
Analysis of Gene Expression Data Spring Semester, 2005

Lecture 5: March 24, 2005
Lecturer: Amos Tanay Scribe: Itamar Elem and Seagull Chalamish1

5.1 Elements of Bicluser Algorithms

As we have seen in previous lectures, the technology of DNA chips allows the measurement
of mRNA levels simultaneously for thousands of genes. The results of DNA chip experiments
are usually organized together in a gene expression matrix, with rows corresponding to genes
and columns corresponding to conditions. A bicluster can be defined as a submatrix spanned
by a subset of genes and a subset of conditions in which the genes have joint behavior in
the corresponding conditions. Different algorithmic approaches to the biclustering problem
use different measures for the quality of a given biclustering solution. Hence, the definition
of the goal function of each algorithm is part of its description. There are two important
themes regarding biclustering algorithms:

1. Data normalization. A common preprocessing step before applying any clustering al-
gorithm is to normalize the rows or columns of the gene expression matrix, depending
on the dimension on which the clustering is applied (rows/columns). In biclustering
algorithms, for which the two dimensions are considered, the question of how normal-
ization should be done is not simple. Some of the biclustering algorithms do not refer
to the normalization problem and assume that the given data is normalized.

2. Eliminating redundancies when searching for all (or many) biclusters. While in clus-
tering solutions each gene/condition participates in at most one cluster, in biclustering
solutions genes and conditions can be part of several biclusters. A bicluster algorithm
should eliminate redundancies (”similar” biclusters) from its output.

This lecture can be viewed as a direct continuation of Lecture 4 which already described
the notion of biclustering and presented the Cheng and Church’s biclustering algorithm.
Different biclustering algorithms have a different definition for a bicluster. This lecture is or-
ganized as follows. We briefly review Cheng and Church’s algorithm. We then describe three
additional biclustering algorithms: In Section 5.3 we describe the Coupled two-way cluster-
ing algorithm. In Section 5.4 we describe the Iterative Signature Algorithm which is a simple
randomized biclustering algorithm. In Section 5.5 we describe SAMBA – a fast algorithm
which identifies biclusters of high statistical quality using combinatorial algorithms.

1Based in part on a scribe by Michal Ozery-Flato and Israel Steinfeld, May 2004; Irit Gat and Amos
Tanay, May 2002.

2 Analysis of Gene Expression Data c©Tel Aviv Univ.

5.2 Cheng and Church’s algorithm

We present here a brief description of the set of biclusters the algorithm is aimed to find.
For a full description, the reader is referred to Lecture 4.

Cheng and Church [4] implicitly assume that (gene, condition) pairs in a “good” bicluster
have a constant expression level, plus possibly additive row and column specific effects.
After removing row, column and submatrix averages, the residual level should be as small
as possible. More formally, given the gene expression matrix E, a subset of genes I and a

subset of conditions J , we define eIj =
P

i∈I eij

|I| (column subset average) eiJ =
P

j∈J eij

|J | (row

subset average) and eIJ =
P

i∈I,j∈J eij

|I||J | (submatrix average). We define the residue score of an

element eij in a submatrix EIJ as RSIJ(i, j) = eij−eIj−eiJ +eIJ and the mean square residue

score of the entire submatrix as H(I, J) =
∑

i∈I,j∈J
RSIJ (i,j)2

|I||J | . Given the score definition, the
maximum bicluster problem seeks a bicluster of maximum size among all biclusters with
score not exceeding a threshold δ. The size can be defined in several ways, for example as
the number of cells in the matrix (|I||J |) or the number of rows plus number of columns
(|I|+ |J |).

To discover more than one bicluster, Cheng and Church suggested repeated application
of the biclustering algorithm on modified matrices. The modification includes randomization
of the values in the cells of the previously discovered biclusters, preventing the correlative
signal in them to be beneficial for any other bicluster in the matrix. This has the obvious
effect of precluding the identification of biclusters with significant overlaps.

5.3 Coupled two-way clustering

We give here a brief introduction of the Coupled two-way clustering algorithm. For more
information, please refer to Lecture 6, Spring 2004.

Coupled two-way clustering (CTWC), introduced by Getz, Levine and Domany [8] does
not define any goal function or other measure for the quality of a given biclustering solution.
Instead it defines a generic scheme for transforming a one-dimensional clustering algorithm
into a biclustering algorithm. The algorithm relies on having a one-dimensional (standard)
clustering algorithm that can discover significant (termed stable in [8]) clusters. In the
context of the CTWC algorithm, significant gene clusters and significant condition clusters
are referred as stable gene sets and stable conditions sets respectively. The submatrices
defined by pairings of stable gene sets and stable condition sets are called stable submatrices
and correspond to biclusters. The CTWC algorithm recursively applies the one-dimensional
algorithm to stable submatrices to produce (if exist) new stable gene sets and stable condition
sets.

The Iterative Signature Algorithm 3

5.4 The Iterative Signature Algorithm

In the Iterative Signature Algorithm (ISA) [12, 3] the notion of a significant bicluster is
defined intrinsically on the bicluster genes and conditions – the conditions of a bicluster
uniquely define the genes and vice versa. The intuition is that the genes in a bicluster are
co-regulated and, thus, for each condition the average gene expression over all the biclsuter’s
genes should be surprising (unusually high or low) and for each gene the average gene ex-
pression over all biclusters conditions should be surprising. This intuition is formalized using
a simple linear model for gene expression assuming normally distributed expression levels
for each gene or condition as shown below.

