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8.1 Exploiting Structure in Probability Distributions

8.1.1 Introduction

A major goal in biology is to model biological processes given biological data. It is essential
for such a model to be of probabilistic nature, since measurements are noisy and molecular
biology itself has stochastic characteristics. The problem is that biological processes are
composed of a large number of parameters and representing their probabilistic properties
requires an exponential, thus very large, number of variables. In this lecture Bayesian net-
works [7, 19] will be introduced2. These networks take advantage of the local dependence
occurring in biological processes in order to represent their probability distribution in a com-
pact way. These networks are useful for describing systems composed of locally interacting
components, that is, the value of each component depends on the values of a small number
of other components. Bayesian networks also provide us a graphical, easy to understand,
model of causal influence, as will be discussed later.

One advantage in using Bayesian networks is the fact that the statistical foundations for
learning Bayesian networks from observations, and computational algorithms to do so are
well understood and have been used successfully for many applications. These applications
include medical and fault diagnosis expert systems, monitoring systems, information access
technologies, speech recognition systems, and finally analysis and classification for biological
sequencing.

This lecture starts with a probability primer, describing the important definitions and re-
sults needed to understand Bayesian networks. Later, Bayesian networks are introduced and
an example to their compactness of representation is given. Methods to compute probability
distributions based on a Bayesian network are than presented. Once the Bayesian networks
were described as a compact way to represent a stochastic (local) system, methods to deduce
the structure and relations of a Bayesian network based on experimental data are given. The
lecture ends with an example application of Bayesian networks to gene expression analysis.

1Based on scribe by Erez Yaffe and Dan Cohen, June 2004 and on scribe by Tal Peled and David Burstein,
December 2003

2This lecture is based on presentations of Nir Friedman
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8.1.2 A probability primer

Basic notions and notations

In the following lecture we will deal with discrete probabilities defined over a finite sample
space. The sample space Ω is a group containing all of the possible world states. A world
state defines everything that can be known about the world and the value of any measurable
parameter. Any biological experiment is unaware of the current world state and can only
measure different parameters resulting from it. Each world state has a given probability to
occur and this probability may differ from one world state to another.

A random variable X is a parameter that has a given value for each world state (i.e. it
is a function on the group Ω). P (X = x) is the probability for X to be measured as x in a
random world state. Thus P (X = x) is the sum of probabilities of the world states in which
X will be measured to be x. Many times, the name of the random variable is omitted so
P (x) will be used instead of P (X = x).

Given a group of values A for a random variable X, we will note the chance that one of these
values will be measure for X by P (X = A) or P (A). It is obvious that if A = x1...xn then
P (A) =

∑n
i=1 P (xi). Notice also that if X and Y are completely unrelated, i.e. independent,

then P (x, y) = P (x) · P (y) and P (A, B) = P (A) · P (B). This independence will be noted
I(X; Y ) or I(A; B) when A is related to X and B to Y .

Joint and conditional distribution

Given two random variables, X and Y , we would like to know their joint distribution P (X =
x, Y = y), i.e. the probability that in the same time X is measured to be x and Y is
measured to be y. As before, this could be written as P (x, y) even though x and y are
values of (possibly) very different parameters. If A and B are groups of possible values
for X and Y , respectively, P (X = A, Y = B) or P (A, B) is the probability for X to have
a value from A and Y from B. It is obvious that if A = {x1...xn},B = {y1...ym} then
P (A, B) =

∑i=n,j=m
i=1,j=1 P (xi, yj).

We would like now to know the probability of measuring X = x given that we have already
measure Y to be y. It is obvious that the probability may differ from P (X = x). Think
of the probability of someone speaking Hebrew if we already knew that he is from Mars.
It should be much smaller than the overall probability for him to speak Hebrew (unless
there is something we don’t know about Mars...). The above probability is the conditional
probability P (X = x|Y = y) or P (x|y). It is logical that the probability of X = x and Y = y
should be equal for the probability for ”Y = y” and ”X = x given that Y = y”. These are
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completely unrelated variables (even if X and Y are related) so :

P (x, y) = P (y)P (x|y) (8.1)

and

P (A, B) = P (B)P (A|B) (8.2)

We can interchange X and Y and get P (A, B) = P (A) · P (B|A). From these results the
important Bayes rule can be inferred :

P (A | B) =
P (B | A) · P (A)

P (B)
(8.3)

Also notice that if I(A;B), that is X and Y are independent then

P (A | B) =
P (A, B)

P (B)
=

P (A) · P (B)

P (B)
= P (A) (8.4)

This makes sense, because X doesn’t depend on Y so knowing Y doesn’t change the
probability distribution of X.

Conditional Independence

It is possible that two random variables X and Y are dependent, but given a value of some
other random variable Z they become independent. This is the case when X and Y are
both dependent on Z but otherwise unrelated to each other. Once we fix the value of Z,
there is no remaining information to create dependence between the distributions of X and
Y . But without fixing Z we could infer from the value of X the value of Z and using the
value of Z to learn about the possible values of Y so they are dependent. This case is called
Conditional Independence and will be marked I(X; Y | Z) or I(A; B | C). In this case it is
obvious that :

P (A, B | C) = P (A | C) · P (B | C) (8.5)

Or alternatively:

P (A | B, C) = P (A | C), P (B | A, C) = P (B | C) (8.6)

Note that I(A; B) ⇒ I(A; B | C): if A and B are independent, then they will be
independent given any known C. Nevertheless, I(A; B | C) ; I(A; B): if A and B are
independent given known C, it does not mean A and B are independent in any case.
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Total probability Theorem

The idea is to break up the sample space according to the value of one random variable Y
. suppose that B is the set composed of the possible values for Y . Let us break B into a
number of disjoint sets Bi so that

⋃n
i=1 Bi = B. This breaks the sample space accordingly.

The total probability theorem states that

P (A) =
n∑

i=1

P (A,Bi) =
n∑

i=1

P (Bi) · P (A | Bi) (8.7)

The chain Rule

Using the fact that P (X1, ..., Xn) = P (X1 | X2, ..., Xn) · P (X2, ..., Xn) we could write
P (X1, ..., Xn) in the following way :

P (X1, . . . , Xn) = P (X1 | X2, . . . , Xn)·P (X2 | X3, . . . , Xn)· . . . ·P (Xn−1 | Xn)·P (Xn) (8.8)

This equation is called the chain rule.

8.1.3 Exploiting Independence Property

Independence of variables can be used to simplify significantly the representation of complex
joint distributions. Consider the representation of the joint distribution of n variables, for
example n tosses of a coin. Even in this simple binary example, explicit representation of
the joint distribution will require 2n entries, for all possible assignment of heads / tails to
the tosses.

Example 8.1: Presenting Distribution of four Fair Tosses

Let Xi = 1 denote heads in toss number i. The joint distribution of four tosses is represented
in table 8.1.

This is obviously a wasteful representation. If the independence of each toss is exploited,
a much more compact representation can be achieved. Such a representation would include
only the probabilities of each toss (table 8.2). In this degenerate case the tosses are of a fair
coin, so the probability to get heads in each toss is 0.5.

The joint distribution P (x1, x2, x3, x4) would be computed using this table as
P (X1 = x1) · P (X2 = x2) · P (X3 = x3) · P (X4 = x4). In most biological applications, the
majority of the variables are not completely independent, but exploiting the existing inde-
pendencies can be used to achieve a rather simple representation of complex dependencies.
First a simple example will be presented to explain the principles of this method.
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X1 X2 X3 X4 P (X1, X2, X3, X4)
0 0 0 0 0.0625
0 0 0 1 0.0625
0 0 1 0 0.0625
0 0 1 1 0.0625
0 1 0 0 0.0625
0 1 0 1 0.0625
0 1 1 1 0.0625
1 0 0 0 0.0625
1 0 0 1 0.0625
1 0 1 0 0.0625
1 0 1 1 0.0625
1 1 0 0 0.0625
1 1 0 1 0.0625
1 1 1 1 0.0625

Table 8.1: Joint distribution representation of four fair tosses

Xi = 0 Xi = 1
X1 0.5 0.5
X2 0.5 0.5
X3 0.5 0.5
X4 0.5 0.5

Table 8.2: Independent distribution representation of four fair tosses

Example 8.2: Two Variables Conditional Probability Distribution (CPD)

Consider the problem of determining whether a suspect is guilty. The suspect is standing
trial, and the judge finds him either guilty or innocent. The probability space is the joint
distribution over these two variables: whether the suspect is guilty, G, and whether the
judge will find him guilty, J . Assuming theses two variables are binary (0 - not guilty; 1
- guilty), the joint distribution has four entries. Denote the case that G = 0 by g0, the
probability the suspect is not guilty, and in the same manner we use g1, j0, j1. A possible
joint distribution of G and J is described in table 8.3.

