
Analysis of Gene Expression Data Spring Semester, 2002

Lecture 6: March 31, 2005
Lecturer: Gideon Dror Scribe: Daniela Raijman and Igor Ulitsky 1

6.1 Introduction to Classification

One of the major current applications of microarray technology is using the genome-wide
expression data in order to classify samples taken from different tissues. Classifying cancer
tissues for diagnosis purposes is already being used in the Netherlands, and many other
countries are expected to introduce this technology into the medical practice in the near
future.
Classification as a discipline is usually viewed in the context of Machine Learning [3], a form
of Artificial Intelligence. Classification is a form of Supervised Learning, which is sometimes
termed as ”learning with a teacher”. The algorithm is first presented with an initial training
set and is expected to extract from it sufficient information in order to successfully handle
never-seen inputs. Other common problems in supervised learning are Ranking and Regres-
sion.

6.2 Problem Definition

For simplicity, this lecture will deal solely with binary classification :

Definition The problem of binary classification is defined as:
Input: a set of m examples (xj, yj) j = 1, 2...m (the learning set) sampled from some

distribution D, where xj ∈ Rn and yj ∈ −1, +1. The i-th component of xj - xj
i is termed

feature i.
Output: a function f : Rn → −1, +1 which classifies ”well” additional samples xk

sampled from the same distribution D.

In the rest of the scribe Xi will denote the i-th feature and xj
i the sample corresponding

to that feature.

6.3 Example Applications

Example Classification of tissue samples using gene expression data. In this case each
measured gene comprises a feature and the learning set is composed of vectors containing
gene expression measurements for different tissues. The problem can be to classify the tissues
as malignant or healthy (Y = malignant/healthy) or to distinguish between different types

1Based in part on a scribe by Simon Kamenkovich and Erez Greenstein May 2002.

2 Analysis of Gene Expression Data c©Tel Aviv Univ.

of cancer. An example of the use of classification with gene expression data can be seen in
Figure 6.1.

Figure 6.1: Genes distringuishing ALL from AML (two types of leukemia). The 50 genes
which give the most information regarding the ALL-AML class are shown. Each row cor-
responds to a gene, with the columns correspinding to expression level in different samples.
Expression levels for each gene are normalized across the samples such that the mean is 0
and the standard deviation is 1. Normalized expression levels greater than the mean are
shaded in red, and those below the mean are shaded in blue. The scale indicates SDs above
or below the mean. .

Example Detection of spam mail. In this case the X is some vector representation of e-mail
messages (e.g. Xi - the number of times the i-th word from some fixed dictionary appears
in the message). The problem is to classify the mail into spam and non-spam. The training
set in this case is list of messages that have been manually classified.

Example Face Detection - the problem of deciding whether a given image (represented as
a vector of pixels) represents a human face. In this case Xi can be the color intensity of the
ith pixel.

Example Signature Recognition - the classifier can be trained to recognize whether a certain
signature belongs to a certain person.

Classification Algorithms 3

The input to a classification problem can be visualized as in 6.2-A as a set of points in
the plain, colored with 2 colors representing the two classes that need to be separated.

6.4 Classification Algorithms

6.4.1 Classification Function

All Classification Algorithms (termed classifiers) can be generalized as algorithms that re-
ceive a training set and learn a classification function of the form f : Rn → {+1,−1}. This
function is then applied to new inputs and its value represents the class to which the input is
classified. Thus, different classification algorithms differ in the form of function they are ca-
pable of learning. The common classification algorithms include: Fisher Linear Discriminant
(6.4.3), KNN (6.4.4), Decision Trees (6.4.5), Neural networks (6.4.6), Naive Bayes (6.4.7),
SVM (6.7), and Adaboost ([6]).

6.4.2 Properties of a Classifier

Training speed The amount of time the classifier needs to learn the classification function
given a training set of a certain size.

Accuracy The accuracy of a classifier can be evaluated using a test set with known class
derivation for every item. The classification error can be tested using varying schemes,
for instance bearing different penalties for false positive and false negative mistakes.