5.4.1 Normalization

The algorithm, presented in Figure 5.1, uses two normalized copies, EC and EG, of the
original gene expression matrix E. The matrix EG (EC) results from E by normalizing each
column (row) so that the expression level of a random condition (gene) has mean 0 and
variance 1.

5.4.2 Bicluster definition

Suppose G′ = {g} is a set of independent random variables, where each random variable
g ∈ G has mean 0 and variance 1. In this case, the average of all the random variables in G′

(i.e. 1
|G′|

∑
g∈G′ g) has a mean and a variance equal to 0 and 1

|G′| respectively. For G′ ⊆ G

and C ′ ⊆ C we define:

eG
G′c =

1

|G′|
∑
g∈G′

EG
gc (5.1)

eC
gC′ =

1

|C ′|
∑
c∈C′

EC
gc (5.2)

Note that eG
Gc = eC

gC = 0 due to the normalization made in EG and EC .

For a fixed C ′ (G′) let σG (σC) be the standard deviation of the means {eC
gC′ : g ∈ G}

({eG
G′c : c ∈ C}). The standard deviation σG (σC) can be predicted as 1√

|C′|
(1√

|G′|
) as eC

gC′

(eG
G′c) being a linear sum of |C ′| (|G′|) independent standard random variables. Alternatively,

the standard deviations, σG and σC , can be estimated directly from the data, correcting for
possible biases in the statistics of the specific condition and gene sets used.

Given a set of genes G′ and a threshold parameter TC define:

ISA(G′) = {c ∈ C : |eG
G′c| > TCσC} (5.3)

4 Analysis of Gene Expression Data c©Tel Aviv Univ.

Given a set of conditions C ′ and a threshold parameter TG define:

ISA(C ′) = {g ∈ G : |eC
gC′| > TGσG} (5.4)

A (perfect) bicluster B = (G′, C ′) is required to have:

ISA(G′) = C ′, ISA(C ′) = G′ (5.5)

The idea is that if the genes in G′ are up- or down-regulated in the conditions C ′ then
their average expression should be significantly far (i.e., TC standard deviations) from its
expected value on random matrices (which is 0 since the matrix is standardized). A similar
argument holds for the conditions in C ′. In other words, in a bicluster, the z-score of each
gene, measured w.r.t. the bicluster’s conditions, and the z-score of each condition, measured
w.r.t. the bicluster’s genes, should exceed a threshold. As we shall see below, ISA will not
discover biclusters for which the conditions (5.5) hold strictly, but will use a relaxed version.

5.4.3 Searching for biclusters

Define a directed bipartite graph B(G, C, E) as follows. G = {G′ : G′ ⊆ G}, C = {C ′ : C ′ ⊆
C}, E = {(G′, C ′) : ISA(G′) = C ′, G′ ⊆ G, C ′ ⊆ C} ∪ {(G′′, C ′′) : ISA(C ′′) = G′′, G′′ ⊆
G, C ′′ ⊆ C}. Following the conditions (5.5), a (perfect) bicluster is a cycle of size 2. However,
as we mentioned before, the algorithm searches for an approximation of a (perfect) bicluster.

The algorithm starts from an arbitrary set of genes G0 = Gin. The set may be randomly
generated or selected based on some prior knowledge. The algorithm then repeatedly applies
the update equations:

Ci = ISA(Gi), Gi+1 = ISA(Ci) (5.6)

Let gn be a binary vector of size |G| for which g
(i)
n = 1 iff i ∈ Gn. An approximated

bicluster is a pair (Gn, Cn) satisfying:

|gn − gn−i|
|gn + gn−i|

< ε (5.7)

for all i > 0 smaller than some m. The ISA thus searches for a series of gene sets {Gi} which
converges to an approximated fixed point that is considered to be a bicluster. The actual
fixed point depends on both the initial set Gin and the threshold parameters TC , TG.

The ISA algorithm can be generalized by assigning weights for each gene/condition such
that genes/conditions with a significant behavior (higher z-score) will have larger weights.
In this case, there are two changes to the algorithm:

1. the simple means, eG
G′c and eC

gC′ , are replaced by weighted means.

2. The vector gn (see 5.7) has real-valued elements and is defined as follows: g
(i)
n =

weight(i) if i ∈ Gn, otherwise g
(i)
n = 0.

The Iterative Signature Algorithm 5

5.4.4 Redundencies

• Starting from different seeds yields different fixed points (Biclusters).

• Using different thresholds changes the graph structure and gives a different number of
fixed points.

• There is need to filter similar solutions and report a short list of significant biclusters.

5.4.5 Applications

• Starting from genes with a known functional annotation to refine them into a bicluster.

• Starting from genes with known transcription factor binding sites.

• Starting from a set of sequence orthologs, to find similar genes from different species.

• Starting from a random set (the algorithm might end reporting an empty bicluster).

Therefore, to generate a representative set of biclusters, do the following:

1. Run ISA with different seeds.

2. Run ISA with variant thresholds (see equations 5.3 and 5.4). This action affects
the ISA function and consequently the traversed bipartite graph. Scanning over differ-
ent values for (TC , TG) reveals the modular structure at different resolutions: Lower
thresholds yield larger biclusters whose coregulation is relatively loose, while higher
thresholds lead to smaller, tightly coregulated biclusters.

After eliminating redundancies (similar solutions), the set of fixed points can be analyzed
as a set of biclusters.