This is the joint distribution representation which presents all the different assignments
of valid values to the variables: The probability that the suspect is innocent and the judge
finds him innocent is 0.38, the probability that he is innocent, and yet found guilty by the
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G J P (G, J)
g0 j0 0.38
g0 j1 0.02
g1 j0 0.06
g1 j1 0.54

Table 8.3: Joint distribution of two variables (the suspect-judge problem)

judge is 0.02, the probability that the suspect is guilty but found innocent is 0.06, etc. . .
The same joint distribution can be alternatively displayed in a somewhat more natural

manner. Instead of specifying the various joint entries, the product rule (equation 8.2) is
used to get P (J, G) = P (J | G) · P (G), so P (G) and P (J | G) are to be represented. This
will require the use of two tables, one representing the distribution of G, and the other
representing the conditional probability distribution (CPD) of J given G. This representation
is denoted as a factorial representation and is presented in table 8.4.

G P (G)
g0) 0.4
g1) 0.6

P (J | G) j0 j1

g0 0.95 0.05
g1 0.1 0.9

Table 8.4: Factorial representation of two variable distribution (suspect-judge problem)

The distribution P (J | G) represents the probability for the judge to find the suspect
guilty in the two possible alternatives: In the case of g0 - suspect not guilty and in case of
g1 - suspect is guilty. It is easy to see in this representation the false negative probability:
P (j0 | g1) - the judge found the suspect innocent although he was guilty (10% in this
example), and the false positive probability: P (j0 | g1) - the probability of an innocent
suspect to be found guilty (5%).

It’s also easy to switch between the tables using the product rule(equation 8.2), for exam-
ple in the joint distribution representation appears P(g0j0) = 0.38 (suspect found innocent
rightfully). This can be achieved from the factorial representation using the product rule
P (J, G) = P (J | G) · P (G), P (g0j0) = P (j0 | g0) · P (g0) = 0.95 · 0.4 = 0.38
Switching from joint distribution representation to factorial is done simply by summing the
relevant probabilities: P (g0) = P (g0j0) + P (g0j1) = 0.38 + 0.02 = 0.4

It is instructive to consider the number of independent parameters needed in each of the
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representations. The joint distribution representations requires three independent parame-
ters, as there are four entries, and their sum is known to be 1, so the fourth completes to 1.
The factorial representation consists of three probability distribution:

1. P (G), so P (g0) + P (g1) = 1.

2. P (J | g0), so P (j0 | g0) + P (j1 | g0) = 1.

3. P (J | g1), so P (j0 | g1) + P (j1 | g1) = 1.

Therefore, only three parameters are required. Note that in this example the two represen-
tations use the same number of parameters, but as will be seen further, the factorial method
enables a more compact representation.

Bayesian networks will be formally defined further on, in Section 8.2, yet it will be useful
to consider how a Bayesian network of this example will be represented. A Bayesian network
in this case will have two nodes, representing the two variables G and J, and a single edge
from G to J, representing J depends on G (the direction of dependence in this model is from
J to G). Figure 8.1 shows the Bayesian network in this simple case:

Figure 8.1: Bayesian network for the suspect-judge example. Each variable in the network
is associated with a local probability distribution

Example 8.3: Three Variables Conditional Probability Distribution (CPD)

Now a more complicated setting will be considered, where the suspect is being tested on a
polygraph during the investigation. As polygraph results are not adequately reliable, they
are not admissible in court, and therefore the judge does not see the results. This means his
verdict is independent of the polygraph’s results. Now there are three variable to consider:
G, J and the outcome of the polygraph, L. Assuming the polygraph results are also binary,
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the joint distribution has eight entries. Table 8.5 presents a possible joint distribution of G,
J and L.

G J L P (G, J)
g0 j0 l0 0.304
g0 j0 l1 0.076
g0 j1 l0 0.016
g0 j1 l1 0.004
g1 j0 l0 0.006
g1 j0 l1 0.054
g1 j1 l0 0.054
g1 j1 l1 0.486

Table 8.5: Joint distribution of three variables (the suspect-judge-polygraph problem)

The result of the polygraph and the judge’s verdict clearly depends on whether the
suspect is guilty or not. The polygraph outcome and the verdict are also dependent: if it is
given that one of them found the suspect guilty, it increases the probability that the other
will also find him guilty.

However, there is a conditional independence: If it is known whether the suspect is
guilty, the outcome of the polygraph does no longer give information about the verdict, and
vice versa, assume it is known the suspect is not guilty, the fact that the judge found him
guilty, for example, does not increase the probability the polygraph will show the same.
Denoted by l1 the polygraph outcome which states that the suspect is guilty and l0 otherwise.
Then, P (l1 | g1, h1) = P (l1 | g1). More generally it can be assumed that I(J ; L | G), this
means if G is given, L and J are independent. Note that this assumption is based on the
fact that the judge and the polygraph take into considerations completely different aspects
of the case.

The conditional independence allows to provide a compact representation of the joint
distribution, as seen before. Based on the product rule (8.2), the joint distribution is:

P (G, J, L) = P (J, L | G) · P (G)

The conditional probability assumed implies that:

P (J, L | G) = P (J | G) · P (L | G)

Hence,
P (G, J, L) = P (J | G) · P (L | G) · P (G) (8.9)

Equation 8.9 leads to the desired factorial representation. Therefore, in order to specify fully
the joint distribution of this case, we have to know P (G), P (J | G) and P (L | G). Note
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that P (G) and P (G | J) distributions stays the same as in example 8.2 (table 8.4). This
means that expanding the previous example to include also L required only the distribution
of P (L | G) to be added, this distribution is displayed in table 8.6. That is in contrast to
the eight entries joint distribution representation, in which the whole distribution has to be
recalculated.

P (L | G) l0 l1

g0 0.8 0.2
g1 0.1 0.9

Table 8.6: The conditional P (L | G) distribution which together with table 8.4 ,matches the
joint distribution described in table 8.5.

Together these conditional probability distributions fully specify the joint distribution. For
example: P (g0, j0, l1) = P (g0) · P (j0 | g0) · P (l1 | g0) = 0.4 · 0.95 · 0.2 = 0.076. Unlike the
previous example, this one demonstrates a situation in which the factorial representation is
more compact: only five independent parameters suffice to fully specify the whole distribution
with conditional dependencies (for example P (g0), P (j0 | g0), P (j0 | g1), P (l0 | g0), P (l0 |
g1), since the other only completes to 1), whilst seven parameters are required using the
joint representation (the eighth parameter completes to 1). Note that we succeed to reduce
the number of parameters due to conditional independence between the variables. Moreover,
the factorial representation has another important property, which was mentioned before,
modularity. When adding a new variable to a model, L in this example, only the local
probability model for L needs to be added, while the local probabilities of G and J are reused.
In joint distribution, this is not the case, and all the probabilities have to be recalculated,
as the distribution changes entirely.

The Bayesian network corresponding to this scenario (figure 8.2) contains an additional
node in its network, representing L, and an edge from G to L, denoting the direction of
dependence: L depends on G. Note that given the value of the parent G, both L and J are
independent.

8.2 Bayesian Networks

8.2.1 Representing Distributions with Bayesian Networks

Suppose we are given a set of assertions and a variety of ways in which they support each
other. Each assertion establishes a value for an attribute and is of the form (Xi = xi), that
is, ”Variable Xi has value xi”. The variables are X1, . . . , Xn. We would know everything we
need to know about the world described by these assertions if we had the joint probability
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Figure 8.2: Bayesian network for the suspect-judge-polygraph example

P (X1, . . . , Xn). From this probability function we could compute any other probability such
as P (X2) or P (X2 | X3, X5). Unfortunately, even when assuming for simplicity that the
variables are binomial, the representation complexity of P (X1, . . . , Xn) is, as we’ve seen, 2n,
which is impractical even for small value of n.

Bayesian Networks simplify this problem by taking advantage of existing causal connec-
tions between assertions, and of assumptions about conditional independence. A Bayesian
network is a representation of a joint probability distribution. This representation consists
of two components:

• The first component, G, is a directed acyclic graph (DAG) whose nodes correspond to
the random variables X1, . . . , Xn, and its edges correspond to dependencies and their
directions. This component is known as the Qualitative part.

