
Analysis of Gene Expression Data Spring Semester, 2005

Lecture 2: March 03, 2005
Lecturer: Ron Shamir Scribe: Seagull Chalamish and Itamar Elem1

2.1 Introduction

2.1.1 Functional Genomics

Having reached the end of the Human Genome Project, the question that needs to be asked
is: “What‘s next?”. The complete sequencing of the Human Genome is an immense task,
which is now nearing completion. While much work remains to be done even there, there
are a number of areas this knowledge opens up to research, which have thus far been nearly
impossible to pursue. Among those is “functional genomics” - the search for understanding
the functionality of specific genes, their relations to diseases, their associated proteins and
their participation in biological processes. Most of the knowledge gained so far in this area is
the result of painstaking research of specific genes and proteins, based on complex biological
experiments and homologies to known genes in other species. This “Reductionist” approach
to functional genomics is hypothesis driven (i.e., it can be used to check an existing hypoth-
esis, but not to suggest a new one). The advancements in both biological and computational
techniques are now beginning to make possible a new approach: the “Holistic” research
paradigm. This approach is based on high-throughput methods: global gene expression pro-
filing (“transcriptome analysis”) and wide-scale protein profiling (“proteome analysis”). In
the holistic approach, a researcher simultaneously measures a very large number of gene ex-
pression levels throughout a biological process, thereby obtaining insight into the functions
and correlations between genes on a global level. Unlike the reductionist approach, these
methods can generate hypotheses themselves.

2.1.2 Representation of gene expression data

Gene expression data can be represented as a real matrix R, called the raw data matrix.
Each row in the matrix contains data regarding a specific gene, and each column represents
a condition, or a tissue profile. Thus, Rij is the expression level for gene i, at condition j.
The expression data can represent ratios, absolute values, or distributions. The expression
pattern (fingerprint vector) of a gene i is the ith row of R. The expression pattern of a
condition j is the jth column of R. In some clustering algorithms the raw data matrix

1Based in part on a scribe by Michal Ozery-Flato and Israel Steinfeld, April 2004; Dror Fidler and Shahar
Harrusi, April 2002; Giora Sternberg and Ron Gabo, May 2002.

2 Analysis of Gene Expression Data c©Tel Aviv Univ.

Figure 2.1: Data and similarity matrices [10]. The raw data matrix A and the clustered
data matrix B map conditions with gene expression. The raw data Similarity matrix C
and the clustered data Similarity matrix D are derived from the raw data matrix or the
clustered data matrix, according to a similarity or distance function. In A and B, yellow
color represents above-average expression level; Blue represents below-average expression
level. In C and D, Yellow represents high similarity, and Blue represents low similarity.

is preprocessed to compute a similarity matrix S, where Sij reflects the similarity of the
expression patterns of gene i and gene j. Note that the similarity matrix is larger than the
data matrix since there are usually much more genes than conditions. Figure 2.1 shows the
data and similarity matrices.

2.1.3 Clustering applications

Clustering genes or conditions is a basic tool for the analysis of expression profiles, and can
be useful for many purposes, such as:

• Deducing functions of unknown genes from known genes with similar expression pat-
terns (similar expression patterns may imply a similar function).

• Identifying disease profiles - tissues with similar disease should yield similar expression
patterns.

• Deciphering regulatory mechanisms - co-expression of genes may imply co-regulation.

• Classification of biological conditions.

• Genotyping.

Introduction 3

• Drug development.

• And more ...

2.1.4 The Clustering Problem

Genes are said to be similar if their expression patterns resemble, and non-similar otherwise.
The goal of gene clustering process is to partition the genes into distinct sets such that genes
that are assigned to the same cluster should be similar, while genes assigned to different
clusters should be non-similar. Usually there is no single solution that is the ”true”/correct
mathematical solution for this problem. A good clustering solution should have two merits:

1. Homogeneity : measures the similarity between genes assigned to the same cluster.

2. Separation: measures the distantnce/dis-similarity between the clusters. Each cluster
should represent a unique expression pattern. If two clusters have similar expression
patterns, then probably it would be better to merge them into one cluster.