5.4.6 Discussion on ISA

ISA is an elegant algorithm which has quite a fast implementation. It offers a satisfying
simple solution to the normalization problem. It is known to have good empirical results in
several cases. However, there are some difficulties in the use of ISA:

1. There is no schema for choosing the values for thresholds.

2. Finding good seeds for the algorithm is not a simple task either.

3. We cannot know if we found all or even most of the exiting (approximated) biclusters.

6 Analysis of Gene Expression Data c©Tel Aviv Univ.

4. Since the algorithm use Z-score statistics, it implicitly assumes that the data (genes and
conditions) have normal distribution. However, if the data have non-normal behavior,
then the algorithm may fail. For instance, assume that the data contains a gene g and
a condition c for which the expression level is much higher than all the other levels
(Egc is extremely high). In this case, if a set of genes G′ contains g then c ∈ ISA(G′)
and vice versa: c ∈ C ′ implies g ∈ ISA(C ′). Hence, we can get a bicluster in which
there are a condition and a gene which have no relevance to the other genes/conditions
in the bicluster.

5. Redundencies.

ISA(G, C, E, Gin, TG, TC , m, ε):
\∗ G : genes. C : conditions. E : Gene expression matrix.

Gin : Initial gene set.
TG, TC : gene and condition z-score thresholds.
m, ε: stopping criteria. ∗\

Construct matrix EC .
Construct matrix EG.
Initialize counter n = 0.
Initialize the current genes set G′ = Gin and compute g0 based on G′

While (true) do
Compute eG

G′c for c ∈ C.
C ′ = {c ∈ C : |eG

G′c| >
TC√
|G′|
}

Compute eC
gC′ for g ∈ G.

G′ = {g ∈ G : |eC
gC′ | > TG√

C′ }
n = n + 1
Compute gn from G′.
If (n < m− 1) continue.
Initialize counter i = 1
while i < m

If (|gn−gn−i|
|gn+gn−i| ≥ ε) break

i = i + 1
If i == m break

Report G′, C ′

Figure 5.1: The ISA algorithm for finding a single bicluster.

SAMBA 7

5.5 SAMBA

We next describe SAMBA, the biclustering algorithm of [15]. SAMBA stands for Statistical
Algorithmic Method for Bicluster Analysis. The motivation underlying its development is
the need for a fast biclustering method that would produce statistically significant results as
part of its design. The key point in the understanding of SAMBA is the statistical model
used by the bicluster scoring scheme. The normalization is done by translating the gene
expression matrix to a weighted bipartite graph, using a statistical model for the data. The
hope is that a model which captures the essential features of the data would guarantee high
quality results.

5.5.1 Data Modeling

The intuitive notion of a bicluster is a subset of genes that exhibit similar expression patterns
over a subset of conditions. Following this intuition we define a bicluster as a subset of genes
that jointly respond across a subset of conditions, where a gene is termed responding in some
condition if its expression level changes significantly at that condition w.r.t. its normal level.

The expression data is modeled as a bipartite graph whose two parts correspond to
conditions and genes, respectively, with edges for significant expression changes. Later, we
shall assign weights to the vertex pairs of the bipartite graph according to a statistical model,
so that heavy subgraphs would correspond to significant biclusters. We can tag each edge to
incorporate the direction of regulation (up or down) as we shall see later. For now assume
edges are not tagged.

Formally, given an input gene expression data, we form a bipartite graph G = (U, V,E)
(see Figure 5.2 for an example). In this graph, U is the set of conditions, V is the set
of genes, and (u, v) ∈ E iff v responds in condition u, that is, if the expression level of v
changes significantly in u. This discretisation can be further developed using a discretisation
function, adding edges according to the expression level of v .A bicluster corresponds to a
subgraph H = (U ′, V ′, E ′) of G, and represents a subset V ′ of genes that are co-regulated
under a subset of conditions U ′ (see Figure 5.2). The weight of a subgraph (bicluster) is the
sum of the weights of gene-condition pairs in it, including edges and non-edges.

In order to assign statistical meaning to the weight of a subgraph, the authors developed
statistical models for the bipartite graph representation of expression data. Using these
models one can derive scoring schemes for assessing the significance of an observed subgraph
(corresponding to a bicluster). This is done so that the score can be expressed as a sum of
independent contributions from each of the node pairs (condition-genes) in the subgraph.
Using this model, we can reduce the biclustering problem to the problem of finding heavy
subgraphs in a bipartite graph.

8 Analysis of Gene Expression Data c©Tel Aviv Univ.

Figure 5.2: Source: [15]. SAMBA model : Gene expression data is modeled using a bipartite
graph whose two sides correspond to the set of conditions U and the set of genes V . An edge
(u, v) indicates the response of gene v in condition u. A statistical model assigns weights to
the edges and non-edges of the graph. A: Part of the graph showing the condition “tup1
deletion” and its effect on the genes “gal7” (response) and “ecm11” (no response). B: A
heavy subgraph (shaded) representing a significant bicluster.

5.5.2 A Simple Model

The first statistical model we present is a simplistic one, and is presented as a motivation
for the more sophisticated model that will follow. Let H = (U ′, V ′, E ′) be a subgraph of G.
Denote |U ′| = m′, |V ′| = n′, |E ′| = k′. The model assumes that edges occur independently

with an equal probability p, where p = |E|
|U ||V | (graph density). Denote by BT (k, p, n) the

binomial tail, i.e., the probability of observing k or more successes in n trials, where each
success occurs independently with probability p. Then the probability of observing a graph at
least as dense as H according to this model is P (H) = BT (k′, p, n′m′) =

∑n′m′

k′′=k′

(
n′m′

k′′

)
pk′′(1−

p)n′m′−k′′ .