• The second component describes the local probability model, the conditional probability
distribution (CPD) for each variable, given its parents in G. Let Xi be a variable and
Pa(Xi) its parents in G, the CPD of Xi is the distribution of P (Xi | Pa(Xi)). This
part is the Quantitative part

Together, these two components specify a unique distribution over X1, . . . , Xn. The graph
G represents conditional independence assumptions that allow the joint distribution to be
decomposed, economizing on the number of parameters. Note that the graph G encodes
the Markov Assumption: Each variable Xi is independent of its non-descendants, given its
parents in G (it is still dependent on its descendants). It is a natural assumption for many
causal processes. If the parents of an event, meaning the events which directly caused it, are
known, it is independent of the events which effect its parents, or of any other event, except
the events which it is the cause for, or the cause for one of their ancestors.
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By applying the chain rule of probabilities and properties of conditional independencies,
any joint distribution can be decomposed to the product form according to the Markov
assumption on it’s Bayesian network. Suppose w.l.o.g (without limitation of globality)
X1, . . . , Xn are arranged in reversed topological order, i.e. if Xj is a descendant of Xi

in the network then j < i. According to the chain rule (equation 8.8):

P (X1, . . . , Xn) = P (X1 | X2, X3, . . . , Xn) ·P (X2 | X3, X4, . . . , Xn) · . . . ·P (Xn−1 | Xn) ·P (Xn)

Since each Xi does not depend on any of its non-descendants given its parents, and any
variable Xj that is a descendant of Xi has a lower index (j < i) due to the reversed topological
order, then P (Xi | Xi+1, . . . , Xn) = P (Xi | Pa(Xi)), where Pa(Xi) is the set of parents of
Xi in graph G. Thus, we get the chain rule for Bayesian networks:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | Pa(Xi)), (8.10)

Example 8.4: A Simple Bayesian Network with Five Variables

In Figure 8.3 we can see a simple example of a Bayesian network structure. This network
describes the connections between the following events:

• B - There is a Burglary.

• A - The Alarm goes off.

• E - There is an Earthquake.

• R - There is a Radio report of an earthquake.

• C - Mr. Watson, the neighbor, Calls to inform us he heard the alarm.

The alarm is set to detect earthquakes and attempts of burglary and. Naturally, there is
a probability of a false alarm to occur, or for some malfunction to cause the alarm not
to operate when it should. Mr. Watson is the neighbor, and in case he hears the alarm
he should call us to inform the alarm had gone off. He might, of course, not hear it or
mistakenly think he had heard it (though it hadn’t gone off). In addition the local radio
station usually reports any case of an earthquake.
Specifying the joint distribution of these events, requires 25−1 = 31 parameters. This is quite
a high number for such a simple system. Consider an expert system for monitoring intensive
care patients, which measures over 37 different properties. Joint distribution representation
of such a system will require at least 237 parameters. This is not feasible. Instead, we will
use a Bayesian network to represent such systems (figure 8.3).

Following is the list of independencies of this network:
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Figure 8.3: Simple Bayesian Network with Five Variables

• I(E, B) - Given the parents of E (none), E is conditionally independent of its non-
descendant: B.

• I(B, (E, R)) - Given the parents of B (none), B is conditionally independent of its
non-descendants: E and R.

• I(R, (B, A, C) | E) - Given the parents of R (E), R is conditionally independent of its
non-descendants: B, A and C.

• I(A, R | (B, E)) - Given the parents of A (B, E), A is conditionally independent of its
non-descendant: R.

• I(C, (R,B,E) | A) - Given the parents of C (A), C is conditionally independent of its
non-descendants: R, B and E.

Consider the first independence, I(E, B): E has no parents, so in any case it is inde-
pendent of B. Indeed there is no dependence between the events of a burglary and an
earthquake. The last independence, I(C, (R,B,E) | A) means that if the parents of C,
which is A, is known then C is independent of R, E and B. This correlates with the rational
of the events: if it is known that the alarm broke off (A), then whether the neighbor will
or will not call (C) because of it, does not depend on the radio report (R), the earthquake
(E) or the burglary (B). This is true despite the fact that the earthquake and the burglary
might be the reason for the alarm.

According to the chain rule (equation 8.8), the joint distribution is:

P (C, A,R, E, B) = P (C | A, R, E, B) · P (A | R,E,B) · P (R | E, B) · P (E | B) · P (B)

Which requires 31 parameters. Alternatively, using independencies in the Bayesian network
(equation 8.10), the joint distribution of the five events is

P (C, A,R,E, B) = P (C | A) · P (A | B, E) · P (R | E) · P (E) · P (B)
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This distribution requires only 10 independent parameters.

Complexity Analysis

To fully specify a joint distribution, we need to specify the conditional probabilities in the
product form. The quantitative part of the Bayesian network describes these conditional
distributions, P (Xi | Pa(Xi)) for each variable Xi. Suppose the variables have k possible
values (If the variables were binomial then k = 2). Each one of these conditional distributions
contains k|Pa(Xi)| independent parameters. Let l be the maximum number of possible parents,
then for each variable Xi, there are ≤ kl parameters to be stored. Hence for n variables,
the representation complexity is O(n · kl). Note that for a joint distributions with many
variables, each of which has only few dependencies, then l � n and the representation
complexity is much better then the O(kn) representation complexity in the joint distributions
representation.

8.2.2 Representing Markov chains and HMM as Bayesian net-
works

A Markov chain can be treated as a simple case of a Bayesian network. A Markov chain

Figure 8.4: A Markov chain represented as a Bayesian network

is a triplet Q, p,A, where Q is a set of states, p is the probabilities of the initial state,
and A is the state transition probabilities, which contains for each two states s, t ∈ Q the
probability ast ≡ P (xi = t | xi−1 = s). X = (x1, . . . , xn) is a random process. An equivalent
Bayesian network will be a chain of variables X1, . . . , Xn (figure 8.4), thus Xi−1 is the parent
of Xi. Each variable may attain any value s ∈ Q. The CPD of X1 will be p. The CPD of
variable Xi is P (Xi | Xi−1) = ast, i.e. the probability of observing value s in variable Xi is
dependent on the value in it’s parent Xi−1 in the Bayesian network. Therefore computing
P (X) = P (x1) ·

∏L
i=2 axi−1xi

using Markov chain, is equivalent to the factorial representation

of the joint distribution in the Bayesian network: P (X) = P (X1 = x1) ·
∏L

i=2(Xi = xi |
Xi−1 = xi−1).

Hidden Markov model (HMM), can also be represented using Bayesian networks. In
addition to the Markov chain, it contains emission probabilities, which will be represented
as additional nodes (Yi) in the Bayesian network (figure 8.5). The emission node will have no
descendants, as nothing depends on them. Each variable Yi may attain any value yi ∈ Σ. The
CPD of Yi will be represented as the emission probability, i.e. P (Yi = yi | Xi = xi) = exi

(yi).
The CPD of each variable Xi remains the same as in the Markov chain model.
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Figure 8.5: A HMM as a Bayesian network

As demonstrates, it’s possible to represent HMM using Bayesian network, but this rep-
resentation is wasteful, since akl and ek(b) appear identically n time, once in each node. In
the CpG problem, for example, locating CpG islands in a sequence of 2,000 nucleotides, will
require an HMM with two states, but the Bayesian network of the same problem will contain
2,000 nodes representing the probabilities of the states in each one of the nucleotides, and
another 2,000 for the emissions probabilities. Therefore for random processes with mem-
ory of length 1, it will be easier to use HMM rather then Bayesian networks. However, in
HMM each state depends only on the state before it, and more complicated dependencies
cannot be expressed. As the Bayesian network model generalizes, and represents high-order
dependencies, it should be used in cases of complicated dependencies.

8.3 Inference in Bayesian networks

8.3.1 Introduction to Inference

So far it has been shown that Bayesian networks can be used to represent probability distri-
butions in a compact and intuitive manner. As it is so, Bayesian networks should contain
information that would answer any query about the distributions represented by them. This
section is devoted to the way such queries can be answered, using the data available by the
network. Given a Bayesian network for the variables X1, . . . , Xn, frequent types of queries
we are interested in are P (xi), P (xi | Xj = xj), P (x1, . . . , xn | Xj = xj) etc.

Bayesian networks can be used to answer these queries, since the joint distributions
can be generated using the chain rule for Bayesian networks (equation 8.10). The joint
distribution can then be used to make the necessary calculations for the query. A näıve
solution to compute P (Xi) based on the total probability theorem (equation 8.7), is
P (Xi) =

∑
x1
· · ·

∑
xi−1
·
∑

xi+1
· · ·

∑
xn

P (X1, . . . , Xn) Using the joint distribution represen-

tation, for binomial variables, the complexity of solving this is exponential (O(2n)). For
variables with up to k possible value, it is O(kn). Avoiding exponential complexity, was
one of the main reasons to use Bayesian networks, and in the following section it will be
demonstrated how the use of them might reduce the complexity. The inference problem in
Bayesian networks is NP-hard. It means that in the worst case the best algorithm available
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to solve these problems is exponential (assuming P 6= NP ). In other words - performing the
computations on all the joint distribution entries is the best that can be done in worst case.
But it turns out that the worst case comes up only very rarely. So, although the complexity
of Bayesian networks algorithms in worst case is exponential, in practice, a simple method
can be used to make the computations in most practical cases quite fast. This technique is
called Variable elimination algorithm.

