Analysis of Gene Expression Data Spring Semester, 2004

Lecture 9: May 5, 2005

Lecturer: Ron Shamir Scribe: Karin Inbar and Anat Lev-Goldstein!

9.1 Genetic Networks

9.1.1 Preface

An ultimate goal of a molecular biologist is to use genetic data to reveal fundamental cellular
processes, and their impact on complex organisms. In order to achieve this goal one has to
study how complex systems of several genes and proteins function and interact.

Definition A genetic network is a set of molecular components such as genes, proteins and
other molecules, and interactions between them that collectively carry out some cellular
function.

9.1.2 Experimental Startegies

Using a known structure of such networks it is sometimes possible to describe the behavior of
cellular processes, reveal their function and determine the role of specific genes and proteins in
them. That is why one of the most important and challenging problems today in molecular
biology is that of functional analysis - discovering and modelling Genetic Network from
experimental data.

Biological Tools

There are two central approaches in addressing this problem: The first approach tries to
find out the relation between two specific genes. An example of this approach is the usage
of 2-hybrid systems [1]. The second approach takes ”snapshots” of the expression levels of
many genes in different conditions, and according to that, tries to describe the network of
relations between these genes. An example of this approach is the usage of DNA microarray,
commonly used to monitor gene expression at the level of mRNA. The main contribution
of this technology is that numerous genes can be monitored simultaneously, making it pos-
sible to perform a global expression analysis of the entire cell. In this scribe we will cover
techniques related to the second approach.

1Based on scribes by Omer Czerniak and Alon Shalita 2004, Meital Levy and Giora Unger 2002, Koby
Lindzen and Tamir Tuller 2002
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Additional information about a genetic network may be gleaned experimentally by apply-
ing a directed perturbation to the network, and observing expression levels of every gene in
the network, in the presence of the perturbation. Perturbations may be genetic, in which the
expression levels of one or more genes are fixed by knockout (removal of the gene) or overez-
pression (higher than usual level of gene expression), or biological (environmental), in which
one or more non-genetic factors are altered, such as a change in environment, nutrition, or
temperature. Such biological experiments are very costly and very few such perturbations
may be performed at one time. Thus, reducing the number and cost of experiments is crucial.

The methods presented above supply biological data in terms of expression levels of many
genes at different time points and under various conditions. The functional analysis of the
data can be defined as a computational problem, aiming to infer some plausible model of the
network from the observations, while keeping the number or cost of biological experiments at
a minimum. The model should describe how the expression level of each gene in the network
depends on external stimuli and expression levels of other genes. Additional goals include
construction of a knowledge-base of gene regulatory networks, and verification of pathways
or genetic network hypotheses.

9.1.3 Genetic Networks

Genetic Networks describe complicated functional pathways in a given cell or tissue, repre-
senting processes such as metabolism, gene regulation, transport and signal transduction.
Let us examine several examples:

1. Expression of the Gene proB

Figure 9.12 depicts the gene’s expression and its role in catalyzing a specific chemical
reaction in the cell. The proB gene is being expressed into the gamma-glutamyl-
kinase protein, which catalyzes a reaction involving glutamate and ATP, that produces
gamma-glutamyl-phosphate and ADP compounds.

2. A Simple Metabolic Pathway - Proline Biosynthesis

The next example is part of a simple metabolic pathway, involving a chain of gener-
ated proteins, which is shown on Figure 9.2. One of the final products of the chain,
proline, inhibits the initial reaction that started the whole process. This ”feedback
inhibition” pattern is highly typical to genetic networks, and serves to regulate the
process execution rate.
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Figure 9.1: An example of the role of gene expression in catalyzing chemical reactions.
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3. Methionine Biosynthesis in E-coli.
The following two figures show a more complex genetic network, describing Methionine

biosynthesis in E-coli. The second figure is a schematic representation of the pathway,
with most nodes omitted, but it can give a better idea of the overall topology.

4. Signal Transduction Network
This example, depicted in Figure 9.5, is that of signal transduction - a complex cellular
process initiated by a signaling protein, arriving from outside of a cell, through the cell

membrane. This process eventually affects gene expression in both the cytoplasm and
inside the nucleus.

5. Sea urchin endomesoderm development

The following example, depicted in Figure 9.6, shows a genetic network controlling
early development of sea urchin endomesoderm [2].