Transparency Some classification functions are very clear (for example a threshold func-
tion), making it possible to derive important insights about the problem or the data.
On the other hand, some functions are very complex, making any such conclusions
infeasible. A common example for a classification function which lacks clarity trans-
parency is the classification performed using Neural Networks.

6.4.3 Fisher Linear Discriminant

The Fisher Linear Discriminant [4] method of classification finds a direction w (a vector in
Rn) in the n-dimensional space.
Given a sample which needs to be classifier, the Fisher classifier calculates the projection
of the sample onto the direction. The idea is to find a direction which after the projection
will maximize interclass variability and minimize intraclass variability. In the simple two-
dimensional case, after the points are projected onto the line, the two classes are transformed
into two sets of points upon the line. The interclass variability in this case is the distance
between the class centers, and the intraclass variability is the distance of class members from
their class center.

Different criteria can be employed to determine the class for a new sample. For instance:
• Calculating the distance from the point to the means for the projections of the training
classes.
• As above, but adding a weighting scheme in order to minimize the bias caused by the

4 Analysis of Gene Expression Data c©Tel Aviv Univ.

relative sizes of the training classes.
The advantage of Fisher linear discriminant scheme is that such a vector can be found swiftly
using a simple procedure.

6.4.4 k Nearest Neighbors

The k nearest neighbors (KNN) classification scheme employes a more local method of clas-
sification. The method requires no initial processing of the training data, and new samples
are classified based on its k nearest neighbors in the training set. The KNN classifier has
numerous variants, as the concept of proximity can be defined in various manners, as well
as the decision rule of the new sample class based on the neighboring samples. For example,
a simple variant of KNN would find the neighbors based on euclidian distance and use the
majority rule to set the classification of the new sample. The KNN scheme is depicted in
Figure 6.2-B. This kind of classifier is able to learn a relatively complex separation function.
A drawback of this method is that in some practical problems, the euclidian distance is inap-
propriate, and the ”correct” distance metric is difficult to define. Another problem is that as
the method performs no preprocessing of the sample, the major computational complexity
occurs while classifying unseen samples, a stage which should usually be performed swiftly.

6.4.5 Decision Tree

The Decision Tree method constructs a tree representing the classification process. The
leaves of the tree represent one of the classes and the internal nodes contain some sort of
desicion function of the input sample with a boolean value. In the simplest case, this function
is a predicate on one of the feathers, e.g. x1 > 3 or x5 < 7. The tree is usually constructed by
selecting the most informative feature Xi at every step and constructing an internal node in
the tree discriminating based on this feature. A sample decision tree is presented in Figure
6.2-C. One of the advantages of the decision tree model is the relative classification speed.

6.4.6 Neural Networks

A neural network [2] is a combination of inter-connected network where the nodes correspond
to neurons and the arcs correspond to synaptic connections in the biological metaphor. The
knowledge of the network is stored in the arc weights. A simple neural network with one layer
and a single output neuron is termed Perceptron and is capable of distinguishing between
classes which can be separated by a straight line (hyperplane) (as shown in Figure 6.2-D). In
this the perceptron is somewhat similar to the fisher discriminant classifier. More complex
neural networks with multiple layers and multiple output neurons are theoretically capable
of separation using any continuous surface. However, the neural network model suffers from
several drawbacks:
(1) The function constructed by the neural network lacks transparency, making it impossible
to deduce conclusions regarding the data. In other words, the neural network is a ”black
box”, which performs well in some situations. (2) The iterative algorithm employed for
learning the classification function may converge slowly or not at all for some problems. (3)

Dimensionality Reduction 5

As any gradient-based iterative optimization search algorithm, the learning of the neural
networks is susceptible to local minima.

6.4.7 Näıve bayes

The naive bayes classifier is based on the concepts of Bayesian decision theory, which is
closely related to hypothesis testing. The two classes are treated as the two hypotheses : A
is ”this sample belongs to class A” and B is ”this sample belongs to class B”. In Bayes
theory, in order to decide among the two hypotheses the log-likelihood ratio is computed -

LR(xj) = log LA(xj)
LB(xj)

. If LR(Data) > log 1−λ
λ

, xj is classified to class A. λ in this case is

the prior probability that xj belongs to class A. In this case it is assumed that the costs of
deciding A when B is correct and vise versa are identical. For a detailed explanation of the
naive bayes method see [5].