8.3.2 Variable Elimination algorithm

The Basic Idea

The idea of eliminating variables will be demonstrated through a basic inference task on a
simple Bayesian network. Consider the “chain” network in figure 8.6. Suppose we want to

Figure 8.6: Simple Bayesian network in form of a nodes chain

calculate P (A = a, D = d), the distribution of the joint probability of A and D: Using the
total probability equation (8.7), we get:

P (a, d) =
∑

b

∑
c

P (a, b, c, d)

Note that each addition is used to eliminate one variable: Summing for all the probabilities
of c on the joint distribution, P (a, b, c, d), will yield P (a, b, d), thus eliminating C. In the
same manner summing up all the probabilities of b on P (a, b, d) will eliminate b, yielding the
requested probability P (a, d). Using the factorial representation, instead of the joint one,
will give us:

P (a, d) =
∑

b

∑
c

P (a, b, c, d) =
∑

b

∑
c

P (d | c)P (c | b)P (b | a)P (a)

This representation embodies the power of the Bayesian network, as it uses the conditional
probabilities instead of the joint, and these will be used to simplify the additions and reduce
the complexity.
First, c will be eliminated. Note that when summing for all C = c on the conditional
probabilities, some terms need not to be summed, as their CPDs do not contain the variable
C. That means we can omit these terms from the sum on c, thus reducing the complexity,
as less calculation has to be performed to accomplish that sum:

P (a, d) =
∑

b

∑
c

P (d | c)P (c | b)
No c in CPDs︷ ︸︸ ︷
P (b | a)P (a) =

∑
b

P (b | a)P (a)
∑

c

P (d | c)P (c | b)
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Now, in order to complete the elimination of c, we will use the chain rule (equation 8.8),
applying

∑
c P (d | c)P (c | b) = P (d | b):

P (a, d) =
∑

b

P (b | a)P (a)

P (d|b)︷ ︸︸ ︷∑
c

P (d | c)P (c | b) =
∑

b

P (b | a)P (a)P (d | b)

c was eliminated from this equation, and the factor of P (d | b) was calculated. P (d | b) is an
intermediate factor of the algorithm. The next step will be to eliminate B. As before, this
will be done by summing on every B = b, after excluding the terms that do not include b
(in this case P (a)) from the addition.

P (a, d) =
∑

b

P (b | a)

←︷︸︸︷
P (a) P (d | b) == P (a)

P (d|a)︷ ︸︸ ︷∑
b

P (d | b)P (b | a) = P (d | a)P (a)

b was eliminated from this equation, and the intermediate factor P (d | a) was calculated.
Next, in order to compute P (a, d), we only need to multiply P (a) by the intermediate factor
P (d | a), which was already calculated.

Generalization

The technique presented can be generalized to solve any specific distribution of a variable,
or joint distribution of a subset of variables: Let P (x1) be the distribution we’re looking for
in a network of n variables. First the query will be written in the following form:

P (x1) =
∑
xn

· · ·
∑
x3

∑
x2

∏
i

P (xi | pai)

Where pai are the parents of xi in the Bayesian network. In the last example,
∏

i P (xi | pai) =
P (d | c)P (c | b)P (b | a)P (a), After having the query in that form, perform iteratively:

• Move all irrelevant terms outside of innermost sum.

• Perform innermost sum, getting a new intermediate factor.

• Insert the intermediate factor into the product

So far we’ve seen how to answer a query about the distribution of a variable, or the joint
distribution of few variables. Consider a conditional probability query. Let X1 be the query
variable given Xk = xk, so the distribution of P (X1 | xk) is requested.

The query will be managed in a similar way as in the previous case: First P (X1, xk) and
P (xk) will be calculated, as follows. Note that for P (X1, xk) we sum neither on X1 nor on
xk.
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P (X1, xk) =
∑
xn

· · ·
∑
xk+1

∑
xk−1

· · ·
∑
x2

∏
i

P (xi | pai)

P (Xk = xk) =
∑
xn

· · ·
∑
xk+1

∑
xk−1

· · ·
∑
x1

∏
i

P (xi | pai)

Next P (X1|Xk) is found, using the product rule (equation 8.2): P (X1 | xk) = P (X1,xk)
P (Xk=xk)

Complexity Analysis

Let’s observe the complexity of solving the queries presented. As mention in section 8.3.1,
solving such queries in a Bayesian network is NP-hard. Therefore, in the worst case, time
complexity is expected to be exponential. But most practical cases do not yield such net-
works. In the following calculations the variables will be treated at first as binomial, to
simplify the calculations. In order to find the distribution of X1, the following expression
needs to be calculated.

P (x1) =
∑
xn

· · ·
∑
x3

∑
x2

P (x2, x3, . . . , xn)

In the näıve case, all the additions will be performed on the joint distribution. Since we sum
over all the possible combination of x1, . . . , xn, this will cost O(2n). In the multinomial case,
where Xi has k possible values, the complexity will be O(kn).

We’ve seen that time complexity might be reduced, if the factorial representation is used
and each sum is done only on the relevant factors. In this method we start with the following
expression:

P (x1) =
∑
xn

· · ·
∑
x3

∑
x2

∏
i

P (xi | pai)

And then perform O(n) additions, each on its relevant factors. Let’s observe the complexity
of the Xi-th summation: We sum only on the relevant factors of the product, let ri be the
number of variables in the intermediate factor generated in summation of xi. For example,
summing

∑
c P (A | c) ·P (c | b, d) will generate the intermediate factor P (A | b, d) with r = 3.

In the intermediate factor there are O(2ri) possible combinations, and each one is calculated
by multiplying O(ri) factors. Therefore summing Xi will cost O(ri ·2ri). Let r = maxn

i=1{ri}.
Summing O(n) variables will cost O(n · r · 2r). In the multinomial case, the complexity will
be O(n · r · kr). Note that this is significantly smaller than O(kn) only if each variable has
a small number of parents in the network (few parents means few dependencies, which will
give factors with few variables, hence a low r).

Finally note that the number of factors, and hence the complexity of the elimination,
strongly depend on the order of elimination. Even in the simple elimination example on the
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chain network described in figure (8.6), containing only the four variables A, B, C and D
this fact is manifested. consider the following order of elimination:

P (d) =
∑

c

∑
b

∑
a

P (a, b, c, d) =
∑

c

∑
b

∑
a

P (d | c)P (c | b)P (b | a)P (a)

=
∑

c

∑
b

P (d | c)P (c | b)

P (b)︷ ︸︸ ︷∑
a

P (b | a)P (a) =
∑

c

∑
b

P (d | c)P (c | b)P (b)

=
∑

c

P (d | c)

P (c)︷ ︸︸ ︷∑
b

P (c | b)P (b) =
∑

c

P (d | c)P (c) = P (d)

Each one of the products being summed contains 1 factor at most: Just one variable except
the one that we sum upon. Alternatively, consider the following order of elimination:

P (d) =
∑

a

∑
b

∑
c

P (a, b, c, d) =
∑

a

∑
b

∑
c

P (d | c)P (c | b)P (b | a)P (a)

=
∑

a

∑
b

P (d|b)︷ ︸︸ ︷∑
c

P (d | c)P (c | b) P (b | a)P (a) =
∑

a

∑
b

P (d | b)P (b | a)P (a)

=
∑

a

P (d|a)︷ ︸︸ ︷∑
b

P (d | b)P (b | a) P (a) =
∑

a

P (d | a)P (a) = P (d)

In this elimination all the products except the last contains 2 factors, hence the complexity
of this elimination is greater, since the order of elimination wasn’t optimal. Choosing an
efficient order of elimination can be done using a clique tree algorithm, which will not be
discussed here.

To summarize, the complexity of inferring distributions from the Bayesian network repre-
sentation obeys the following rules :

• The naive method of inference is exponential in the number of variables. In general,
the inference problem is NP-hard.

• Using variable elimination method is exponential in the size of the largest summation
factor and polynomial in the number of variables.

• Complexity of variable elimination depends on order of elimination.
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8.4 Learning Bayesian Networks

8.4.1 Introduction [8]

The amount of available information is growing rapidly. However, knowledge acquisition is
an expensive process. Learning allows us to construct models from raw data, which can
then be used for many tasks. Bayesian networks in particular, which convey conditional
independencies, enable us to capture the structure of many real-world distributions.

8.4.2 The Learning Problem

The problem of learning a Bayesian network can be stated as follows:
Let m be the number of samples and n the number of variables. Given a training set
D = (X1, . . . , Xm), where Xi = (xi1, . . . , xin), and prior information, find a network that
best matches D. The problem of learning a Bayesian network can be learning the CPD (the
parameters) given a certain structure, as in figure 8.7, or learning both the distributions and
the graph’s structure (the dependencies), as in figure 8.8. In addition, the learning problem
can be divided into two other cases: complete data and incomplete data. In complete data,
all parameter values are known, whereas in the case of incomplete data, some of the values
in the vectors Xi = (xi1, . . . , xin) are missing.
The means of handling these aforementioned cases, are described in table 8.7.

Known Structure Unknown Structure
Complete Data- Statistical parametric Discrete optimization over
All instances of the estimation (closed-form structures (discrete search)
variables are known equations)
Incomplete Data- Parametric optimization Combined (structural EM,

Not all instances of the (EM, gradient descent...) mixture models...)
variables are known

Table 8.7: Means of learning the network in different cases

We will focus on complete data for the rest of the talk. We start with the case of a known
structure, whose parameters we wish to learn and estimate.