Note that these two measures are in a way opposite - if you wish to increase the homogeneity
of the clusters you would increase the number of clusters, but in the price of reducing the
separation.
There are many formulations for the clustering problem, and most of them are NP-hard. For
that reason, heuristics and approximations are used. Clustering methods have been used in
a vast number of fields. We can distinguish between two types of clustering methods:

Agglomerative These methods build the clusters by looking at small groups of elements
and performing calculations on them in order to construct larger groups. Hierarchal
methods of this sort will be described in the next lecture.

Divisive A different approach which analyzes large groups of elements in order to divide
the data into smaller groups and eventually reach the desired clusters. We shall see
non hierarchal techniques which use this approach.

There is another way to distinguish between clustering methods:

Hierarchal Here we construct a hierarchy or tree-like structure to see the relationship
between entities. The following hierarchal algorithms will be presented in the next
lecture: Neighbor Joining, Average Linkage and a general framework of for hierarchal
cluster merging algorithms.

Non Hierarchal In non hierarchial methods, we start with a seed - we choose a central
point from the measurements, and measure the distances of other measurements from
that central point. The following non hierarchal algorithms will be shown here: k-
means, SOM, PCC and CAST. The CLICK algorithm will be presented in the next
lecture.

4 Analysis of Gene Expression Data c©Tel Aviv Univ.

2.2 k-means clustering

This method was introduced by MacQueen [7]. Given a set of n points V = {v1, ..., vn},
and an integer k, the goal is to find a k-partition of minimal cost. If P implies a partition of
V into k subsets, then a centroid or center of a cluster C is the center of gravity of its set of
points pi = (

∑
i∈C vi)/|C|. Let Ep be a function that measures the quality of the partition,

the solution cost. The algorithm moves elements between clusters if it improves Ep, and
updates the 2 affected clusters centers. The new location of the center is determined by the
remaining elements of the cluster.

k-means clustering :

1. Initialize an arbitrary partition P into k clusters.

2. For cluster j, element i 6∈ j.
Ep(i, j) = Cost of the solution if i is moved to cluster j.

3. Pick Ep(r, s) that is minimum.

4. move r to cluster s, if it improves Ep.

5. Repeat until no improvement possible.

Note that this method requires knowledge of k, the number of clusters, in advance. Since
k is fixed, the algorithm aims at optimizing homogeneity, but not separation, i.e., elements
in different clusters can still remain similar.

The most common use of the k-means algorithm is based on the idea of moving elements
between two clusters based on their distances to the centers of the different clusters. The
solution cost function in that case is defined by:

Ep =
∑

p

∑
i∈p

D(vi, cp)

Where cp is the center of cluster p and D(vi, cp) is the distance of vi from cp.
There are some variations of the algorithm involving changing of k. Also there are parallel
versions in which we move each element to the cluster with the closest centroid simultane-
ously, but then convergence is not guaranteed. The k-means is a greedy algorithm in its
nature and might get stuck at local minimum, but it is simple, easy for implementation and
popular.

Self organizing maps 5

Figure 2.2: Self organizing maps : Initial geometry of nodes in a 3 × 2 rectangular grid is
indicated by solid lines connecting the nodes. Hypothetical trajectories of nodes as they
migrate to fit data during successive iterations of the self organizing maps algorithm are
shown. Data points are represented by black dots, six nodes of the Self organizing map by
large circles, and trajectories by arrows.

2.3 Self organizing maps

Kohonen 1997 [6] introduced this method. Tamayo et al [12], applied it to gene expression
data. Self organizing maps are constructed as follows. k is fixed. Some topology on the
centers is assumed. One chooses a grid, m × n, of nodes, and a Distance function between
nodes, D(N1, N2). Each of the grid nodes is mapped into a k-dimensional space, at random.
The gene vectors are mapped into the space as well. As the algorithm proceeds, the grid
nodes are iteratively adjusted (See Figure 2.2). Each iteration involves randomly selecting
a data point P and moving the grid nodes in the direction of P. The closest node nP is
moved the most, whereas other nodes are moved by smaller amounts depending on their
distance from nP in the initial geometry. In this fashion, neighboring points in the initial
geometry tend to be mapped to nearby points in k-dimensional space. The process continues
iteratively.

