edges). In addition, there can be
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Figure 10.6: The logistic function.

different constraints on the path we are looking for. For example. For instance, we would
like to be able to find a path which begins with a trans-membranal protein and ends with a
transcription factor.

Color Coding

The problem of finding a simple path of a maximal weight is NP-Hard (by reduction from
Hamiltonian Path). However, a probabilistic algorithm can be used to solve the problem
correctly with high probability.

The idea of Color Coding [1] is as follows: We paint each node using a random color out
of k possible colors (where k is the length of the path we are looking for). If we find a path
in the colored graph which contains k different colors, then it is necessarily a simple path
(no node is visited twice). Dynamic Programming can be used to find such a path.

Since the coloring is performed at random, it is possible that there exists a simple and
heavy path of length k, but we colored two or more nodes in that path using the same color.
The probability of that is (:—,L) which is approximately e~*. Therefore, we would have to
try e* different random colorings in order to obtain the path of a maximal weight with high
probability.

The color coding algorithm can be easily expanded to include different constraints with
biological motivation:

e One can force the algorithm to find a path starting with a trans-membranal protein and
ending with a transcription factor, by changing the start and end conditions.

e One can force the path to contain a specific protein by coloring it with a unique color.

e One can force the path to contain exactly one protein which belongs to a specific group
(for example transport proteins) by coloring the group in a unique color.

e Other contraints can be added to the Dynamic Programming logic.

Results and Validation

There are two ways to evaluate path extraction results. One approach is to show that the
weights of the paths are significantly high. For each path found, a path weight-based p-
value is calculated by comparing with best paths in random graphs with the same degree
distribution. Another is to show functional enrichment found in the proteins of the obtained
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path. The results of such analysis can be seen in 10.7. Biological examples of comparisons
between the known paths and paths extracted using the Color Coding algorithm can be seen

in Figures 10.8 and 10.9.
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Figure 10.7: The assessment of the quality of the discovered pathways. Over 60% of the
discovered pathways have a p-value smaller than 0.05 under both criterions.
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Figure 10.8: A comparison of the path obtained using the pathway discovery algorithm with
the known pathway of MAP Kinase. a The known pathway. b The discovered pathway when
forcing the same start and end points and the same length. The genes in bold designate
genes common to the two paths.
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Figure 10.9: A comparison of the path obtained using the pathway discovery algorithm
with the known pathway of Pheromone Response a The known pathway. b The discovered
pathway when forcing the same start and end points and the same length. The discovered
path contains proteins which are involved in pheromone response, but have a secondary role.

Segmented Pathways

When dealing with signal transduction pathways, we want the first protein in the path to
be a membranal protein, and as we go down the path we want the obtained proteins to
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become localized closer to the nucleus. Data about protein localization assayed in vivo can
be incorporated to meet this demand. In addition to the color coding, each protein is given
a number based on its proximity to the nucleus. When doing the Dynamic Programming,
we will demand that the path is non-decreasing in terms of protein numbers. This approach
was tested on known pathways and found to improve the results, as shown in Figure 10.10.
In addition, this allows us to use less colors in the color coding.
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Figure 10.10: Performance comparison of the algorithm using segmented pathways (Three
levels - membranal, cytoplasmatic, nuclear) as opposed an algorithm using simple pathways.
Using segmentation, even as simple as this, improves performance.

Interval Constraints

Instead of assigning a number to each protein, it is possible to assign an interval. A path is
said to be consistent if the lower bounds of the intervals are non-decreasing. The Dynamic
Programming algorithm can be altered to handle intervals.

10.5.2 Extraction of Complexes

A complex is a set of proteins joined together to form a cellular machine. As a path in the
network represents a pathway, a heavy subgraph in the network may represent a biological
complex.

For further information on this topic refer to [§].

10.6 Algorithms on Multiple Networks

So far we have discussed construction and interpretation of single protein interaction net-
works. Now we shall discuss what can be done when we have more than one network. If
a complex or a pathway are conserved in more than one network, then it is more likely to
be true. When defining similarity between complexes or pathways in different networks, we
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want a similarity on the protein-sequence level, as well as on the network topology level. An
example of such similarity can be seen in Figure 10.11.
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Figure 10.11: The homology between parallel pathways in bacteria and in yeast.

10.6.1 Network Alignment

We define a product graph as follows: Each node contains a set of similar proteins (by
sequence similarity), one from each species. An edge between two nodes represents a con-
served interaction between the proteins in one node and the proteins in the other node. A
toy product graph example can be seen in Figure 10.13 [7].

10.6.2 Motivation

The above method can be used to produce different kinds of biological insights:

e Predict protein function

e Discover connections between known functions

e Decide on the best functional ortholog out of several sequence-match orthologs.

e Predict interactions in one species based on interactions between similar proteins in other
species.