Our goal is to find a subgraph H with the lowest P (H). By bounding the terms of
the binomial tail using the first term (which is the largest, assuming that p < 1/2), we

obtain the following upper bound for P (H): P ∗(H) ≤ pk′(1 − p)n′m′−k′
∑n′m′

k′′=k′

(
n′m′

k′′

)
≤

2n′m′
pk′(1− p)n′m′−k′ . Seeking a subgraph H minimizing log P ∗(H) is equivalent to finding a

maximum weight subgraph of G where each edge has positive weight (−1− log p) and each
non-edge has negative weight (−1−log(1−p)) since the weight of a subgraph are log(P ∗(H ′))
under these weights.

SAMBA 9

5.5.3 A Refined Model

The simple model presented above is far from the reality. In fact, if we look at the degree
distribution of real gene expression data we can identify a very non uniform behavior, where
some of the conditions and genes have very high degrees and others very low degrees. As-
suming a simple random graph model would result in very high scores for the ”bicluster”
defined by all high degree nodes in the graph. We next describe a refined null model that
takes into account the variability of the degrees in G, i.e., it incorporates the characteristic
behavior of each specific condition and gene. This behavior may reflect some experiment
artifact (some genes are more likely to have noisy measurements) or some biological actual
meaning (some of the genes participate in many of the cellular pathways).

Let H = (U ′, V ′, E ′) be a subgraph of G and denote E ′ = (U ′ × V ′) \ E ′. For a vertex
w ∈ U ′∪V ′ let dG

w denote its degree in G. The refined null model assumes that the occurrence
of each edge (u, v) is an independent Bernoulli variable with parameter p(u,v). The probability
p(u,v) is the fraction of bipartite graphs with degree sequence identical to G that contain the
edge (u, v), or

p(u,v) =
|{G′ = (U, V,E ′)|∀w, dG′

w = dG
w , (u, v) ∈ E ′}|

|{G′ = (U, V,E ′)|∀w, dG′
w = dG

w}|
(5.8)

We can estimate p(u,v) using a Monte-Carlo like process, starting from the original graph
and performing a sequence of random edge swaps that preserve the degrees (A formal proof
of a sampling lemma in the space of fixed degree graphs is however still an open problem).
The probability of observing H is thus P (H) = (

∏
(u,v)∈E′ p(u,v)) ·(

∏
(u,v)∈E′(1−p(u,v))). How-

ever, we cannot simply compare subgraphs according to this probability, since it improves
(decreases) as the size of H increases (decreases).

To overcome this problem, we use a likelihood ratio to capture the significance of biclus-
ters. The null model is as stated above. For the alternative model we assume that each edge
of a bicluster occurs with constant probability pc > max(u,v)∈U×V p(u,v). This model reflects
our belief that biclusters represent approximately uniform relations between their elements.
The log likelihood ratio for H is therefore:

log L(H) =
∑

(u,v)∈E′

log
pc

p(u,v)

+
∑

(u,v)∈E′

log
1− pc

1− p(u,v)

Setting the weight of each edge (u, v) to log pc

p(u,v)
> 0 and the weight of each non-edge (u, v)

to log 1−pc

1−p(u,v)
< 0, we conclude that the score of H is simply its weight.

5.5.4 Finding heavy subgraphs

Having assigned weights for edges in our model bipartite graph, such that the weight of a
subgraph encode some reasonable likelihood ratio, we now turn to the problem of identifying
the maximum likelihood bicluster, which is, under our formulation, the heaviest subgraph.

10 Analysis of Gene Expression Data c©Tel Aviv Univ.

The computational problem of finding the largest node biclique (the one with the largest
number of vertices) in a bipartite graph has an elegant polynomial time algorithm (using
matching). Our problem, however, is more closely related to the problem of finding the
largest edge biclique (the biclique with the largest number of edges) which is NP-hard for
both unweighted [13] and weighted graphs [9]. In fact, the problem of finding the heaviest
bipartite subgraph when edges are assigned positive weights and non edges negative weights
is hard as well (by reduction from CLIQUE). We thus enforce additional limitation on our
graph, namely, restrict the degree of the genes side, so that a gene that respond in more then
d conditions is ignored. This enables us to develop a polynomial algorithm which is later used
as the basis for a practical implementation that can avoid the degree restriction. Note that
according to the statistical model, genes with high degree contribute less to the significance of
a bicluster, so running the algorithm without them may not be a very restricting limitation.

Maximum Bounded Biclique

We start by describing an O(|V |2d)-time algorithm to find a maximum weight biclique in a
bipartite graph whose gene vertices have d-bounded degree. This algorithm will be a key
component in the algorithms that follow.

Let G = (U, V,E) be a bipartite graph. We say that G has d-bounded gene side, if every
v ∈ V has degree at most d. Let w : U × V → R be a weight function. For a pair of subsets
U ′ ⊆ U, V ′ ⊆ V we denote by w(U ′, V ′) the weight of the subgraph induced on U ′ ∪ V ′, i.e.,
w(U ′, V ′) =

∑
u∈U ′,v∈V ′ w((u, v)). The neighborhood of a vertex v, denoted N(v), is the set

of vertices adjacent to v in G. We denote n = |V | throughout.

Problem 5.1 (Maximum Bounded Biclique) Given a weighted bipartite graph G with
a d-bounded gene side, find a maximum weight complete subgraph of G.