8.4.3 The Likelihood Method

One way of finding an estimator for a parameter is the likelihood method. According to this
method, given a sequence of samples, we look for the parameter’s value that seems most
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Figure 8.7: Learning from a known structure and complete data

Figure 8.8: Learning from an unknown structure and complete data

”likely” to have caused this certain sequence of samples (i.e. gives our sample the highest
probability compared to all other possible values of the parameter). In other words, we try
to deduce the value of the parameter after a certain sample has been received, namely the
value of the parameter that best explains the given sample results.

Likelihood Definitions

• The Likelihood Function [17, 13]
Let X1, X2, . . . , Xm be samples from a population with a certain distribution with
an unknown parameter θ and let Xi = x[i] be the training data- the sample results
obtained, each result independent of the others. The likelihood function is defined as:

L(θ : D) = P (D | θ) = P (X1 = x[1], X2 = x[2], . . . , Xm = x[m] | θ) =
m∏

i=1

P (x[i] | θ)

where θ gets all the possible values of the parameter.

• Maximum Likelihood Estimator
Given a sample result, θ̂ is the maximum likelihood estimator (MLE) for the parameter
θ if it holds that ∀θ.L(θ̂) ≥ L(θ). In other words, θ̂ is the value of the parameter θ
which maximizes the likelihood function.
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8.4.4 Example: Binomial Experiment

A coin can land on one of two positions: H or T, each with an unknown probability. We
denote by θ the unknown probability P (H).
Estimation Task: given a sequence of samples x[1], x[2], . . . , x[m] we want to estimate the
probability P (H) = θ and P (T ) = 1− θ.
Suppose we performed six independent Bernolli experiments and received the following sam-
ple results: H, H, H, H, T, T. We denote by Xi the result of the i-th coin toss. The likelihood
function for the obtained results is:

L(θ : D) = P (D | θ) = P (X1 = H, X2 = H, X3 = H, X4 = H, X5 = T,X6 = T | θ) (∗)
=

= Pθ(X1 = H)Pθ(X2 = H)Pθ(X3 = H)Pθ(X4 = H)Pθ(X5 = T )Pθ(X6 = T ) =

= θ4(1− θ)2

where (*) is because of independent coin tosses.
Note the following:

• For a known θ, we would have an exact numerical value denoting the probability to
get the training data results.

• The coefficient
(

n
k

)
in the binomial distribution is omitted here, since we have the

exact sample sequence and for each result in the sequence we are interested only in the
probability of obtaining that certain result.
In addition, even if we write the coefficient, it will eventually ”disappear” from the
equation, as explained in the steps to come.

We can formulate the following general case:
Let NH be the number of occurrences of H and NT be the number of occurrences of T in the
training set, so that NH + NT = m.

L(θ : D) = P (D | θ) = θH
NH · θT

NT

where θH is the probability of the outcome H and θT is the probability of the outcome T.
As described earlier, the MLE principle is to choose the value of the parameter that

maximizes the likelihood function. Applying the MLE principle means we have to find the
maximum point of the likelihood function. In order to do this, we will first switch to the log
(or ln) of the likelihood function. This is done in order to make the derivative calculations
easier (instead of a complicated derivative of a long product term the log turns the product
into summation, thus making the calculation of the derivative simpler). The logarithm is a
monotonically increasing function and therefore the maximum point of the function L(θ) is
the same as the maximum point of the function log L(θ).
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Returning to finding the maximum point of our likelihood function, we get:

ln L(θ) = 4 ln θ + 2 ln(1− θ)

d ln L(θ)

dθ
=

4

θ
− 2

1− θ

4

θ
− 2

1− θ
= 0

θ̂ = 2/3

or in the general case:

θ̂ =
NH

NH + NT

We can now see that had we written the coefficient, it would have been omitted anyway,
after applying the log and finding the derivative.
Using the above general equation, we can easily find the MLE estimation for other cases.
For example, given (NH , NT ) = (3, 2), the MLE estimation is 3

5
= 0.6.

Figure 8.9: The maximum likelihood estimation

8.4.5 Learning Parameters for Bayesian Networks

When learning parameters for Bayesian networks, the training data has a form as in figure
8.10.
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Figure 8.10: The training data, including the network structure

Since we assume i.i.d (independent identically distributed) samples, the likelihood
function is:

L(θ : D) =
∏
m

P (E[m], B[m], A[m], C[m] : θ)
(∗)
=

∏
m


P (E[m] : θ)
P (B[m] : θ)
P (A[m] | B[m], E[m] : θ)
P (C[m] | A[m] : θ)


︸ ︷︷ ︸

the factorial representation

where (*) is due to switching to the factorial representation, by definition of the network in
figure 8.10. Rewriting the terms (looking at the columns of the training data instead of the
rows) we get:

L(θ : D) =
∏
m

P (E[m] : θ)
∏
m

P (B[m] : θ)
∏
m

P (A[m]|B[m], E[m] : θ)
∏
m

P (C[m]|A[m] : θ)

As can be seen from the calculation above, we have gone from the product of the probabilities
of all nodes for each m, to the product of the likelihood of each node (given its parents, if it
has any).
Generalizing for any Bayesian network we get:

L(θ : D) =
∏
m

P (x1[m], . . . , xn[m] : θ) =︸︷︷︸
network factorization

=
∏

i

∏
m

P (xi[m] | Pai[m] : θi)

=
∏

i

Li(θi : D)

where Pai is the set of node Xi’s parents.
We can see here the decomposition principle: the likelihood decomposes according to the
structure of the network meaning that we can calculate each node’s log-likelihood separately
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and sum them all to get the log-likelihood of the entire network. The decomposition enables
us to have independent estimation problems. In other words, since the parameters for each
variable are not dependent, they can be estimated independently of each other. As a result,

we can use the MLE formula we already described and get θ̂xi|pai
=

Nxi|pai

Nxi=0|pai
+Nxi=1|pai

where

pai is a certain combination of the parents (for example, see figure 8.11).

Figure 8.11: Demonstrating the decomposability principle- the variable Xi has three par-
ents, which are the members of the set Pai. Each row of the variable’s CPD is a different
combination of the parents’ values and the columns are the different values Xi can receive.
Each row is Xi’s distribution given the parents’ specific combination (the probabilities in
each row sum up to 1) and the parameter is estimated according to the formula for θ̂. In
this figure, we wish to estimate the value of θ = P (xi = 0) for a given parental combination
010.

8.4.6 Likelihood Function: Multinomials

Up to now we dealt with binomial variables that had either the value 0 or the value 1
(”failure” or ”success”). We now make the transition to the multinomial case.
Suppose our variable X can have the values 1, 2, . . . , k. We would like to learn the parameters
θ1, . . . , θk (for example each θi corresponds to the probability of getting a specific number
on a dice). We denote by N1, . . . , Nk the number of times each outcome is observed. We get
the following likelihood function:

L(θ : D) =
k∏

j=1

θj
Nj

where θj is the probability of the outcome j and Nj is the number of times the outcome j is
observed in D.
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As in the binomial case, we have once again omitted the coefficient (this time N !
N1!N2!,...,Nk!

, N =

N1 + . . . + Nk) for it ”falls off” after the log likelihood function is derived.
In the same way as before, we get that the MLE is

θ̂j =
Nj∑k
l=1 Nl

In Bayesian networks, when we assume that P (xi | pai) is multinomial, we get further
decomposition. From equation 8.11 we get:

L(θi : D) =
∏
m

P (xi[m] | Pai[m] : θi)

We now write the above product expression in a slightly different way, by grouping products
according to a certain combination of the parents’ values (for example, in the network de-
picted in figure 8.10, a combination of A’s parents E and B may be E = 1 and B = 2). We
once again denote by pai each combination of the parents and go over all such combinations.
Now, for each pai we multiply only observations where Pai[m] = pai. Thus,

=
∏
pai

∏
m:Pai[m]=pai

P (xi[m] | pai : θi)

Looking at the second product expression, we now ”group” it even further- for each combi-
nation of the parents, we take a certain value of xi and raise its probability to the power of
that certain value’s number of appearances:

=
∏
pai

∏
xi

P (xi | pai : θi)
N(xi,pai) =

∏
pai

∏
xi

θxi|pai

N(xi,pai)

For each combination pai of the parents of xi we get an independent likelihood function∏
xi

θxi|pai

N(xi,pai). After performing log on the last expression and finding its derivative we
get that the MLE is:

θ̂xi|pai
=

N(xi, pai)

N(pai)

This is essentially as in figure 8.11, but for the multinomial case.