Genetic Networks Structure

Let us examine the genetic network structure components:

1. Linear Cause-Effect Chain

The simplest structure is depicted in Figure 9.7. The growth is unlimited because there
is no feedback (DAG structure).

2. Feedback Loops

The following structure, depicted in Figure 9.8, shows a little more complicated struc-
ture, in which the growth is controlled by feedback signals.

3. Web of Interacting Circuits

The Following structure, depicted in Figure 9.9, shows a more complicated structure,
where there are feedback signals running across the network, that is, feedback signals
arriving from other circuits in the network (not a product of the circuit itself).



Genetic Networks

Laspartate
- Ot [t Bt |
wepmit abe kingse ) aafine dehvpdogenass I Oy ATP
Consct——
2 Cx ADP
ned npit e deivinl kb deabeRtgenis 0 L-Agpanine-4-F
T —~i) HADPH H+
i
mﬂng MADP4; Fi

¥ Liasporist e semialdetyde
———
Cmsec——» O NAIPHHe

O HADPs
L- Homosenine
G—————("_Tmaimbienrih. |
Farmoman ree b suecinglrare erase reorire blasyrth

— —— ) Sustnyl SCeA
5 [pesn}—» - @—»m‘, i
GI apibia-sLeoing - L Homosenine

01 L-Cymsing
Sucinm

eyl ElFacey e - e -1yl s

T

oystathionine-beta-hase ) Cystathionine

S—EI—FD—IE—r <o o

Cp Paneste ; Wb

5o - T N
: . matH Cobslymin-dependert homos yeieine inremehae e
et R mat R activator | L-Methicnire

Ls Bdwroed « L Wettionine

Figure 9.3: Methionine biosynthesis network in E-coli.
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Figure 9.5: A genetic network that performs signal transduction from outside the cell into
the nucleus.
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Figure 9.6: A genetic network that controls early development of sea urchin endomesoderm.
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Figure 9.7: Linear cause-effect chain.

Figure 9.8: Feedback loops: modular circuits.

9.1.4 Control points

Control occurs in the following points:

Basic transcription control (of the whole gene)

RNA processing and splicing

mRNA transport or mRNA degradation

siRNA silencing - short RNA sequences preventing transcription of RNA
Translational control

Protein activity control: post-transitional modifications

The control points are depicted in Figure 9.10

9.1.5 Investigating Genetic Networks Goals

Construct a knowledge-base of gene regulatory networks

e Verify pathways or gene networks hypotheses

Figure 9.9: Web of interacting circuits.
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Figure 9.10: Control Points

e Reconstruct gene network from experimental data

A crucial point would be the number & cost of experiments. So another goal would be
optimizing experiments to verify /reconstruct network

9.1.6 Genetic Network Models

In the process of modeling a genetic network, one tries to find out which components are
involved in the network and the interactions between them. Several models have been
proposed in the literature to capture the notion of genetic networks and allow mathematical
solutions of the computational problem of modeling biological processes. A model might
be complex, taking into account detailed proteins synthesis process, but this would be very
hard to compute. Simpler models have been suggested, which might be less accurate, but
can enable us to understand network properties. These models may use mRNA or protein
concentration as gene expression level, and might be expressed in continuous or discrete way.
Sometimes simple boolean approximation is appropriate. Some simple model types:

e Linear Model:
This model, proposed by D’haeseleer et al [6, 5], assumes that the expression level of
a node in a network depends on a linear combination of the expression levels of its
neighbors. This will be discussed in lecture 11.

e Boolean Model:
Proposed by Kauffman|[8]. This will be discussed in detail in this lecture.
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e Bayesian Model:
Proposed by Friedman et. al [7]. It attempts to model the behavior of the genetic
network as a joint distribution of different elements. This was discussed in lecture 8.

9.1.7 Boolean Network Model

The boolean model assumes only two distinct levels of gene expression level - 0 and 1.
According to this model, the value of a node at time ¢+ 1 is a boolean function of the values
at time t of the genes that control it, thus assuming 1 step memory, without difference
between processes times. A network is represented by a directed graph G = (V, F'), where:

e V represents nodes (elements) of the network.

e F'is a set of boolean functions (see below), that defines a topology of edges between
the nodes. These functions are deterministic.