Theorem 5.1 The maximum bounded biclique problem can be solved in O(n2d) time and
space.

Proof: Observe that a maximum bounded biclique H∗ = (U∗, V ∗, E∗) in G must have
|U∗| ≤ d. If not, it’s easy to show that there must be a vertex in U∗ whose removal will give a
better biclique, with contradiction to the maximality of H∗. Figure 5.3 describes a hash-table
based algorithm that for each vertex v ∈ V scans all O(2d) subsets of its neighbors, thereby
identifying the heaviest biclique. Each hash entry corresponds to a subset of conditions and
records the total weight of edges from adjacent gene vertices. An iteration over subsets of
N(v) can be done in O(2d) time. Hence, the algorithm spends O(n2d) time on the hashing
and finding Ubest. Since |Ubest| ≤ d, computing Vbest can be done in O(nd) time, so the total
running time is O(n2d). The space complexity is O(n2d) due to the hash-table.

SAMBA 11

MaxBoundBiClique(U , V , E, d):
Initialize a hash table weight; weightbest ← 0
For all v ∈ V do

For all S ⊆ N(v) do
weight[S]←weight[S]+

w(S, {v})
If (weight[S] > weightbest)

Ubest ← S
weightbest ← weight[S]

Compute Vbest = ∩u∈Ubest
N(u)

Output (Ubest, Vbest)

Figure 5.3: Source: [15]. An algorithm for the maximum bounded biclique problem.

Note that the algorithm can be adapted to give the k condition subsets that induce
solutions of highest weight in O(n2d log k) time using a priority queue data structure.

Finding Heavy Subgraphs Algorithm

We will now show how to extend the latter algorithm to find heavy subgraphs which are not
necessarily complete. For simplicity we shall describe the algorithm assuming that each edge
has weight +1 and each non-edge has weight −1. Extension to more general weights can be
done in a similar manner. Formally, given a bipartite graph G = (U, V,E) define a weight
function w : U × V → {−1, 1} such that w((u, v)) = 1 for (u, v) ∈ E, and w((u, v)) = −1
for (u, v) ∈ (U × V) \ E. Consider the following problem:

Problem 5.2 (Maximum Bounded Bipartite Subgraph) Given a bipartite graph G
with d-bounded gene side, find a maximum weight subgraph of G.

Lemma 5.2 Let H∗ = (U∗, V ∗, E∗) be a maximum weight subgraph of G. Then every vertex
in H∗ is connected to at least half the vertices on the other side of H∗.

Proof: Follows from the choice of weights, since if a vertex v ∈ V ∗ has less than d|U∗|/2e
neighbors, then removing v from H∗ will result in a heavier subgraph. The proof for u ∈ U∗

is symmetric.

Lemma 5.3 Let H∗ = (U∗, V ∗, E∗) be a maximum weight subgraph of G. For each set
X ⊆ U∗ there exists a subset Y ⊆ X with |Y | ≥ d|X|/2e such that Y ⊆ N(v) for some
v ∈ V ∗.

12 Analysis of Gene Expression Data c©Tel Aviv Univ.

Proof: Assume there exists X ⊆ U∗ such that all subsets X ∩ N(v), v ∈ V ∗ are of size
smaller than d|X|/2e. Then the weight of the subgraph induced on (U∗ \ X, V ∗) exceeds
that of H∗, a contradiction.

Corollary 5.4 A maximum weight subgraph of G has at most 2d vertices from U .

Proof: let X be U∗, since Y ⊆ N(v) then d ≥ |Y |. From the lemma we know |Y | ≥
d|U∗|/2e, so we get U∗ ≤ 2d.

Corollary 5.5 Let H∗ = (U∗, V ∗, E∗) be a maximum weight subgraph of G. Then U∗ can
be covered by at most blog(2d)c sets, each of which is contained in the neighborhood of some
vertex in V ∗.

Proof: Denote |U∗| = t. By Lemma 5.3 there exists a subset Y ⊆ U∗ with |Y | ≥ dt/2e,
such that Y ⊆ N(v) for some v ∈ V ∗. The same holds for the set U∗ \ Y , and we can
continue in this manner until we cover U∗. By construction we have at most blog tc sets in
the cover. Since t ≤ 2d by Corollary 5.4, the result follows.

Corollary 5.5 implies an algorithm to find a maximum weight subgraph. The algorithm
tests all collections of at most blog(2d)c subsets of neighborhoods of vertices in V . Since
there are O(n2d) such subsets we have:

Theorem 5.6 The maximum bounded bipartite subgraph problem can be solved in O((n2d)log(2d))
time.

5.5.5 Incorporating the Direction of Expression Changes

In our discussion so far, the underlying bipartite graph used for modeling the data contained
edges for significantly changed genes, but ignored the type of change (increase or decrease in
the expression level). We can integrate additional information into the model by associating
a sign of ”up” or ”down” with each edge. We now have three types of binary relations in
our bipartite graphs: An ”up” edge, a ”down” edge or no edge. It is reasonable to look for a
bicluster in which the conditions tend to affect genes in a consistent way, i.e., two clustered
conditions should either have always the same effect or always the opposite effect on each
of the genes. This leads to the definition of a consistent biclique: Given a bipartite graph
G = (U, V,E) with edge sign function c : E → {−1, 1}, we say that an induced biclique
H = (U ′, V ′, E ′) is consistent if there exists an assignment τ : U ′ ∪ V ′ → {−1, 1} such that
for every v ∈ V ′, u ∈ U ′ we have c((u, v)) = τ(u)τ(v). The maximum consistent biclique
problem in degree-bounded graphs can be solved in polynomial time by reduction to the
standard maximum biclique problem:

SAMBA 13

Lemma 5.7 There is an O(n2d)-time algorithm for the maximum consistent bounded bi-
clique problem on graphs with d-bounded gene side.