10.6.3 Validation of complexes

Validation of the results can be done in several ways.

Comparison to manual annotation

A predicted complex is said to be pure if at least half of its members belong to the same
manually annotated complex. Out of the predicted complexes [7] 94% were pure, compared
to 83% when applying the algorithm to yeast only.



10 Analysis of Gene Expression Data (©)Tel Aviv Univ.

[a) Pathway alignment [b] Alignment graph

@@ | ¢
@® |
174
© &
@@ | €
® (@ @”

" o
o 111 sequence homology
—

P e | =perbEcr

Figure 10.12: Example pathway alignment and merged representation. (a) Vertical solid
lines indicate direct proteinprotein interactions within a single pathway, and horizontal dot-
ted lines link proteins with significant sequence similarity (BLAST E value Ecutoff). An
interaction in one pathway may skip over a protein in the other (protein C), introducing a
"gap.” Proteins at a particular position that are dissimilar in sequence (E value ; Ecutoff,
proteins E and g) introduce a "mismatch.” The same protein pair may not occur more than
once per pathway, and neither gaps nor mismatches may occur consecutively. (b) Path-
ways are combined as a global alignment graph in which each node represents a homologous
protein pair and links represent protein interaction relationships of three types: direct in-
teraction, gap (one interaction is indirect), and mismatch (both interactions are indirect).
Source: [2]
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Figure 10.13: A product graph with 3 genes from 3 species. A node represents a set of
sequence-similar proteins from the 3 species. The edges designate conserved interactions.
Source: [7]

Function Prediction Cross-Validation

The proteins of a subnetwork are predicted to have a certain GO term if at least half the
proteins in the subnetwork have this term. Cross-Validation of these predictions can be done
by hiding the function of a portion of the known proteins, and checking if it is predicted
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Figure 10.14: Top-scoring pathway alignments between bacteria and yeast. Source: [2]

accurately. Results are shown in Figure 10.16.

Interaction Prediction Cross-Validation

The same approach can be used to evaluate the accuracy of interaction prediction. A pair of
proteins is predicted to interact if they co-occur in the same conserved complex, and there
is evidence that a sequence-similar pair of proteins interact in the other two species. Results
are shown in Figure 10.17.

Experimental Validation

Predicted interactions were experimentally tested. Results are shown in Figure 10.18
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Figure 10.15: Modular structure of conserved clusters among yeast, worm, and fly. Multiple
network alignment revealed 183 conserved clusters, organized into 71 network regions repre-
sented by colored squares. Regions group together clusters that share §15% overlap with at
least one other cluster in the group and are all enriched for the same GO cellular process (P
i 0.05 with the enriched processes indicated by color). Cluster ID numbers are given within
each square; numbers are not sequential because of filtering. Solid links indicate overlaps be-
tween different regions, where thickness is proportional to the percentage of shared proteins
(intersection/union). Hashed links indicate conserved paths that connect clusters together.
Source: [7]

Species #Correct #Predictions Success rate
(%)
Yeast 114 198 58
Worm 57 95 60
Fly 115 184 63

Figure 10.16: Cross validation results: Function Prediction
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Species Sensitivity Specificity FPovalue Strategy
(%) (%)
Yeast 0 77 le-25 (1]
Worm 43 82 le-13 m
Fly 23 84 Se-5 m
Yeast 3 99 le-6 1214111
Worm L1} 100 [ [21+11]
Fiy 0.4 100 0.5 121411}

Figure 10.17: Cross validation results: Interaction Prediction
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Figure 10.18: Verification of predicted interactions by two-hybrid testing. (a) Sixty-five pairs
of yeast proteins were tested for physical interaction based on their co-occurrence within the
same conserved cluster and the presence of orthologous interactions in worm and fly. Each
protein pair is listed along with its position on the agar plates shown in b and ¢ and the
outcome of the two-hybrid test. (b) Raw test results are shown, with each protein pair
tested in quadruplicate to ensure reproducibility. Protein 1 vs. 2 of each pair was used
as prey vs. bait, respectively. (c¢) This negative control reveals activating baits, which can
lead to positive tests without interaction. Protein 2 of each pair was used as bait, and an
empty pOAD vector was used as prey. Activating baits are denoted by ”a” in the list of
predictions shown in a. Positive tests with weak signal (e.g., A1) and control colonies with
marginal activation are denoted by ”?” in a; colonies D4, E2, and E5 show evidence of
possible contamination and are also marked by a ”?”. Discarding the activating baits, 31
of 60 predictions tested positive overall. A more conservative tally, disregarding all results
marked by a 77", yields 19 of 48 positive predictions. Source: [7]
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