A node may represent either a gene or a biological stimulus, where a stimulus is any
relevant physical or chemical factor which influences the network and is itself not a gene or a
gene product. Each node is associated with a steady-state expression level x,, representing
the amount of gene product (in the case of a gene) or the amount of stimulus present in the
cell. This level is approximated as high or low and is represented by the binary value 1 or
0, respectively.

Network behavior over time is modeled as a sequence of discrete synchronous steps. The
set F' = {f,|v € V'} of boolean functions assigned to the nodes defines the value of a node in
the next step, depending on values of other nodes, which influence it. The functions f, are
uniquely defined using truth tables. An edge directed from one node to another represents
the influence of the first gene or stimulus on that of the second. Thus, the expression level
of a node v is a boolean function f, of the levels of the nodes in the network which connect
(have a directed edge) to v. All updates are deterministic and synchronous.

Definition If genes A and B regulates the expression level of gene C, then:
e A and B are regulators in this context.
e C is regulatee in this context.
e f.is the logical function governing the level of ¢: X (t+1) = fo(Xa(t), X5(t)).

For example, see Figure 9.11.

Definition :
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Figure 9.11: C(t + 1) the reulatee depends upon the regulators A(t) and B(t). Note that
the wiring diagram alone doesn’t provide the logical function of the regulator. Thus, in this
example, it’s not clear for example if X¢(t+1) = X4(t) OR Xp(t) or if Xo(t+1) = X4(t)
AND Xg(t) or any other logical combination.

e A global state is the vector (x1(t), x2(t), ... xn(t)) that represents the levels of all the
genes at time t. If the global state of time ¢ is known, and the logical functions are
known, its possible to compute the next vectors.

e A trajectory is a sequence of consecutive states of the network. It can be viewed as
a list of N-dimensional vectors (N being the number of nodes in the network), each
representing a state (a path is the graph).

e An attractor is a loop in the graph.
e A basin of attractor is all the states that leads to some attractor.

Figure 9.12 gives an example of a simple boolean network and associated truth tables.
This example shows a network of three nodes - a, b and c. As one can see, the expression
of ¢ directly depends on the expression of a, which in turn directly depends on b. Note that
a influences more than one node, b and ¢ ("pleiotropic regulation”), and that b is influenced
by more than one node (”multigenic requlated”). The assignment of values to nodes fully
describes the state of the model at any given time. The change of model state over time is
fully defined by the functions in F'. Initial assignment of values uniquely defines the model
state at the next step and consequently, on all the future steps. Thus, the network evolution
is represented by its trajectory.

In this figure there are two such trajectories for the sample network. Since the number
of possible states is finite, all trajectories eventually end up in single attractor.

One or more attractors are possible. The network in our example has two attractors -
one is the steady state (0,0,0), and the other is a cycle (0,1,0) < (1,0,1). The attractors
are reached when t — oo. In a finite boolean network, one of the attractors is reached in a
finite time.

States in genetic networks are often characterized by stability - ”slight” changes in value
of a few nodes do not change the attractor. Biological systems are often redundant to ensure
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Figure 9.12: An example of a boolean model graph, functions and trajectories. The upper
trajectory has a cycle of 2 steady states, while the lower trajectory ends in a single steady
state. The basin of attraction of the upper trajectory is [1,0,0],[0,1,0],[1,0,1], and the
attractor of the upper trajectory is [0, 1,0], [1,0, 1]

that the system stays stable and retains its function even in the presence of local anomalies.
For example, there may be two proteins, or even two different networks with the same
function, to backup each other.

9.2 Identification of Gene Regulatory Networks by Gene
Disruptions and Overexpressions

9.2.1 Preface

This section is based on the article of Akutsu et al. [3]. Almost all proofs and all figures
were taken from this paper. In this section we show how to identify a gene regulatory
network from data obtained by multiple gene perturbations (disruptions and overexpressions)
taking into account the number of experiments and the complexity of experiments. An
experiment consists of parallel gene perturbations and their total number is the complexity
of an experiment.

9.2.2 Model Description and Definitions

We define the gene regulatory network as in the previous section. We further assume that
it satisfies the following conditions:
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1. When the boolean function f, assigned to v has k inputs, k input lines (directed edges)
come from k distinct nodes uq, ..., ug other then v.

2. For each i = 1,...,k there exists an input (ay,..,a;) € {0,1}* with f,(ay,...,ay) #
folay, .., ...,a;) where @; is a complement bit of a;.