Self organizing maps :

1. Input: n-dim vector for each element (data point) p.

2. Start with a grid of k = l ×m nodes, and a random n-dim associated vector f0(v) for
each grid node v.

6 Analysis of Gene Expression Data c©Tel Aviv Univ.

Figure 2.3: Macrophage Differentiation in HL-60 cells. The Self organizing map algorithm
was applied to models of human hematopoietic differentiation. This process is largely con-
trolled at the transcriptional level, and is related to the pathogenesis of leukemia. 567 genes
were divided in to clusters using a 4x3 self organizing map. In each graph the normalized,
and averaged expression levels along with standard deviation values for each cluster are
shown.

3. Iteration i :

Pick a data point p. Find a grid node np such that fi(np) is the closest to p.

Update all node vectors v as follows :

fi+1(v) = fi(v) + H(D(np, v), i)[p− fi(v)]

Where H is a learning function which decreases with the number of iterations (i), as
well as with D(np, v) . i.e. nodes that are not near np are less affected.

4. Repeat until no improvement possible.

The clusters are defined by the grid nodes. We assign each point (gene vector) to its
nearest node np (cluster). The movement of a center is affected not only by the elements of
its own cluster. Note that this method also chooses the number of clusters in advance.

GENECLUSTER - an implementation of SOM

GENECLUSTER is a software that implements self organizing maps (SOM) for gene ex-
pression analysis, developed by Tamayo et al, [12]. Some results can be seen in figure 2.3.
GENECLUSTER accepts an input file of expression levels from any gene-profiling method
(e.g., oligonucleotide arrays or spotted cDNA arrays), together with a geometry for the

Graph Clustering Approaches 7

nodes. The program begins with two preprocessing steps that greatly improve the ability to
detect meaningful patterns. First, the data is passed through a variation filter to eliminate
those genes with no significant change across the samples. This prevents nodes from being
attracted to large sets of invariant genes. Second, the expression level of each gene is normal-
ized across experiments. This focuses attention on the shape of expression patterns rather
than on absolute levels of expression. A SOM is then computed. Each cluster is represented
by its average expression pattern along with the standard deviation values (see Figure 2.3),
making it easy to discern similarities and differences among the patterns. The following
learning function H(n,r,i) is used, where n and r are nodes, and i stands for iteration:

H(n, r, i) =

{
0.02T

T+100i
if D(n, r) ≤ ρ(i)

0 otherwise

Radius ρ(i) decreases linearly with i (ρ(0) = 3, ρ(T) = 0). T is the maximum number of
iterations, and D(n,r) denotes the distance within the grid.

2.4 Graph Clustering Approaches

The similarity matrix can be transformed into a similarity graph, Gθ, where the vertices are
genes (i, j), and there is an edge between two vertices if their similarity Si,j is above some
threshold θ. That is, (i, j) ∈ E(Gθ) iff Si,j > θ.

2.4.1 The Corrupted Clique Graph Model

The clustering problem can be modeled by a corrupted clique graph. A clique graph is a
graph consisting of disjoint cliques. The true clustering is represented by a clique graph
H (vertices are genes and cliques are clusters). Contamination errors introduced into gene
expression data result in a similarity graph C(H) which is not a clique graph. Under this
model the problem of clustering is as follows: given C(H), restore the original clique graph
H and thus the true clustering.

Graph Theoretic Approach

A model for the clustering problem can be reduced to clique graph edge modification prob-
lems, stated as follows.

Problem 2.1 Clique graph editing problem
INPUT: G(V, E) a graph.
OUTPUT: Q(V, F) a clique graph which minimizes the size of the symmetrical difference
between the two edge sets: |E∆F |.

8 Analysis of Gene Expression Data c©Tel Aviv Univ.

Clique graph editing problem is NP-hard [11].

Problem 2.2 Clique graph completion problem
INPUT: G(V, E) a graph.
OUTPUT: Q(V, F) a clique graph with E ⊆ F which minimizes |F \ E|.