6.5 Dimensionality Reduction

Up to this point in the lecture we have dealt solely with n-dimensional data, n being the
original dimension of the input data. A reduction of the data dimension can carry with it
several important advantages for both learning and classification.

6.5.1 Dealing with Overfitting

One of the major problems encountered by all classifying schemes is overfitting of the data.
The data in the learning set can be viewed as containing general information characterizing
the population, along with information specific to the sampled training set. An ideal classifier
is supposed to work only on the general parameters. This is usually termed as performing
generalization. If the classifier adheres strongly to signals specific to the learning set it is
said to overfit it. For example, in the decision tree classifying scheme, a large tree containing
multiple complex functions with a single training sample at each ”leaf”, will probably perform
superbly on the training set, but perform poorly on new samples.
Overall, any complex separating function is vulnerable to overfitting, as can be seen in Figure
6.2-E. Reducing the dimensionality of the data can usually help overcome the maladies of
overfitting by allowing the classifier to focus on the important features.

6.5.2 Merits of the Dimensionality Reduction

• As described above, overfitting is reduced.
• A well-performed dimensionality reduction can improve the performance of the classifier,
by removing features which do not contribute to the classification, and may circumvent it
with misleading noise.
• Several of the classification algorithms suffer from difficulties when dealing with high-
dimensional data.
• In all classification schemes, high dimension causes greater time/memory consumption in
the learning and classification phases.

6 Analysis of Gene Expression Data c©Tel Aviv Univ.

• The use of fewer dimensions improves the clarity of the classification, allowing a better
understanding of the meaningful signals found in the data.
• In the context of gene expression data, it is significantly easier, cheaper and more accu-
rate to deal with expression measures from a small number of genes (e.g. 50) instead of a
whole-genome survey (including up to 40,000 probes).

6.5.3 Approaches to Dimensionality Reduction

Feature Construction

In the Feature Construction approach, n features of the input are transformed into l other
features using some linear/non-linear transformation (e.g. rotation). For example, in the
application to face recognition problem, the n pixels extracted from the image can be reduced
to a set of distances between points with distinctive colors. A common method in feature
construction is Principal Component Analysis - PCA [4], an analytical method with finds
a linear transformation that chooses a new coordinate system for the data set. In the new
coordinates, the greatest variance by any projection of the data set comes to lie on the first
axis (termed the first principal component), the second greatest variance on the second axis,
and so on.

Feature Selection

In Feature Selection, given a training set of n dimensional samples xj we’re interested in
selecting l features which maximize some trait we’re interested in. This trait can of course
be the performance of the classification process, but can also be something else, for instance
- detecting the important features (e.g. genes) in the training set. In this scribe we’ll focus
on maximizing the prediction accuracy, meaning that given a new sample xk from the same
distribution D as the training data we’ll minimize:

∑
j [f(xk)− yj]

2 or E(|f(xk)− yj|)

Selecting the features

A exhaustive search among the possible sets of selected features is infeasible in almost all
practical cases, so heuristics are commonly employed. The integration of those with the
classifier can be divided into three cases, which are depicted in Figure 6.2-F :

Filter The features are selected in a separate process before the classifier is trained.

Wrapper In an iterative manner, the learning process alternates between selecting features
and learning a classification function, improving the feature selection process based on
the feedback from the classifier. Various optimization techniques can be used here, for
example hill climbing.

Dimensionality Reduction 7

Embedded The selection process is embedded in the classifier. The difference from the
Wrapper scheme is that in this case the two processes cannot be separated into two
iteration phases. For example, the learning process of the decision trees includes an
implicit selection of the features that appear in the node functions.

As can be seen from the definition, while in the Filter method the classifier is ignored in
the selection method, Wrapper and Embedded techniques can accommodate themselves to
maximize the performance of a specific classifier.