3. A node v with no inputs has a constant value (0 or 1).

Figure 9.13: Source: [3]. Example of a gene regulatory network with 16 genes ( & means
7activation” and © means ”"deactivation” of the gene). Gene F' is activated by gene A and
is also inactivated by gene L (fp(A,L) = I(A) A =l(L)). Gene D is expressed if all its
predecessors C, F, X1, X2 are expressed (AN D - node).

Definition The state of a gene v is active (inactive) if the value of v is 1 (0).

Definition The node v is called AN D(OR) node if the value of f,(ai, ..., ax) is determined
by the formula ¢(uy) A €(ug) A ... Al(ug) (€(ur) V L(ug) V ...V €(uy)) , where £(u;) is either u;
or —u;.

Definition An edge (u,v;) is called an activation edge (inactivation edge) if £(u;) is a positive
literal (negative literal).
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Figure 9.14: Source: [3]. Gene expressions by disruption and overexpression from the gene

regulatory network of Figure 9.13 (0 - the gene is not expressed , 1 - the gene is expressed).

For a gene v, a disruption of v forces v to be inactive and overexpression of v forces v

to be active. Let x1,...,2p,¥1, ..., y, be mutually distinct genes of G. An experiment with

gene overexpressions xy, ..., x, and gene disruptions yi, ..., y, is denoted by e = (z1,...,z, ,

WY1, ..., Wy). The cost of e is defined as p + g. Three cases of gene expression conditions

(normal, disruption of gene A, overexpression of gene B ) are presented in figure 9.14.
Let us define the nodes with fixed values given experiment e:

Definition The node v is said to be invariant if it satisfies one of the following conditions:

e v belongs to e, i.e., v is disrupted or overexpressed in e.
e v has in-degree 0.
e v depends only on invariant nodes.

We now define different types of states of gene regulatory network G:

1. A global state of G is a mapping ¢ : V' — {0,1}. The global states of the genes need

not be consistent with the gene regulation rules.

2. The global state ¢ of G is stable under experiment e = (x1,...,%, , Y1, ..., W) if

Y(z;) =1 (G =1,...,p), ¥(y;) =0 (j =1,...,¢) and it is consistent with all gene
regulation rules, i.e., for each node v with inputs uy, ..., ux , ¥(v) = fi(V(uy), ..., Y (ur)).

Otherwise, it is called unstable.

3. The global state 1 of G is an observed global state under experiment e = (z1, ...

W1, ..., Y, if it satisfies all gene regulation rules for invariant nodes.

prv

4. The observed global state 1 of G is a native global state when no perturbations are

made (e = ()).
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We shall now prove upper and lower bounds for the number of experiments required for
identifying a gene regulatory network with n genes, depending on the in-degree constraint
and acyclicity. Table 9.1 summarizes the results. Computationally the running time of all
algorithms when the in-degree is bounded is polynomial.

Constraints Lower Upper
bounds bounds

None Q2 o2 1)

In-degree < D Q(nP) O(n2P)

In-degree < D Q(nD) O(nD+1)

A1l genes are AND-nodes (OR-nodes)

In-degree < D Q(nP) O(nP)

Acyclic

In-degree <2 Q(n2) O(n2)

A1l genes are AN D-nodes
(OR-nodes). No inactivation edges.

Table 9.1: Source: [3]. Bounds on the number of experiments needed for reconstruction (n -
number of genes, D - maximum in-degree). As seen from the table, forcing more constrains
on the possible network topologies can improve experimental complexity significantly. The
cases of acyclic topologies and restricted monotone logic (AND/OR gates only) are simpler
mathematically but have no biological motivation.

9.2.3 Upper and Lower Bounds on the Number of Experiments

We first show that an exponential number of experiments are required in the worst case.

Proposition 9.1 ©(2"!) experiments must be performed in order to identify a gene requ-
latory network in the worst case.

Proof: Consider a boolean function of (n — 1) variables f(z1,xs, .., z,,_1) which is assigned
to the node x,,. There are 22" possible boolean functions of (n—1) variables. Hence we can
identify this function by examining 2"~! assignments and less examinations will not suffice
(we get one output bit per experiment). m
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Proposition 9.2 n2"! experiments always suffice in order to identify a gene regqulatory
network.