The clique graph completion problem can be solved by finding all connected components
of the input graph and adding all missing edges in each component. Thus the clique graph
completion problem is polynomial.

Problem 2.3 Clique graph deletion problem
INPUT: G(V, E) a graph.
OUTPUT: Q(V, F) a clique graph with F ⊆ E which minimizes |E \ F |.

The clique graph deletion problem is NP-hard [8]. Moreover, any constant factor approx-
imation to the clique graph deletion problem is NP-hard as well [11].

Probabilistic Approach

Another approach is to build a probabilistic model of contamination errors and try to de-
vise an algorithm which, given C(H), reconstructs the original clique graph H with high
probability.

One of the simplest probabilistic models for contamination errors is a random corrupted
clique graph. The contamination errors are represented by randomly removing each edge in
the original clique graph H, with probability p < 0.5, and adding each edge not in H with
the same probability, p (see Figure 2.4). We will denote by Ω(H, p) the set of all corrupted
clique graphs derived from H with contamination error fraction p using this model.

2.4.2 Probabilistic Clustering Algorithm

In this section we present a clustering algorithm of Ben-Dor et. al. [2], called Parallel
Classification with Cores (PCC). We begin with a few definitions.

Definition A cluster structure is a vector (s1, ..., sd), where each sj > 0 and
∑

sj = 1.
An n-vertex clique graph has structure (s1, ..., sd) if it consists of d disjoint cliques of sizes
ns1, ..., nsd.

Definition A clique graph H(V, E) is called γ-clustering (has γ-cluster structure), if the
size of each clique in H is at least γ|V |.

Graph Clustering Approaches 9

Figure 2.4: The randomly corrupted clique graph model. Left: The original Clustering H of
4 clusters, 18 elements. Middle: Random contamination (flip each edge with a probability
p < 0.5), red edges denote edges that will be removed, blue edges denote added edges. Right:
G = C(H), the input (contaminated) graph.

Algorithm Idea

Assume that we have already clustered a subset U1 of vertices. Let us denote their clustering
by {W1, ...,Wm}. We will extend the clustering {W1, ...,Wm} to include the elements of
another set U2, by putting each vertex v ∈ U2 into the cluster Wi, to which it has the highest
relative density (affinity), that is, the highest ratio between the number of edges connecting
v to vertices in Wi, and the size of Wi (see Figure 2.5). Formally put, we choose the cluster

Wi which maximizes |{u|u∈Wi,(u,v)∈E}|
|Wi| .

After the extension {W1, ...,Wm} is the clustering of U1 ∪ U2. Note that during the
extension procedure we do not add new clusters, thus the number m of clusters is unchanged.

Algorithm Outline

Suppose we are given G(V, E), a corrupted clique graph over n vertices, that is G ∈ Ω(H, p)
for some clique graph H with γ-cluster structure. Because H has γ-cluster structure the
maximum number of cliques in H is m = d1/γe.

The PCC algorithm will perform the following steps (see Figure 2.6):

1. Uniformly draw U1 ⊂ V , such that |U1| = O(log log(n));

2. Uniformly draw U2 ⊂ V \U1, such that |U2| = O(log(n));

3. For each clustering of U1 into at most m clusters {W1, ...,Wl}, perform:

(a) Extend the clustering {W1, ...,Wl} of U1 into clustering X(W)={X1, ..., Xl} of
U1 ∪ U2;

(b) Extend the clustering {X1, ..., Xl} into a clustering Y(W)={Y1, ..., Yl} of V ;

10 Analysis of Gene Expression Data c©Tel Aviv Univ.

Figure 2.5: Relative Density - the highest relative density of v is with cluster C3 (relative
density of v with clusters C1, C2, C3, C4 is 1/2, 2/3, 3/4, 1/5, respectively).

Figure 2.6: PCC algorithm steps shown schematically.

Graph Clustering Approaches 11

4. Each clustering {Y1, ..., Yl} of V from the previous step determines a clique graph over
V. Amongst all these clique graphs, choose the one which is closest (in the symmetric
difference sense) to the input graph. Meaning, choose C = argmin |E(G)∆E(C)|.