6.5.4 Filtering of the Features

Even though the filtering approach does not take into the consideration properties specific
to the classifier, it can accomplish suprizingly good results. The filtering is usually based
on extracting features Xi which are more informative about the the class Y . This notion of
information can be captured by several means:

• Pearson correlation ρ(Xi) = cov(Xi,Y)
σ(Xi)·σ(Y)

: Using this measure features which are highly
correlative to the class will be extracted. An example of such a feature can be seen in
Figure 6.2-G.

• χ2 : This measure will extract features whose distribution is similar to that of Y .

• Fisher criterion F (Xi) =
µ+

Xi
−µ−Xi√

σ+
Xi

2
+σ−Xi

2
> C : This measure prefers features with

distinctively different distributions between the two target classes.

• Golub criterion F (Xi) =
µ+

Xi
−µ−Xi

‖σ+
Xi

2
+σ−Xi

2‖
> C : Similar to Fisher criterion.

• Mutual information I(Xi, Y) =
∑

P (Xi, Y) log P (Xi,Y)
P (Xi)P (Y)

: A mesure derived from In-
formation Theory.

For all the measures described about, the most prominent k features are extracted from
the original n features. The filtering method suffers from a few drawbacks:

• The filtering performs well when the samples are not correlated. A classic example of
an ill performance of filtering is the XOR function.

• As mentioned above, the filtering disregards the classifier.

Nevertheless, the filtering method is very fast, thus allowing multiple filtering schemes to be
efficiently tested in order to select the one giving the best performance results. For many
practical purposes, filtering performs well, as can be seen in Figure 6.2-H.

8 Analysis of Gene Expression Data c©Tel Aviv Univ.

6.6 Performance Assessment

A crucial part of building a classifier lies in evaluating its performance. This evaluation is
very important, as the classifier usually employs several parameters whose optimal values
can be found using the assessment process. Also, in most problems several classifiers are
available and the optimal choice is selected through trial and evaluation. In the context of
feature selection, the number of features selected is usually determined using performance
assessment.

6.6.1 Test Set Estimation

A naive and wrong approach to performance assessment is to use the same data set for
training the classifier and assessing its performance. The grave problem in this is that it
introduces a downward bias. After a complex enough learning procedure many classifiers are
capable to perfectly classify the training data, yet perform poorly on new data (a symptom
of overfitting). In order to overcome this, the classifier is trained using some part of the
learning set, termed training set, and its performance is evaluated using an independent test
set. The construction of those two sets can be performed using two main approaches:
• The initial learning set is divided into 2 distinct groups - L1 (training set) and L2 (test set).
In order for this method to perform well, L1 and L2 must be approximately independently
distributed. The main drawback of this method is the fact that the effective size of the
learning set - the number of samples used for training is reduced, thus harming the training
process.
• The method of m-fold cross validation randomly divides the learning set into m distinct
portions of nearly the same size. The learning is composed of m iterations, where in each
iteration one portion from the learning set is put aside, and the training is based on the rest
of the samples. The performance is then evaluated based on the samples set aside. After m
iterations the average performance is calculated. The m parameter value is set considering
the bias-variance tradeoff. A larger value for m reduces the bias, but includes the variance
of the performance assessment. A special case of the m-fold cross validation occurs when
m = 1 and it is called Leave-one-out cross validation (LOOCV).
When feature selection is incorporated in the classification (Embedded scheme), the feature
selection must be performed only on L1, in order to avoid a downward bias.
The use training set and test set is often use for detection of overfitting, by plotting the
classification error on both sets, as in Figure 6.2-I. The learning process in this case is set to
stop at the point where the classification error on the test set starts to increase.

6.7 Support Vector Machines

6.7.1 Introduction

The theory of support vector machines (SVM), has its origins in the late seventies, in the
work of Vapnik [7] on the theory of statistical learning. Lately it has been receiving increas-
ing attention. Many applications, as well as important theoretical results, are based on this
theory. In fact, Support Vector Machines are arguably the most important discovery in the