Proof: For each node 27! experiments are sufficient to identify its Boolean function by
Proposition 9.1. Hence n2"~! experiments suffice in order to identify the whole network. m

Theorem 9.3 An exponential number of experiments are necessary and sufficient for the
identification of a gene requlatory network.

9.2.4 Bounded In-degree Case With Bounded Cost

Since an exponential lower bound was proved in the general case, we consider a special
but practical case, in which the maximal in-degree is bounded by a constant D. First, we
consider the case D = 2.

Proposition 9.4 Q(n?) experiments are necessary for identification even if the mazimum
in-degree is 2 and all nodes are AN D nodes, where we assume that the maximum cost is
bounded by a fized constant C'.

Proof: First, consider the case of C' = 2. Assume that -z A =y — z is assigned to z
and all other nodes have in-degree 0. Among all experiments only (—z, —y) can activate z.
Therefore, we must test 2(n?) pairs of nodes in order to find (x,y).

Next, we consider the case of ' = 3 with the same function ~z A ~y — 2. If we
disrupt or overexpress u,v,w such that z ¢ {u,v,w} or y € {u,v,w} , we can only learn
that (u,v), (u,w), (v,w) are different from (z,y). Since there are ©(n3) triplets and only
O(n) triplets can include {z,y}, ©(n?) triplets must be examined in the worst case (each
experiment removes at most a constant number of pairs out of the ©(n?) possible ones).

For cases of C' > 3, similar arguments work: suppose C' = k > 3, if we disrupt and/or
everexpress uj, ..., uy such that = & {u,...,ux} or y € {uy,...,ux}, we can only know that
#'72), pairs are different from (x,y). Since there are ©(n*) k-mers and only ©(n*=2) k-

mers can include {z,y}, ©(n?) triplets must be examined in the worst case (each experiment
removes at most a constant number of pairs out of the ©(n?) possible ones). m

If C is not bounded, the above proposition does not hold. It is possible to identify
the above pair (z,y) by O(log(n)) experiments of maximum cost n, using a strategy based
on binary search. Although this strategy might be generalized for other cases, we do not
investigate it because experiments with high cost are not realistic. (The cells simply die if
they are heavily mutated.)

Next, we consider the upper bound.
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Proposition 9.5 O(n*) experiments with maximum cost 4 are sufficient for identification
if the mazimum in-degree is 2.

Proof: We assume (w.l.o.g.) that all nodes are of in-degree 2 since identification of nodes
of in-degree 1 or 0 is easier. Let ¢ be any node of V. We examine all assignments to all
quadruplets {a, b, z,y} with ¢ € {a,b,z,y}. The boolean function g(a,b) is assigned to ¢
(i.e., fo = g) if and only if ¢ = g(a,b) for any assignment to {a,b,z,y}, where ¢ = g(a,b)
means that the state of ¢ equals to g(a,b). The ’only if’ part is trivial. We shall prove the ’if’
part. Suppose that g(a, b) is not assigned to ¢, i.e., f. = h(a,b) and h(a,b) # g(a,b). Clearly,
¢ = g(a,b) does not hold. Next, consider the case where h(p,q) is assigned to ¢ where h
may be equal to g and {p,q} N {a,b} = 0. In this case, ¢ takes both 1 and 0 by changing
assignments to {p, q} even if the assignment to {a,b} is fixed. Therefore, ¢ = g(a,b) does
not hold. In the case remaining {p, ¢} N {a,b} # 0. Suppose f. = h(p,b) and a # p. Then
there is a value of b so that h(0,b) # h(1,b), but then f.(a,b,p = 0,y) # f.(a,b,p = 1,y)
and ¢ = g(a,b) does not hold again. Since all assignments to all quadruplets are examined,
in total 0(n*) experiments are sufficient. m

The above property holds even for an unstable graph because ¢ is consistent under any
experiment on {a,b,z,y} if f. = g(a,b).

Theorem 9.6 O(n?P) experiments with mazimal cost 2D are sufficient for the identification
of a gene requlatory network of bounded in-degree D. On the other hand, Q(n”) experiments
are necessarily in the worst case if the cost of each experiment is bounded by a constant.