8.4.7 Bayesian Learning

Unlike the MLE approach, the Bayesian approach doesn’t estimate the most likely θ, but
rather takes into account all possible θs with their probabilities. We can represent our
uncertainty about the sampling process using a Bayesian network, as seen in figure 8.12.
All the data are dependent on the certain θ that “created” them. As seen in the Markov
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Figure 8.12: Representing Bayesian prediction as inference in Bayesian network

assumption, given θ (the parent) the values of the different x[i] are independent.
The Bayesian prediction is inference in this network:

P (x[m + 1] | x[1], . . . , x[m])
(∗)
=

∫ 1

0

P (x[m + 1] | θ, x[1], . . . , x[m])P (θ | x[1], . . . , x[m])dθ

where (*) is because of the conditional probability and total probability theorem for a con-
tinuous variable θ (0 ≤ θ ≤ 1). Since the first probability term in the integral is for a given
θ, x[m + 1] is independent of its non-descendants and we can therefore write:

=

∫ 1

0

P (x[m + 1] | θ)P (θ | x[1], . . . , x[m])dθ (8.11)

Now let us look at the second term of the integral.

P (θ | x[1], . . . , x[m])︸ ︷︷ ︸
posterior

=︸︷︷︸
Bayes rule

likelihood︷ ︸︸ ︷
P (x[1], . . . , x[m] | θ)

prior︷︸︸︷
P (θ)

P (x[1], . . . , x[m])︸ ︷︷ ︸
probability of data

(8.12)

The prior is some earlier information we have regarding the random variable θ.
Using the total probability theorem, we may rewrite the denominator and get:

P (x[1], . . . , x[m]) =

∫ 1

0

P (x[1], . . . , x[m] | θ)P (θ)dθ

and therefore the expression on the right hand side of equation 8.12 can be written as

P (x[1], . . . , x[m] | θ)P (θ)∫ 1

0
P (x[1], . . . , x[m] | θ)P (θ)dθ

Note that P (x[1], . . . , x[m]) does not depend on θ (it goes over all values of θ in its equivalent
integral expression). As a result, it behaves as a constant in formula 8.11 and can be taken
out of the integral there (see the example in the following section, 8.4.8).
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8.4.8 Binomial Example: MLE vs. Bayesian Learning

We return to our coin toss example. Recall that P (H) = θ. This time, however, we also have
prior information that the distribution of θ is uniform in [0, 1]. Therefore, P (θ) = f(θ) = 1
(no substantial information about θ). In addition, the data is (NH , NT ) = (4, 1) (there are
four heads and one tail).
According to the MLE general case found earlier, the MLE for P (X = H) is NH

NH+NT
= 4

5
=

0.8.
The Bayesian prediction is:

P (x[m + 1] = H | D) =

∫ 1

0

P (x[m + 1] = H | θ)P (θ | x[1], . . . , x[m])dθ =

=

∫ 1

0

P (x[m + 1] = H | θ)P (θ)P (x[1], . . . , x[m] | θ)
P (x[1], . . . , x[m])

dθ =

=

∫ 1

0

P (x[m + 1] = H | θ)P (θ)P (x[1], . . . , x[m] | θ)dθ∫ 1

0
P (θ)P (x[1], . . . , x[m] | θ)dθ

=

=

∫ 1

0
θ · 1 · θNH (1− θ)NT dθ∫ 1

0
1 · θNH (1− θ)NT dθ

=

∫ 1

0
θ · θ4 · (1− θ)dθ∫ 1

0
θ4 · (1− θ)dθ

=

=

∫ 1

0
(θ5 − θ6)dθ∫ 1

0
(θ4 − θ5)dθ

=
1
6
− 1

7
1
5
− 1

6

=
5

7
= 0.7142

Since our earlier knowledge was θ’s uniform distribution, we were not ”tempted” to believe,
after only 5 tosses, that P (H) is as extreme as 0.8, but rather slightly lower, toward the
uniform 0.5. We can see that the prior has given us a more ”balanced” result. It seems as
though we have added two more tosses, one of which was H, namely the prior has given us
a more established result, based on our earlier knowledge.

8.4.9 Summary: MLE vs. Bayesian Learning

The differences between the MLE approach and the Bayesian approach are summarized in
table 8.8.

8.4.10 Dirichlet Priors

In example 8.4.8, we saw an example of a uniform prior in [0, 1], and thus P (θ) = f(θ) = 1.
Let us now look at the following density function (recall that θ is a random variable), called
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MLE approach Bayesian approach
Assume that there is an unknown Represents uncertainty about the

but fixed parameter θ. unknown parameter θ.
Estimate θ with some confidence. Uses probability to quantify this

uncertainty. Unknown parameters as
random variables.

Prediction using the estimated parameter Prediction follows from the rules of
value. probability- expectation over the

unknown parameters.

Table 8.8: The differences between the MLE and Bayesian approaches

Dirichlet’s function:

P (θ) =
(
∑k

j=1 αj − 1)!

(α1 − 1)!(α2 − 1)! . . . (αk − 1)!
·

k∏
j=1

θj
αj−1

This is the density function of a k-dimensional random variable θ with hyperparameters
α1, . . . , αk. If we know these hyperparameters, we will know the density function explicitly
as a function of θ1, . . . , θk. Note that we can ”drop” the coefficient (it is a normalization
constant) and get:

P (θ) ∝
k∏

j=1

θj
αj−1

We now use the Dirichlet distribution as a prior. Recall that the likelihood function for
multinomial data is:

L(θ : D) = P (D | θ) =
k∏

j=1

θj
Nj

From equation 8.12 we get:

P (θ | D)
(∗)
∝ P (θ)P (D | θ) ∝

k∏
j=1

θj
αj−1

k∏
j=1

θj
Nj =

k∏
j=1

θj
αj+Nj−1 (8.13)

We can see that the posterior density function P (θ | D) has the same form as the prior P (θ),
with hyperparameters αj +Nj−1, . . . , αk +Nk−1. Therefore we can conclude that Dirichlet
is closed under multinomial sampling (i.e. both the prior and posterior distributions are
Dirichlet). Note that in the transition marked (*) we disregarded the denominator P (D) from
equation 8.12. This denominator and the normalization constant, which was ”dropped” from
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Dirichlet’s function, give us the normalization constant of our new Dirichlet distribution.
Since the posterior is Dirichlet, we get:

P (x[m + 1] = j | D)
(∗)
=

∫
θj · P (θ | D)dθ

(∗∗)
=

αj + Nj∑
l(αl + Nl)

where (*) is from equation 8.11 and (**) is the result of solving the integral with P (θ | D),
which appears in equation 8.13. We can learn from the above expressions that α indicates
the ”degree of influence” the prior has on the posterior result. The larger α is, the greater the
effect the prior has, because it means we have simulated a situation with more experiments
(for each j we have αj +Nj experiments instead of the Nj we had in the likelihood function)
and our ”added” experiments αj have a greater part out of the whole αj + Nj experiments.
We can now generalize:

P (xi[m + 1] = j | pai, D) =
α(xi = j, pai) + N(xi = j, pai)∑
l(α(xi = l, pai) + N(xi = l, pai))

=
α(xi = j, pai) + N(xi = j, pai)

α(pai) + N(pai)

Learning Multinomial Parameters: Summary
We count N(xi, pai) and get the following estimations:

θ̂xi|pai
=

N(xi, pai)

N(pai)︸ ︷︷ ︸
MLE

θ̂xi|pai
=

α(xi, pai) + N(xi, pai)

α(pai) + N(pai)︸ ︷︷ ︸
Bayesian (Dirichlet)

Both can be implemented in an on-line manner by accumulating counts.

8.4.11 Learning Structure

As described in section 8.4.2 (The Learning Problem), given a training set D, our goal is
to find a network that best matches D. This time, however, the structure is unknown and
we wish to learn it on top of learning the parameters. We therefore describe the following
optimization problem:
Given an input of:

• Training data

• A scoring function (including priors) to measure our suggested network’s match with
the data

• Set of possible structures- a set of networks (DAGs, trees, etc) from which we need to
find the best structure
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we need to output the network (or networks) that maximize the score.
As before, we would like to take advantage of the decomposability property, and therefore
we look for a scoring function such that the score of the network will be the sum of the
nodes’ scores. An example for such a score is the BDE score:

P (G | D) ∝ P (D | G)P (G)
(∗)
= P (G)

∫
P (D | G, θ)P (θ | G)dθ

where (*) holds due to the total probability theorem for P (D | G). Following particular
assumptions, the score satisfies the decomposability property:

Score(G : D) =
∑

i

Score(xi | PaG
i : D)

The problem of finding the optimal structure is NP-hard and we therefore address the
problem by using heuristic searching. We traverse the space of possible networks, looking
for high-scoring structures. This can be done by using searching techniques, such as:

• Simulated Annealing - we start with a certain structure and perform random modi-
fications to it. The number or size of modifications is reduced with time so we start
with a search of the entire solution space and later use smaller modifications in order
to achieve a local minima.

• Greedy hill-climbing- we start with a certain structure and we add modifications until
we reach a local maximum. In this technique, we save time by not going over all the
possibilities.