Support Vector Machines 9

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Figure 6.2: (A) Classification in 2D plane. The colored points indicates the samples contained in the training set of the
classifier and the ”?” the locations of the new samples that need to be classified. (B) Classification using KNN. The class
for each new sample (represented by “?”) is set based on its k (3 in this case) neighbors. (C) Classification using a decision
tree. The tree presented in the left half of the figure describes the decision process, which in this case contains two simple
predicates on the features X1 and X2. The figure on the right depicts the separation encoded in the tree. (D) Separation by
neural networks. The straight line depicts the separation achieved by a simple Perceptron and the curve the separation by a
multi-layered network, which is in theory able to learn any separating function. (E) A classification function which overfits the
training set. (F) The three basic options of introducing feature selection to a classifier. (a) Filter (b) Wrapper (c) Embedded.
(G) An example of a classification problem where the feature Xi will be selected using Pearson correlation, as the feature is
highly correlated with Y . (H) Results of applying the filtering feature selection on a dataset of e-mail messages classified to
span/non-spam. The classifier in this case is KNN and the percision of the classifier is plotted agains the number of features
used (in this case every unique word in the word count vector is a feature). The graphs represent different measures for filtering:
CHI.max - χ2 measure, MI.max - Mutual information. As it can be seen, the optimal filtering is performed using χ2 selecting
about 2000 features. (I) The graph above shows the how MSE (error function) changes as a function of the neural network size.
The test error for the training data grows smaller. The error for the test data decreases up to a certain point, where it starts
to increase. Beyond this point the network suffers from overfitting and does not generalize well.

area of machine learning. The main idea of Support Vector Machines is to find a decision
surface - a hyperplane in feature space (a line in the case of two features) - which separates
the data into two classes. SVMs extremely successful, robust, efficient, and versatile. In ad-
dition, there are good theoretical indications as to why they generalize well. Several efficient
implementation methods exist, however these will not be discussed in this scribe. Reference

10 Analysis of Gene Expression Data c©Tel Aviv Univ.

[1] provides an extensive review on Support Vector Machines. We will discuss the use of
support vector machines in three different settings:
• Data are linearly separable
• Data are linearly non-separable
• Data are non-linearly separable

6.7.2 Linear Separable Case

We will start with the simplest case - linear machines trained on separable data. Given a
training set xi, yi, xi ∈ Rn, yi ∈ {−1, 1}, we assume that the data is linearly separable, i.e.,
there exists a separating hyperplane which separates the positive examples (yi = 1) from the
negative ones (yi = −1). The points x which lie on the hyperplane satisfy w ·x+b = 0, where

w is a normal to the hyperplane and |b|
‖w‖ is the perpendicular distance from the hyperplane

to the origin. Let d+(d−) be the shortest distance from the separating hyperplane to the
closest positive (negative) example. Define the margin of a separating hyperplane to be
d+ + d−. For the linearly separable case, the support vector algorithm simply looks for the
separating hyperplane with largest margin.

The goal is to find the optimal linear classifier (a hyperplane), such that it classifies
every training example correctly, and maximizes the classification margin (See figure 6.3-A).
The above description can be formulated in the following way: If class 1 corresponds to 1
and class 2 corresponds to -1, formulated as:

xi · w + b ≥ +1,∀xi where yi = +1 (6.1)

xi · w + b ≤ −1,∀xi where yi = −1 (6.2)

then we can re-write (6.1) and (6.2) as:

yi(w · xi + b) ≥ 1,∀xi (6.3)

Now consider the points for which the equality in (6.1) holds. These points lie on the
hyperplane H1 : xi ·w + b− 1 = 0. Similarly, the points for which the equality in (6.2) holds
lie on the hyperplane H2 : xi · w + b + 1 = 0. These points are called support vectors (See

figure 6.3-B). In this case d+ = d− = k
‖w‖ , and thus the margin is (b+k)−(b−k)

‖w‖ = 2k
‖w‖ . The

problem can be rescaled to k = 1 for simplicity. Note that H1 and H2 are parallel (they have
the same normal) and that no training points fall between them. Thus we can find the pair
of hyperplanes which gives the maximum margin by maximizing 2

‖w‖ , which is equivalent to

minimizing ‖w‖2, subject to the above constraints. This is formalized as:

minimize ‖w‖2 (6.4)

s.t. yi(w · xi + b) ≥ 1,∀xi (6.5)

The above minimization problem is convex, therefore there exists a unique global min-
imum value, and there is a unique minimizer, i.e. weight and b value that provides the

Support Vector Machines 11

minimum (given that the data is indeed linearly separable). This problem can be efficiently
solved using quadratic programming with modern constraint optimization engines.
To summarize our discussion so far, our goal is to find an optimal linear classifier (a hyper-
plane) such that:
1. It classifies every training example correctly.
2. It maximizes the classification margin.