9.2.5 Efficient Strategies for Special Cases

In this section we consider the case where the network consists of AND and/or OR nodes.
In this case we assume that any AND (resp. OR) node c is inactive (resp. active) if at
least one literal appearing in the boolean function assigned to c is forced to 0 (resp. 1) by
disruption or overexpression of the gene corresponding to the literal. The above assumption
is biologically reasonable even when the network contains inconsistent nodes.

Theorem 9.7 A gene requlatory network which consists of AND and/or OR nodes and has
mazimum in-degree D can be identified by O(nP*1) experiments.

Proof: Here we only show strategy for a network that consists of AND nodes of in-degree
2. It can be generalized though, to the other cases. We examine all assignments to all
triplets {a,b, z} with ¢ & {a,b,z}. The function g(a,b) is assigned to ¢ (i.e., f. = g) if and
only if ¢ = g(a, b) for any assignment to {a, b, z}. Following the proof in Proposition 9.5, we
only have to consider the case that h(p, q) is assigned to ¢ and {p, ¢} N {a,b} = 0. Consider
an assignment to {a,b,p} for which g(a,b) = 1. If ¢ is not active we can conclude that
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¢ = g(a,b) does not hold. If ¢ is active, we can inactivate ¢ by changing the assignment
to p since only one assignment to {p,q} can activate c¢. Thus , ¢ = g(a,b) does not hold.
Therefore, the above property holds and O(n?) experiments are sufficient in total. m

Next, we consider the acyclic case for which we obtain an optimal bound.

Definition A set of nodes {z1,zs, ..., x;} has influence on y if there exist two experiments
e; and ey on {xy, X9, ..., xx } such that e; activates y and e, inactivates y.

Definition A set of nodes {1, x, ..., 24} has influence on {y1,va, ..., yp} if {z1, 22, ..., 2%}
has influence on at least one of {y1,va, ..., Yp}-

Definition A set of nodes {z1, s, ..., 7} has strong influence on y if there exist two ex-
periments e; and es on {x1,xs, ..., zx} such that e; activates y and ey inactivates y, and e;
differs from e, only on a single z;.

The above definitions are invalid if the network is unstable (i.e., has an inconsistent node) or
has multiple stable states. Henceforth , we assume that the network cannot have inconsistent
nodes except ones that are disrupted or overexpressed. Moreover, for stable networks, we
make a biologically reasonable assumption that a set of nodes {x1, za, ..., 2} does not have
influence on a node to which there is no direct path from any of {1, xs, ..., 2% }.

Theorem 9.8 An acyclic gene requlatory network of maximum in-degree D can be identified
by ©(nP) experiments.

Proof: The lower bound directly follows from Proposition 9.4 and Theorem 9.6. We prove
the upper bound only for D = 2. Other cases can be proved in similar way. Moreover, we
only show the strategy for a node with a A b — ¢ although it can be generalized to other
types of nodes. We assume (w.l.o.g.) that all nodes are of in-degree 2 as in Proposition 9.5.
Let P be a set of pairs (z,y) satisfying the following conditions: ¢ is active under (z,y), and
¢ is inactive under the other assignments to (z,y). Then a A b — c if and only if (a,b) € P
and (a,b) does not have influence on any other pair (z,y) € P. If a Ab — ¢, then (a,b) € P
must hold. Moreover, (a,b) does not have influence on any other pair in P since the network
is acyclic. Conversely, if a A b — ¢ does not hold, then (a,b) & P or (a,b) has influence on
at least one node x, such that there is an edge from z to c¢. Therefore, we can identify the
network by O(n?) experiments with maximum cost 2. ®

For cyclic networks with in-degree, 2 experiments of cost 2 do not suffice. It is possible
to identify such network in some cases in O(n®) experiments. The strategy is based on
detection of strongly connected components.
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9.2.6 Related Problems: Consistency and Stability of Networks

Along with the identification of the gene regulatory network, there exist several important
problems. Here we observe two of them.

1. The consistency problem: given a network G’'(V’, F'), check whether or not this net-
work coincides with an underlying gene regulatory network G(V, F), that is not given
explicitly.

Theorem 9.9 FExponential number of experiments are necessary and sufficient to check
the consistency of a given gene regulatory network.

2. The stability problem: given a network G(V, F'), check whether or not it is stable (in
a native state), i.e., there is a global state consistent with all gene regulation rules. In
other words we’d like to find out wether there is a attractor of size 1.

Theorem 9.10 Testing the stability of a given gene regulatory network under an ex-
periment s NP-complete.