The typical operations performed in our heuristic search can be seen in figure 8.13- we
can add, remove or reverse the direction of an edge, thus creating a new structure, which
has a new score we can calculate. Traversing all possible edges and applying the above
modifications, we can find the highest-scoring new structure and reiterate the process from
it. The number of edge modifications in each step of the greedy hill-climbing algorithm is
O(n2), where n is the number of nodes (because there are O(n2) edges). Once again, the
importance of the decomposability property is demonstrated- each modification of a certain
edge is local to the node that particular edge enters. The decomposability enables us to
update the score of either only one node (in case of an addition or removal of an edge) or
two nodes (in case of a reverse in an edge’s direction), without having to recalculate the
entire network’s score.

An algorithm for learning Bayesian network’s structure

An example for a structure inference algorithm is the algorithm by Pen and Ding [21]. Their
algorithm uses local learning in order to generate parts of the Bayesian network and merge
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them into a valid network. This method is based on the locality of the network’s score 11.14.
The algorithm is composed of 3 steps :

• Generation of local structure. For each node, the optimal set of parents is found by
starting with an optimal (i.e. likelihood maximizing) singleton set and adding nodes
in order to improve the solution (i.e. increase the likelihood for that node)

• Elimination of cycles. After composing the local structures, found in the first step, into
a Bayesian network the algorithm makes sure the network is valid. The network might
contain cycles which have to be removed in order to create a valid network (Bayesian
networks have to be DAGs1). The challenge is to remove the cycles with minimal
damage to the network’s score.

• Local structure perturbation. To asses and improve the stability of the network the
algorithm creates local perturbations (e.g. eliminating a random edge and replacing it
by other local edges) and tests for improvement of the network’s score. Unstable edges
whose replacement improves the total score are replaced.

Figure 8.13: The typical operations performed in the heuristic search

8.5 Applying Bayesian Networks to Expression Data

This section describes an approach for analyzing gene expression data using Bayesian network
learning techniques. We model the expression level of each gene as a random variable. In
addition, other attributes that affect the system can be modeled as random variables. These
can include a variety of attributes of the sample, such as experimental conditions, temporal
indicators (i.e., the time/stage that the sample was taken from), background variables (e.g.,
which clinical procedure was used to get a biopsy sample), and exogenous cellular conditions.

1Direct Acyclic Graph
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By learning a Bayesian network based on the statistical dependencies between these vari-
ables, we can answer a wide range of queries about the system. For example, does the
expression level of a particular gene depend on the experimental condition? Is this depen-
dence direct, or indirect? If it is indirect, which genes mediate the dependency?

We now describe how one can learn such a model from expression data. Many important
issues arise when learning in this domain. These involve statistical aspects of interpreting
the results, algorithmic complexity issues in learning from the data, and preprocessing the
data.

Most of the difficulties in learning from expression data revolve around the following
central point: Contrary to previous applications of learning Bayesian networks, expression
data involves transcript levels of thousands of genes while current datasets contain at most
a few dozen samples. This raises problems in computational complexity and the statistical
significance of the resulting networks. On the positive side, genetic regulation networks are
sparse, i.e., given a gene, it is assumed that no more than a few dozen genes directly affect its
transcription. Bayesian networks are especially suited for learning in such sparse domains.

8.5.1 Network Features

When learning models with many variables, small datasets are not sufficiently informative
to significantly determine that a single model is the ”right” one. Instead, many different
networks should be considered as reasonable explanation of the given the data. From a
Bayesian perspective, we say that the posterior probability over models is not dominated
by a single model (or equivalence class of models). We would like to analyze this set of
plausible (i.e., high-scoring) networks. Although this set can be very large, we might attempt
to characterize features that are common to most of these networks, and focus on learning
them.

Before we examine the issue of inferring such features, we briefly discuss two classes of
features involving pairs of variables:

Markov Relations

A relation of this type specifies if Y is in the Markov blanket of X, where the Markov
blanket of X is the minimal set of variables that shield X from the rest of the variables in
the model (see Figure 8.14 for an example). More precisely, X given its Markov blanket
is independent from the remaining variables in the network. It is easy to check that this
relation is symmetric: Y is in X’s Markov blanket if and only if there is either an edge
between them, or both are parents of another variable [19]. In the context of gene expression
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analysis, a Markov relation indicates that the two genes are related in some joint biological
interaction or process. Note, that two variables in a Markov relation are directly linked in
the sense that no variable in the model mediates the dependence between them. It remains
possible that an unobserved variable (e.g., protein activation) is an intermediate in their
interaction.

Order Relations

An order relation specifies if X is an ancestor of Y in all the networks of a given equivalence
class. That is, if the given PDAG1 contains a directed path from X to Y . This type of
relation does not involve only a close neighborhood, but rather captures a global property.
Thus, we view such a relation as an indication, rather than evidence, that X might be a
causal ancestor of Y.

While at this point we handle only pairwise features, it is clear that this analysis is not
restricted to them, and we should examine also features that are more complex (see [20]).

Figure 8.14: Source [26]. An example for a Markov blanket. This Markov blanket of X
contains all paths from X to other nodes. There are three kinds of such paths as shown
in the figure: (1) Upward paths the parents of X. (2) Sideway paths the spouses of X. (3)
Downward paths the children of X.

1Partially Directed Acyclic Graph - A Graph in which only a part of the edges are directed
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8.5.2 Estimating Statistical Confidence in Features

We now face the following problem: To what extent do the data support a given feature?
More precisely, we want to estimate a measure of confidence in the features of the learned
networks, where ”confidence” approximates the likelihood that a given feature is actually
true (i.e., is based on a genuine correlation and causation) (see Figure 8.16).

An effective, and relatively simple, approach for estimating confidence is the bootstrap
method [6]. The main idea behind the bootstrap is simple. We generate ”perturbed” versions
of the original dataset, and learn from them. In this way we collect many networks, all of
which are fairly reasonable models of the data. These networks show how small perturbations
to the data can affect many of the features. In our context, we use the bootstrap as follows:

• For i = 1...m (in the experiments, we set m = 200):

– Resample with replacement N instances from D. Denote by Di the resulting
dataset.

– Apply the learning procedure on Di to deduce a network structure Ĝi.

• For each feature f of interest calculate

conf(f) =
1

m

m∑
i=1

f(Ĝi) (8.14)

where f(G) is 1 if f is a feature in G, and 0 otherwise.

Figure 8.15: A Bootstrap method. Only features with high confidence will be accepted
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8.5.3 Efficient Learning Algorithms

In section 11.4 we formulated learning Bayesian network structure as an optimization prob-
lem in the space of directed acyclic graphs. The number of such graphs is super-exponential
in the number of variables. As we consider hundreds and thousands of variables, we must
deal with an extremely large search space. Therefore, we need to use (and develop) efficient
search algorithms.

To facilitate efficient learning, we need to be able to focus the attention of the search
procedure on relevant regions of the search space, giving rise to the sparse candidate algo-
rithm [12]. The main idea of this technique is that we can identify a relatively small number
of candidate parents for each gene based on simple local statistics (such as correlation). We
then restrict our search to networks in which only the candidate parents of a variable can
be its parents, resulting in a much smaller search space in which we can hope to find a good
structure quickly.

8.6 Experimental Results

The Bayesian Networks approach was applied by Freidman et al. [9] to two datasets: the
data of Spellman et al. [23] and the data of Hughes et al. [15]. From this point and on, we
will refer only to the data of Spellman et al. We refer the reader to [20] for details about the
results from the data of Hughes et al.

The data contains 79 gene expression measurements of the mRNA levels of 6177 S. cere-
visiae ORFs. These experiments measure expression in fixed time intervals under different
cell cycle synchronization methods. Spellman et al. identified 800 genes whose expression
varied over the different cell-cycle stages. They clustered these 800 genes, based on the sim-
ilarity of expression profiles, resulting 8 major clusters, which contained 250 genes in total.
The variables of the learned networks were the expression level of each of these 800 genes.
Some of the robustness analysis was performed only on the set of 250 genes that appear in
the 8 major clusters.

Freidman et al. [9] used the Sparse Candidate algorithm with a 200-fold bootstrap in the
learning process. The learned features show that intricate structure can be recovered even
from such small data sets. It is important to note that this learning algorithm uses no prior
biological knowledge nor constraints. All learned networks and relations are based solely on
the information conveyed in the measurements themselves. These results are available in
[11]. Figure 8.16 illustrates the graphical display of results of this analysis.

8.6.1 Robustness Analysis

Freidman et al. performed a number of tests to analyze the statistical significance and ro-
bustness of their procedure. They carried most of these tests on the smaller 250 gene data set
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for computational reasons. To test the credibility of their confidence assessment, they cre-
ated a random data set by randomly permuting the order of the experiments independently
for each gene. Thus for each gene the order was random, but the composition of the series
remained unchanged. In such a data set, genes are independent of each other, and thus we
do not expect to find ”real” features. As expected, both order and Markov relations in the
random data set have significantly lower confidence. Clearly, the distribution of confidence
estimates in the original data set have a longer and heavier tail in the high confidence region.
The runs on the random data sets do not learn almost anything with a confidence level above
0.8, which can lead us to believe that most features that are learned in the original data set
with such confidence levels originate in true signals in the data. Also, the confidence distri-
bution for the real dataset is concentrated closer to zero than the random distribution. This
suggests that the networks learned from the real data are sparser. Since the analysis was not
performed on the whole S. cerevisiae genome, Freidman et al. also tested the robustness of
their analysis to the addition of more genes, comparing the confidence of the learned features
between the 250 and 800 gene datasets.