Proof: Given G and c, we construct the graph G′ = (U ∪ U, V ∪ V , E ′), where U and
V are copies of U and V , respectively, and E ′ = {(u, v), (u, v)|(u, v) ∈ E, c((u, v)) = 1} ∪
{(u, v), (u, v)|(u, v) ∈ E, c((u, v)) = −1}. Suppose that (U ′, V ′) induce a consistent biclique
in G of size k with a sign assignment τ . Then {v ∈ U ′∪V ′|τ(v) = 1}∪{v|v ∈ U ′∪V ′, τ(v) =
−1} induce a biclique of size k in G′. Conversely, if (U ′, V ′) induce a biclique in G′, then no
pair u, u is contained in it, so {v ∈ U ∪ V |v ∈ U ′ ∪ V ′ or v ∈ U ′ ∪ V ′} induce a consistent
biclique in G of the same size, where τ(v) = 1 if v ∈ U ′ ∪ V ′ and τ(v) = −1 if v ∈ U ′ ∪ V ′.
The claim thus follows from Theorem 5.1.

We can use similar ideas to handle consistent subgraphs. All we need is to ensure that
the sum of weights of edges from a node to two opposite sign neighbors is negative. Given
this condition, the algorithms from previous sections can be applied directly and generate
consistent subgraphs.

5.5.6 The SAMBA Algorithm

The scoring scheme and combinatorial algorithms developed above can be combined to create
the practical SAMBA algorithm in Figure 5.4. We cannot apply the theoretical algorithm
directly on large data sets since for reasonable degree bounds (e.g. 60), 2d is too large. The
suggested solution avoids hashing all subsets of incoming neighbors per gene and exhaust
only subset of small size (typically 4 − 6 conditions). The heaviest condition sets are then
used as kernels that are extended by a local search procedure.

SAMBA thus works as follows: We first form the bipartite graph and calculate vertex
pair weights using one of the weighting methods described above. We consider a gene to be
up (down) regulated in a condition if its standardized level with mean 0 and variance 1 is
above 1 (below -1). Depending on the data, we may choose to work with signed or unsigned
graphs.

In the second phase of the algorithm we apply the hashing technique of the algorithm in
Figure 5.3 to find the heaviest bicliques in the graph. In fact, SAMBA looks for the k best
bicliques intersecting every given condition or gene. We ignore genes with degree exceeding
some threshold d, and hash for each gene only subsets of its neighbors of size ranging from
N1 to N2.

The third phase of the algorithm performs a local improvement procedure on the biclus-
ters derived from the previous phase. The procedure iteratively applies the best modification
to the bicluster (addition or deletion of a single vertex) until no score improvement is pos-
sible. To avoid similar biclusters whose vertex sets differ only slightly, a greedy algorithm
is applied. We iterate over all generated biclusters, ordered by their score, and filter out

14 Analysis of Gene Expression Data c©Tel Aviv Univ.

biclusters whose intersection with a previous solution (number of shared conditions times
number of shared genes) is above L%.

An implementation of SAMBA can handle large data sets in a few minutes (15,000 genes,
500 conditions, d = 40, N1 = 4, N2 = 6, K = 20, L = 30).

SAMBA(U , V , E, w, d, N1, N2, k):
U : conditions. V : genes.
E : graph edges. w : edge/non-edge weights.
N1, N2 : hashed set size limits. k : max biclusters per gene/condition.
Initialize a hash table weight.
For all v ∈ V with |N(v)| ≤ d do

For all S ⊆ N(v) with N1 ≤ |S| ≤ N2 do
weight[S]← weight[S] + w(S, {v}).

For each v ∈ V set best[v][1 . . . k] to the k heaviest S such that v ∈ S.
For each v ∈ V, i ∈ {1..k}

S = best[v][i]
V ′ ← ∩u∈SN(u).
B ← S ∪ V ′.
Do {

a = argmaxx∈V ∪U(w(B ∪ x))
b = argmaxx∈B(w(B − x))
if w(B ∪ a) > w(B − b) then B = B ∪ a
else B = B − b

}While improving
Store B.

Post process to filter overlapping biclusters.

Figure 5.4: The practical biclustering algorithm.

5.5.7 Validating Biclustering Quality

As the reader may have noted, for many applications in computational biology, it is hard to
compare different algorithms and methodologies and state clearly which one is ”better”. It is
however, very important for any scientific discipline to have means for evaluating the quality
of a given result and to make sure the field is indeed making progress. We present examples
of two general methodologies for assessing algorithms performance : comparative analysis,
which matches algorithmic results with some external knowledge, and intrinsic validation,
which uses randomization to evaluate the significance of the signals discovered.