In work done by Akutsu et al. [3], they claimed that assuming O(2%(2k + «)logn) expression
patterns (input/output pairs) drawn uniformly randomly are given, then with probability >
1 — (1/n®) there exists < 1 Boolean network of n nodes with max indegree < k consistent
with patterns. But, note that uniform random sampling is very improbable - a living cell
usually expresses very few of the patterns consistent with the network.
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9.3 Kaufman’s Model

9.3.1 A Physicist’s Approach

Kaufman’s Model [8, 9] presents a physical approach, in which the aim is to understand
general properties and characteristics of large networks.

We can view an organism as a very large genetic network. If we knew all the interactions
of such a network, we could perfectly understand every single detail in the organism. That
is, we could understand which genes, proteins and other molecules are involved in every
biological process, how exactly the process takes place, etc.

This might be the ultimate goal of biological science, but obviously we are light years
away from it. We therefore make a simplifying assumption. We model the organism as many
distinct genetic networks, which loosely interact among themselves.

Indeed, this is a heavy assumptions, but it is necessary in order for genetic networks to
be useful in modeling biological processes.

Instead of looking at a specific network, we look at general properties of "network of
the kind” (eg. networks where each components has exactly 2 related components). Given
such a group of genetic networks, we can explore their properties (global structural features,
types of possible dynamic behaviors etc.). The search for generic properties may also provide
hints for the analysis of specific circuits (like which features to expect, what questions to
ask, etc.).

Definition An ensemble of genetic networks is composed of similar networks that share
some features. The non constrained features vary at random between networks in the en-
semble.

Properties of an Ensemble of Networks:

e Every network consists of N nodes (genes).
e Each gene is influenced directly by exactly k other input genes.
e For each node, the £ input genes are chosen at random.

e For each node, its boolean function is chosen at random from the 22* possible functions
(the table of the input has size of 2¥ states, and for each state the function can return
Oorl).

9.3.2 Simplified Description

Following are a few assumptions taken in order to simplify the model:
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The activation of genes depends on proteins and chemicals.

The synthesis of proteins participating in a regulatory process is very fast compared
to the regulatory process itself.

Regulatory proteins decay much faster than the duration of the regulatory processes.
e The concentrations of the regulatory chemicals are constant.

As a result of those assumptions, we can express the activation level (mRNA level or
protein level) in time ¢+ dt as a function of the activation at time ¢. We will later use 6t = 1.
This means that loss of memory occurs within d¢ time, that is, knowledge of steps before
time T is not needed.

9.3.3 Generic Questions

After sampling a number of network from the same ensemble, we can look for dynamic be-
havior in that certain type of networks such as fixed points, limit cycles; islands of activation
spreading through the network. We can check how sensitive are the asymptotic states to
perturbations of inputs / network structure. We can also ask questions such as: what kind
of topology shall we expect; how does information flow from one point to the rest of the
network (how far, how fast).

9.3.4 Kaufman’s Model

Kauffman’s Model uses boolean gene levels, 1 for active and 0 for inactive. It also assumes
that time ¢ 4+ 1 is determined by a boolean function of the levels of a fixed set of input
genes at time ¢t. This means it can use only 1-step memory. All updates are executed in a
deterministic way and are synchronized. The module assumes we have N nodes. We choose
random topology between the nodes, than we choose random functions betweens the genes
that effect a gene ("regulators”) and the gene itself (the "regulatee”), and than we choose
random initial values for the nodes at time 0.
Kauffman’s Model is dynamic:

o At time 0, a level is given to every gene.

e At each time step t = 1,2... every gene has a level x;(t), which is determined according
to the boolean functions.

e The global state of the system is X = [x1,x9,....7,] and we say that X(¢) alone
determines X (¢ 4+ 1). As time passes, the system moves from state X (¢) to X (¢t + 1),
X(t + 2) and so on, following a trajectory.
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The states can be thought of as corners in the unit hypercube and a step from one global
state to another can be thought of as shifting from one corner to another. Note, that a legal
move does not have to be between two adjacent corners, since adjacent corners differ only
by one bit. See 9.15 a 3-dimensional cube.

¥
oio 110

IR 2

111

000 a0

A |:|1

001

z

Figure 9.15: The state space of 3 states.