(A) (B)

(C) (D)

(E) (F)

Figure 6.3: (A) There are many options for choosing w · x + b. The SVM method chooses the option which maximizes
the margin. (B) Choice of w and b which maximizes the margin. Data points lying on H1 and H2 are the support vectors. In
this case d+ = d− = k

‖w‖ . (C) Linear separation with outliers. (D) Using a soft margin allows separation may improve margin

width even when perfect separation is possible. (E) Non-Linear Separation. (F)Data points can be mapped into a new feature
space, such that they are linearly separable in the new space.

Lagrange formulation of the problem

We will now switch to a Lagrangian formulation of the problem. There are two reasons for
doing this. The first is that the constraints (6.1),(6.2) will be replaced by constraints on
the Lagrange multipliers, which will be much easier to handle. The second is that in this

12 Analysis of Gene Expression Data c©Tel Aviv Univ.

reformulation of the problem, the training data will only appear (in the actual training and
test algorithms) in the form of dot products between vectors. This is a crucial property
which will allow us to generalize the procedure to the nonlinear case.

Thus, utilizing the theory of Lagrange multipliers, we introduce positive Lagrange mul-
tipliers αi, i = 1, . . . , l one for each of the inequality constraints . We form the Lagrangian:

LP =
1

2
‖w‖2 −

l∑
i=1

αiyi(xi · w + b) +
l∑

i=1

αi

We have to minimize LP with respect to w, b and simultaneously require that the derivatives
of LP with respect to all the αi vanish. This is a convex quadratic problem, which has a dual
formulation: maximize LP , subject to the constraint that the gradients of LP with respect
to w and b vanish, and subject to the constraints that αi ≥ 0. This is formulated as:

aximize LD =
l∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj (6.6)

s.t.
l∑

i=1

αiyi = 0, αi ≥ 0 (6.7)

Support vector training (for the separable, linear case) therefore amounts to maximizing
LD with respect to the αi, subject to the above constraints, with solution given by w =∑l

i=1 αiyixi. Notice that there is a Lagrange multiplier αi for every training point. In the
solution, those points for which αi > 0 are the support vectors, which lie on one of the
hyperplanes H1 or H2. All other training points have αi = 0 and lie to the side of H1 or H2

such strict inequality holds. For these machines, the support vectors are the critical elements
of the training set. They lie closest to the decision boundary. If all other training points were
removed (or moved around without crossing or moving too near to H1 or H2), and training
was repeated, the same separating hyperplane would be found.

6.7.3 Linear Non Separable case

When applied to non-separable data, the above algorithm will find no feasible solution. This
will be manifested by the objective function (i.e. the dual Lagrangian) growing arbitrarily
large. So how can we extend these ideas to handle non-separable data? We would like to
allow some instances to fall within the margin or to be misclassified, but penalize them. That
is, we would like to introduce an additional cost (i.e. an increase in the primal objective
function) for doing so. This can be done by introducing positive slack variables ξi, i = 1, . . . , l
in the constraints (Cortes and Vapnik, 1995), which then become:

xi · w + b ≥ +1− ξi, yi = +1 (6.8)

xi · w + b ≤ −1 + ξi, yi = −1 (6.9)

Thus, for an error to occur, the corresponding ξi must exceed unity, so
∑

i ξi is an upper
bound on the number of training errors. Hence a natural way to assign an extra cost for
errors is to change the objective function to be minimized from 1

2
‖w‖2 to 1

2
‖w‖2 + C

∑l
i ξi,

Support Vector Machines 13

where C is a parameter to be chosen by the user. A larger C corresponds to assigning a
higher penalty to errors. This is again a convex quadratic programming problem. Thus the
Lagrangian formulation becomes:

maximize LD =
l∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj (6.10)

s.t 0 ≤ αi ≤ C,
l∑

i=1

αiyi = 0 (6.11)

The only difference from the optimal hyperplane case is that the αi have an upper bound
of C. The parameter C controls the range of the αi and avoids over emphasizing some
examples. C is called the complementary slackness. When C → ∞ the problem becomes
identical to the separable case.