SAMBA 15

Comparative analysis

One way for evaluating bicluster algorithms is by using prior biological knowledge as some
form of a gold standard that we can compare to our set of biclusters. A correspondence plot
depicts the distribution of p-values of the produced biclusters, using for evaluation a known
(putatively correct) classification of conditions (e.g., to various cancer types) or a given gene
annotation. We describe the plot when a classification is given. For each value of p on a
logarithmic scale, the plot presents the fraction of biclusters whose p-value is at most p out
of the (say) 100 best biclusters.

p-values are calculated according to the known classification as follows: Suppose prior
knowledge partitions the m conditions into k classes, C1, . . . , Ck. Let B be a bicluster with b
conditions, out of which bj belong to class Cj. The p-value of B, assuming its most abundant

class is Ci, is calculated as p(B) =
∑b

k=bi

(|Ci|
k

)(
m−|Ci|

b−k

)
/
(

m
b

)
. Hence, the p-value measures the

probability of obtaining at least bi elements from the class in a random set of size b. One
should note, that high quality biclusters can also identify phenomena that are not covered by
the given classification. Nevertheless, we expect a large fraction of the biclusters to conform
to the known classification.

As an example for the usage of correspondence plots, we present the analysis of outputs
from SAMBA algorithm compared to Cheng and Church’s algorithm. Running on the same
data set (the lymphoma data of [2]), a collection of biclusters from both algorithm were
analyzed using the known classification of conditions to different clinical types (DLBCL, CLL,
FL and more). As a reference, a correspondence plot calculated on a random annotation
of the 96 samples (preserving class sizes) was added. The results (Figure 5.5(A)) clearly
indicate that SAMBA’s biclusters are much more aligned with the biological information.

Intrinsic validation

A second, important method for validating the quality of biclusters is by analyzing the re-
sults on random data sets. We should make sure that the results we consider as statistically
significant are not obtained from random data. The details of randomization may be critical
to the integrity of such test. Assume we are using a uniformly random graph model (the
simple model described above) and we randomize the data according to it. Then the arti-
fact we have mentioned before, causing the identification of high degree nodes as biclusters
would not be discovered since the random graph model will follow our originally restricting
assumption.

Figure 5.5(B) describes the results of a randomization test done on SAMBA using a
degree preserving random graph model. The analysis was done on two data sets, first the
real data was biclustered and the significance of each bicluster was calculated. Then the
same procedure was done with a random graph preserving all vertex degrees. It can be seen
that significance values on the random data are well separated from those computed on the

16 Analysis of Gene Expression Data c©Tel Aviv Univ.

original data and, furthermore, only two random biclusters have significance values below
zero. The scatter plot not only demonstrates that heavy biclusters are non random but also
provides empirical evidence to the relation of the SAMBA likelihood score and the more
formal significance measure.

A B

Figure 5.5: Source: [15]. A: Performance of different weighting schemes and algorithms.
Correspondence plots for SAMBA, the algorithm of Cheng and Church [4], and random
biclusters. Likelihood weights use pc = 0.9. For each value of p on a logarithmic scale, the
plot presents the fraction of biclusters whose p-value is at most p out of the (say) 100 best
biclusters. B: Scatter plots of significance values of biclusters (x-axis) vs. their log likelihood
(weight) on synthetic and real data. x-axis: significance value, y-axis: bicluster weight.

5.5.8 Functional Annotation using biclusters

The output of a bicluster algorithm is a collection of significant local signals in the data. Such
signals may be used in diverse application. One example for an application of biclusters is for
automatic annotation of genes. The budding yeast, which is one of the most characterized
eukaryotes up to date, contains about 6200 genes, only half of which have a known function.
We can use a large database of gene expression and a set of derived biclusters to try and
associate unknown genes with some function. The idea is simple, whenever a majority of
the characterized genes in a bicluster share a common functional class, it is likely that the
other genes in the bicluster are also related to this class.

A compiled data set of yeast gene expression, including 515 conditions for the 6,200 yeast
ORFs was used to test this idea. The data was collected from five different experiments [10,
6, 7, 14, 11]. Analysis by SAMBA generated 2,406 biclusters ranging over 4,961 genes and
515 conditions. The source for the known functional annotation was the SGD database [1],
which includes 3000 annotations using the Gene Ontology [5] vocabulary.

The bicluster set was filtered to include only those biclusters in which more than 60% of
their annotated members had the same class. Out of those, only biclusters that were func-
tionally enriched (p-value below 10−4) were used. The unannotated genes in those biclusters

SAMBA 17

were now assigned to the most abundant class. Note that each gene may be annotated more
than once, as is the case for the curated GO annotations. For cross validation, 100 runs were
performed and in each one 30% of the annotations were hidden. The overall average success
rate in annotating the hidden genes was calculated.

The results of these runs are summarized in Figure 5.6(A,B). Overall, 81.5% of the test
set annotations matched those known from SGD, demonstrating that we can extrapolate
functional annotation using biclusters.

A B C

Figure 5.6: Source: [15]. Yeast functional annotation. A: Annotation specificity. The ta-
ble depicts the annotation accuracy measured using 70:30 cross-validation. Rows represent
classes assigned using our method and columns represent SGD GO classes. Cell (x, y) con-
tains the percentage of genes annotated x that belong to GO class y. Higher percentages are
darker. B: Annotation sensitivity calculated w.r.t. annotated genes only. Cell (x, y) contains
the percentage of SAMBA annotated genes that belong to GO class y and were annotated
x. C: Annotation of unknown genes. The table shows for each functional class its size in
the SGD GO annotation, the number of genes that belong to this class and were annotated
by SAMBA, and the number of unknown genes assigned to this class by SAMBA. Abbre-
viations for functional classes: Mating - mating (sensu Saccharomyces, Fungi); Lipid - lipid
metabolism; Ene - energy pathway; Biotic - response to biotic stimulus; Abiot - response
to abiotic stimulus; Cyb - cytoplasm organization and biogenesis; CH Met - carbohydrate
metabolism; CC - mitotic cell cycle; AA Met - amino acid and derivative metabolism; Pro
Met - protein metabolism and modification.