Example

Figure 9.16 shows basin of attraction of 12-gene boolean genetic network model - each node
is a vector of 12 bits of 0/1.

9.3.5 Features of Kaufman’s Model

The main features of the model, attractors and basins, are determined by the degree of
connectivity in each network. A degree of connectivity & means that the in-degree of each
node is exactly k.

High In-Degree

In the case that k is as high as N — 1:

e X(t+1) is completely uncorrelated to X (t), the output associated to each input set is
random. There is no correlation between outputs corresponding to two inputs which
differ even by a single bit. The system is chaotic and the homeostatic stability is very
low, nearby initial states go to different attractors, and changing one input function
completely destroys the basin structure.

e The number of attractors, about N/e, is very small compared to the 2V possible states.

e The cycles are huge, period size is around 2%V,
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Figure 9.16: source: [10].Basin of attraction of 12- gene Boolean genetic network model.
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_.

L \.

Figure 9.17: An ensemble of random networks with (k = 2). Note that every node in every
network has degree 2.

For example, for N = 100,000 we get 103999 states, only 37,000 attractors and cycles
are as long as 101000,

Low In-Degree

In the case of k = 2:

e Basins are regular: nearby initial states usually reach the same attractor, high home-
ostatic stability, spontaneous order, even though inputs and functions are completely
random.

e The number of attractors is relatively high - about N'/2.

e Average cycle length is N'/2.

Phase Transition

For a k-input boolean function, define P = max{no. l-outputs, no. 0-outputs}/2%. TIt’s
obvious that 0.5 < P < 1. For P = 0.5, the function is chaotic. For P =~ 1, the function
is almost constant. The phase transition for different values of k is controlled by changing
P, for example, by using canalizing functions, a boolean function where there is at least one
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B constant genes
gm Oscillating genes

Figure 9.18: A 2-dimensional lattice view of a generic network, i.e., every cell in the lattice
represents a gene. It can be seen, that when the in-degree is high, most of the genes are
oscillating, that is, their state changes very frequently, and only few genes reach a constant
state. Furthermore, the oscillating genes form a giant component, instead of being scattered
all over the lattice.

E=E constant genes ("frozen core")

[ oscillating genes

Figure 9.19: A 2-dimensional lattice view of a generic network with low in-degree. One can
see that the effect is opposite to that observed in Figure 9.18 - most of the genes are constant,
forming a giant component, while only few genes oscillate.
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value of one of the inputs that uniquely determines the output, irrespective of the others
(eg. AND, OR).

9.3.6 Concluding Remarks about Kauffman’s Model

A possible explanation of the model

The model is consistent with experimental observations over many different phyla. A ratio
that was observed is that the number of cell types is approximately the number of different
cycles which is approximately the number of genes’®. A possible explanation is that a dif-
ferent cell start position will develop different types of cell. Another ratio that was observed

is the length of cell life is approximately the length of the cycle in the graph. See Figure
9.20
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Figure 9.20: Logarithm of the number of cell types in organisms across many phyla plotted
against the logarithm of the DNA content per cell. Plot is linear with a slope of 0.5, indicating
a power-law relation in which the number of cell types increases as the square-root of the
amount of DNA per cell. If total number of structural and regulatory genes is assumed
proportional to DNA content, then the number of cell types increases as a square-root
function of the number of genes. Number of attractors refers to predictions of numbers of
model cell types in model genomic regulatory systems having k=2 input per gene.
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Summary

Kauffman’s model is a highly idealized representation of real genetic networks, due to the
following reasons:

e The relation between genes are discrete (boolean) rather than continuous.
e The network status at time ¢ + 1 depends only on its status at time t.

Chemicals are not taken into account.

Regulatory proteins are assumed to be synthesized very fast with respect to the regu-
lation process itself.

Synchronous activation may introduce ”spurious cycles” in boolean dynamical systems.
e Fixed in-degree k is assumed for all genes.

However, Kauffman’s model allows us to address issues which would otherwise be ne-
glected, and to develop an appropriate language in which we can formulate key questions,
such as:

e The importance of attractors in determining the properties of genetic networks.
e Robustness and basins of attraction.
e The importance of the average degree of connectivity.

Kauffman’s model also allows us to examine in a new way the interplay between selection
and self-organization. Moreover, it demonstrates the importance of studying ensembles of
networks to gain insight about their generic properties.
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