Soft vs Hard Margin SVMs

Even when the data can be linearly separated, we might benefit from using a soft margin,
allowing us to get a much wider margin at a small cost (See figure 6.3-D). Using a Soft-Margin
we can always obtain a solution, since the method is more robust to outliers. However, it
requires us to guess the cost parameter, as opposed to the Hard-Margin method, which does
not require any parameters.

6.7.4 Non Linear case

In some cases the data requires a more complex, non-linear separation (see figure 6.3-E). The
non-linear case can be handled using techniques similar to what we discussed so far. Since
finding a linear machine is not possible in the original space of the training set, we first map
the training set to another Euclidean space with higher dimension (even infinite dimension).
This higher-dimensional space is called the feature space, as opposed to the input space
occupied by the training set (see figure 6.3-F). With an appropriately chosen feature space
of sufficient dimensionality, any consistent training set can be made separable. However,
translating the training set into a higher-dimensional space incurs a higher computational
cost.

Suppose we first map the data to some other space H, using a mapping Φ : Rd → H.
Then the SVM formulation becomes:

minimize
1

2
‖w‖2 + C

l∑
i

ξi (6.12)

s.t. yi(w · Φ(xi) + b) ≥ 1− ξi,∀xi, ξi ≥ 0 (6.13)

Data now appear as Φ(xi). Weights are also mapped to the new space. However, if Φ(xi)
is very high dimensional, explicit mapping is very expensive. Therefore, we would like to
solve the problem without explicitly mapping the data. The key idea is to notice that in the
dual representation of the above problems - the training data appeared only in the form of
dot products. Now suppose we first map the data to some other space H, using a mapping

14 Analysis of Gene Expression Data c©Tel Aviv Univ.

Φ : Rd → H . Then the training algorithm would only depend on the data through dot
products in H, i.e. on functions of the form Φ(xi) · Φ(xj). All we need in order to perform
training in H is a function that satisfies K(xi, xj) = Φ(xi) ·Φ(xj), i.e., the image of the inner
product of the data is the inner product of the images of the data. This type of function
is called a kernel function. The kernel function is used in the higher dimension space as a
dot product, so we do not need to explicitly map the data into the high-dimensional space.
Classification can also be done without explicitly mapping the new instances to the higher
dimension, we take advantage of the fact that sgn(wx+ b) = sgn(

∑
i αiyiK(xi, x)+ b) where

b solves αj(yj
∑

i αiyiK(xi, xj) + b− 1) = 0 for any j with αj 6= 0.
Examples of kernel functions are:

• K(xi, xj) = e−
‖xi−xj‖

2

2σ2 - radial basis kernel.

• K(xi, xj) = e
xi−xj

σ2 - gaussian kernel.

• K(xi, xj) = (xi · xj + 1)k - polynomial kernel.

Bibliography

[1] Christopher J.C. Burges. A tutorial on support vector machines for pattern recognition,
http://aya.technion.ac.il/karniel/cmcc/svm-tutorial.pdf. Data Mining and Knowledge
Discovery, 2:121–167, 1998.

[2] Anders Krogh J.Hertz and Richard G. Palmer. Introduction to the theory of neural
computation. Perseus, 1991.

[3] Tom Mitchell. Pattern Classification and Scene Analysis. McGraw Hill, 1997.

[4] D.F. Morrison. Multivariate Statistical Methods. McGraw-Hill, 1990.

[5] Richard O.Duda and Peter E.Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons Inc., 1973.

[6] Yoav Freund Robert E. Schapire. A short introduction to boosting,
http://www.site.uottawa.ca/ stan/csi5387/boost-tut-ppr.pdf. Journal of Japanese
Society for Artificial Intelligence, 5(14):771–780, October 1999.

[7] V.N.Vapnik. The Nature of Statistical Learning Theory. Springer, 1999.

15