5.5.9 Global Transcriptional Network

Another application that can be applied on the biclusters is identification of Transcription
Factor (TF) binding sites. Genes in the same biological modules, that is genes that are

18 Analysis of Gene Expression Data c©Tel Aviv Univ.

Figure 5.7: Functional modules and their transcription factors in the yeast system. Modules
with significant functional enrichment for a particular process (with p − value ≤ 0.01) are
grouped and plotted as ovals with the process name. TFs with binding profiles associated
with any of these modules are marked as green circles and connected to the associated
process. Modules enriched in more than one process may appear in several places in the
figure. The thickness of the connecting lines is inversely proportional to the p-value of the
functional enrichment in the associated module. The map was automatically generated by
SAMBA using no prior biological knowledge. Key abbreviations: Met: Metabolism, AA:
Amino Acid, Tran: Transport.

expressed corporately under some conditions related to a biological process, might be derived
by one or more common TFs. TFs are important for understanding the biological regulation
mechanism. In several cases, TF binding property can even explain the apparent biological
co-regulation. In Figure 5.7 we can see a process-TF map derived from samba biclustering
results. The biological modules are represented by ovals and the TFs by circles. An edge
between a process and a TF represents an enrichment of the TF in the module’s genes.
This map enables us to generally view the transcriptional regulation mechanism. As can be
seen, some TFs can co-regulate several processes. For example MBP1 that has considerable
representation in the DNA metabolism and Cell Cycle processes.

5.5.10 Discussion on SAMBA

The SAMBA algorithm is fast and allows simultaneous normalization of genes and conditions
and integration of hetergenous data. It is well suited for query based usage. Disadvantages
of SAMBA: discretization and redundancies.

Summery 19

5.6 Summery

In this and the previous lectures, we have reviewed some methods for biclustering. In each of
these methods we focused on the discovery of one, presumingly best, bicluster. To obtain a
set of biclusters we had to apply our algorithm many times, possibly in parallel. A different
approach may be to try and discover a multiple biclustering model for the entire data. This
approach has the advantage of enabling a global view of the data and reducing overfitting
and redundancies. On the other hand, given that biclusters are by definition a local pattern,
a global approach to biclustering is not a trivial task. A family of methods using a basically
global approach is based on probabilistic models. For example, we can model each sub
column and raw as having a typical value distribution, which may be different from the
background. We can then model the entire data set by tiling it with a small number of
biclusters, each having a characteristic distribution. To discover such tiling, it is possible to
use variants of the EM algorithm.

As we have seen, the many possible definitions of the biclustering problem have a central
importance in the design and implementation of algorithms for solving it. As for now, there
is no single solution that is accepted as a standard. As gene expression data accumulates
rapidly, the need for a robust and efficient biclustering algorithms is nevertheless increasing.

20 Analysis of Gene Expression Data c©Tel Aviv Univ.

Bibliography

[1] http://genome-www.stanford.edu/saccharomyces/.

[2] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C.
Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, J. Hud-
son, L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner, D. D.
Weisenburger, J. O. Armitage, R. Warnke, and L. M. Staudt. Distinct types of diffuse
large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769):503–
511, 2000.

[3] S. Bergmann, J. Ihmels, and N. Barkai. Iterative signature algorithm for the analysis
of large-scale gene expression data. Phys Rev E Stat Nonlin Soft Matter Phys, 67(3 Pt
1):03190201–18, 2003.

[4] Y. Cheng and G.M. Church. Biclustering of expression data. In Proc. ISMB’00, pages
93–103. AAAI Press, 2000.

[5] The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

[6] A. P. Gasch et al. Genomic expression programs in the response of yeast cells to
environmental changes. Mol Biol Cell, 11:4241–57, 2000.

[7] A.P. Gasch et al. Genomic expression responses to DNA-damaging agents and the
regulatory role of the yeast ATR homolog mec1p. Mol. Biol. Cell, 12(10):2987–3003,
2001.

[8] G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of gene
microarray data. Proc. Natl. Acad. Sci. USA, 97(22):12079–84, 2000.

[9] Dorit S. Hochbaum. Approximating clique and biclique problems. Journal of Algo-
rithms, 29(1):174–200, 1998.

[10] TR. Hughes et al. Functional discovery via a compendium of expression profiles. Cell,
102:109–26, 2000.

21

22 BIBLIOGRAPHY

[11] T. Ideker, J.A. Thorsson, V. Ranish, R. Christmas, J. Buhler, J.K. Eng, R. Bumgarner,
D.R. Goodlett, R. Aebersold, and Hood L. Integrated genomic and proteomic analyses
of a systematically perturbed metabolic network. Science, 291:929–34, 2001.

[12] J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. Revealing
modular organization in the yeast transcriptional network. Nature Genetics, 31(4):370–
7, 2002.

[13] R. Peeters. The maximum edge biclique problem is NP-complete. cite-
seer.nj.nec.com/peeters00maximum.html.

[14] P. T. Spellman, G. Sherlock, et al. Comprehensive identification of cell cycle-regulated
genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol.
Cell, 9:3273–3297, 1998.

[15] A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in
gene expression data. Bioinformatics, 18(Suppl 1):S136–44, 2002.