8.6.2 Biological Analysis

Freidman et al. believe that the results of this analysis can be indicative of biological
phenomena in the data. This is confirmed by their ability to predict sensible relations
between genes of known function. We now examine several consequences from this analysis.
We consider, in turn, the order relations and Markov relations found.

Order Relations

The most striking feature of the high confidence order relations, is the existence of dominant
genes. Out of all 800 genes only few seem to dominate the order (i.e., appear before many
genes). The intuition is that these genes are indicative of potential causal sources of the
cell-cycle process. A list of the highest scoring dominating genes appears in Table 8.9.

Inspection of the list of dominant genes reveals quite a few interesting features. Among the
dominant genes are those directly involved in cell-cycle control and initiation. For example,
CLN1, CLN2 and CDC5, whose functional relation has been established [4, 5]. Other genes,
like MCD1 and RFA2, were found to be essential [14]. These are clearly key genes in basic
cell functions, involved in chromosome dynamics and stability (MCD1) and in nucleotide
excision repair (RFA2). Most of the dominant genes encode nuclear proteins, and some
of the unknown genes are also potentially nuclear: (e.g., YLR183C contains a forkhead
associated domain which is found almost entirely among nuclear proteins). Some of them
are components of pre-replication complexes. Others (like RFA2,POL30 and MSH6) are
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Figure 8.16: Source: [9]. An example of the graphical display of Markov features. This
graph shows a ”local map” for the gene SVS1. The width (and color) of edges corresponds
to the computed confidence level. An edge is directed if there is a sufficiently high confidence
in the order between the pair genes connected by the edge. This local map shows that CLN2
separates SVS1 from several other genes. Although there is a strong connection between
CLN2 to all these genes, there are no other edges connecting them. This indicates that,
with high confidence, these genes are conditionally independent given the expression level of
CLN2.
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Gene/ORF Dominance ] of desc. genes
Score > .8 > .7 Notes

YLR183C 551 609 708 Contains forkheaded associated domain, thus
possibly nuclear

MCD1 550 599 710 Mitotic chromosome determinant, null mu-
tant is inviable

CLN2 497 495 654 Role in cell cycle START, null mutant ex-
hibits G1 arrest

SRO4 463 405 639 Involved in cellular polarization during bud-
ding

RFA2 456 429 617 Involved in nucleotide excision repair, null
mutant is inviable

YOL007C 444 367 624
GAS1 433 382 586 Glycophospholipid surface protein, Null mu-

tant is slow growing
YOX1 400 243 556 Homeodomain protein that binds leutRNA

gene
YLR013W 398 309 531
POL30 376 173 520 Required for DNA replication and repair,

Null mutant is inviable
RSR1 352 140 461 GTPbinding protein of the ras family in-

volved in bud site selection
CLN1 324 74 404 Role in cell cycle START, null mutant ex-

hibits G1 arrest
YBR089W 298 29 333
MSH6 284 7 325 Required for mismatch repair in mitosis and

meiosis

Table 8.9: Source [9]. List of dominant genes in the ordering relations (top 14 out of 30).
The first column specifies the name of the gene/ORF, the second column specifies the level of
dominance score of the gene/ORF as appeared in the experiments results, the next column
contains the number of descendent genes with a level of confidence higher than 0.8, the next
column contains the number of descendent genes with a level of confidence higher than 0.7
and the last column supplies additional biological information about the gene/ORF.
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involved in DNA repair. It is known that DNA repair is a prerequisite for transcription, and
DNA areas which are more active in transcription, are also repaired more frequently [18, 25].
A few non nuclear dominant genes are localized in the cytoplasm membrane (SRO4 and
RSR1). These are involved in the budding and sporulation process which have an important
role in the cell-cycle. RSR1 belongs to the ras family of proteins, which are known as
initiators of signal transduction cascades in the cell.

Markov Relations

Inspection of the top Markov relations reveals that most are functionally related. A list of
the top scoring relations can be found in Table 8.10. Among these, all involving two known
genes make sense biologically. When one of the ORFs is unknown careful searches using Psi-
Blast [1], Pfam [22] and Protomap [27] can reveal firm homologies to proteins functionally
related to the other gene in the pair (e.g. YHR143W, which is paired to the endochitinase
CTS1, is related to EGT2 - a cell wall maintenance protein). Several of the unknown pairs
are physically adjacent on the chromosome and, thus, are presumably regulated by the same
mechanism (see [2]), although special care should be taken for pairs whose chromosomal
location overlap on complementary strands, since in these cases we might see an artifact
resulting from cross-hybridization. There are some interesting Markov relations found that
are not discovered using clustering techniques. One such regulatory link is FAR1-ASH1:
both proteins are known to participate in a mating type switch. The correlation of their
expression patterns is low and [23] cluster them into different clusters. Among the high
confidence markov relations, one can also find examples of conditional independence, i.e.,
a group of highly correlated genes whose correlation can be explained within the resulted
network structure. One such example involves the genes: CLN2, RNR3, SVS1, SRO4 and
RAD41. Their expression is correlated and in [23] all appear in the same cluster. In the
resulting network CLN2 is with high confidence a parent of each of the other 4 genes, while
no links are found between them. This suits biological knowledge: CLN2 is a central and
early cell cycle control, while there is no clear biological relationship between the others.
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Confidence Gene 1 Gene 2 Notes
1.0 YKL163WPIR3 YKL164CPIR1 Close locality on chromosome
0.985 PRY2 YKR012C No homolog found
0.985 MCD1 MSH6 Both bind to DNA during mitosis
0.98 PHO11 PHO12 Both nearly identical acid phosphatases
0.975 HHT1 HTB1 Both are Histones
0.97 HTB2 HTA1 Both are Histones
0.94 YNL057W YNL058C Close locality on chromosome
0.94 YHR143W CTS1 Homolog to EGT2 cell wall control, both do

cytokinesis
0.92 YOR263C YOR264W Close locality on chromosome
0.91 YGR086 SIC1 Homolog to mammalian nuclear ran protein,

both involved in nuclear function
0.9 FAR1 ASH1 Both part of a mating type switch, expression

uncorelated
0.89 CLN2 SVS1 Function of SVS1 unknown, possible regula-

tion mediated through
SWI6 0.88 YDR033W NCE2 Homolog to transmembrane proteins,

suggesting both involved in protein secretion
0.86 STE2 MFA2 A mating factor and receptor
0.85 HHF1 HHF2 Both are Histones
0.85 MET10 ECM17 Both are sulfite reductases
0.85 CDC9 RAD27 Both participate in Okazaki fragment

processing

Table 8.10: Source [9]. List of top Markov relations. The first column describes the level of
confidence of the relation, the next two columns contain the names of the two genes of the
relation and the last column supplies additional biological information referring the relation.
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8.7 Using biological knowledge to increase robustness

An interesting method to increase the robustness of created Bayesian networks is based on
the usage of prior biological knowledge regarding the structure of the Bayesian network.
This knowledge is used to filter possible networks created in the Bootstrap phase. in [24]
the Bayesian network is limited to a two level tree (see 8.17).

Figure 8.17: In [24] the structure of the Bayesian network is limited to a two level tree, based
on the naive separation between regulators and targets

In [16] a more sophisticated structure is imposed, in which the network is composed of
modules - sets of co-regulated parameters (i.e. immediate descendants of the same parame-
ters) (see 8.18).

Figure 8.18: In [16] the structure of the Bayesian network is limited to a tree of modules



42 Analysis of Gene Expression Data c©Tel Aviv Univ.

8.8 Improving The Framework

The framework we described here can be expanded in a number of promising directions:

• Correct handling of hidden variables (active proteins)

• Developing the theory for learning local probability models that are capable of dealing
with the continuous nature of the data.

• Improving the theory and algorithms for estimating confidence levels.

• Incorporating biological knowledge (such as possible regulatory regions) as prior knowl-
edge to the analysis.

• Improving the search heuristics.

• Applying Dynamic Bayesian Networks ([10] ) to temporal expression data.

• Dealing with feedback loops which are common to metabolic pathways

Finally, one of the most exciting longer term prospects of this line of research is discov-
ering causal patterns from gene expression data. We can build on and extend the theory for
learning causal relations from data and apply it to gene expression. The theory of causal
networks allows learning both from observational data and interventional data, where the
experiment intervenes with some causal mechanisms of the observed system. In gene expres-
sion context, we can model knockout/overexpressed mutants as such interventions. Thus,
we can design methods that deal with mixed forms of data in a principled manner (See [3]
for a recent work in this direction). In addition, this theory can provide tools for experi-
mental design, that is, understanding which interventions are deemed most informative to
determining the causal structure in the underlying system. Friedman et al. have extended
their framework in this direction (see [20]).
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