Algorithm Correctness and Running Time

We introduce some notation, before presenting the proof of the algorithm. We use D(p||a) to
denote the relative entropy distance from (p, 1−p) to (a, 1−a), that is, D(p||a) = p log2(p/a)+
(1− p) log2((1− p)/(1− a)). We use k(α) to denote d2/D(1/2||α)e.

Definition The random graph model Q(n, α, S) (representing random corruption of clique
graphs) is defined as follows: Given a clique graph H over n vertices with structure S, and a
value 0 ≤ α < 1

2
, the random graph GH,α is obtained from H by randomly (1) removing each

edge in H with independent probability α; (2) adding each edge not in H with independent
probability α.

Definition Consider an algorithm A that takes an arbitrary graph G as input and returns
a clique graph A(G) on the same vertex set. Let δ > 0. We say that A clusters Q(n, α, S)
with probability 1 − δ if when applied to the random graph GH,α, the output graph is,
asymptotically, as good a solution as the original clique graph is, with probability 1 − δ.
More precisely, we require that for n large enough, and for any clique graph H with structure
S, we have

PI [∆(A(GH,α), GH,α) ≤ ∆(H, GH,α)] > 1− δ.

Here and throughout this section PI denotes the relevant probability measure, which is
clear from the context.

To analyze the algorithm we need the following theorem and lemma:

Theorem 2.1 Chernoff 1952 [3]
Let X ∼ Binomial(n, p). Let a < p < b, then:

P (X ≥ bn) < exp(−nD(b‖p))

P (X ≤ an) < exp(−nD(a‖p))

Lemma 2.2 Consider n objects of d different colors, where each color is represented by at
least n/m objects. If s objects are sampled uniformly and independently without replacement,
then

PI

(
The sample contains ≥ s/2m
representatives of each color

)
> 1− δ,

provided that 16m2 log(d/δ) ≤ s ≤ n
4m

.

12 Analysis of Gene Expression Data c©Tel Aviv Univ.

Proof:
Call a sample as above bad if it does not satisfy the condition for a fixed color A.

p = PI (bad sample) ≤ PI (X < s/2m) ,

where X ∼ Binomial
(
s, (n/m)−s

n

)
. This is true since even with no replacement the proportion

of A-colored elements left in the pile in each trial is more than (n/m)−s
n

. Therefore, by the
Chernoff bound above, and assuming n > 4ms,

p < exp

(
−s ·D(

1

2m
|| 3

4m
)

)
(2.1)

≤ exp

(
− s

16 log(2)m2

)
.

The inequality in (2.2) follows from the general inequality [4]: D(p||q) ≥ (1/ln(2)) · (p− q)2.
This last expression is less than δ/d by our assumption on the sample size s. A union over
all colors yields the stated result.

Theorem 2.3 Let S be a cluster structure and let α < 1/2. For any fixed δ > 0 the above
algorithm clusters Q(n, α, S) with probability 1− δ. The time complexity of the algorithm is
O (n2 · log(n)c), where c is a constant that depends on α and on γ(S).

Proof:
Since m = d 1

γ(S)
e, d(S) ≤ m. m is considered a constant for our setup. Let T =

〈T1, . . . Tm〉 be the partition of V that represents the underlying clusters, where some clusters
may be empty. For a vertex v ∈ V let i(T, v) be defined by v ∈ Ti(T,v). Let η > 0 (η will be
related to the tolerated failure probability, δ, at the end). Recall that k(α) = d2/D(1/2||α)e.

1. Uniformly draw a subset U1 of vertices of size 2m · k(α) log log(n). If n is large
enough, namely: log log(n) > 8mk(α) log(1/η) and n > 8m2k(α) log log(n) we know
(by Lemma 2.2) that with probability 1 − η each color has at least k(α) log log(n)
representatives in this chosen subset.

2. Uniformly over the subsets of V \U1 draw a subset U2 of vertices with 2m · k(α) log(n)
elements. Again, for n large enough, with probability 1 − η each color has at least
k(α) log(n) representatives in this subset.

3. Consider all partitions of U1 into m subsets (for n large enough there are less than
log(n)2m log(m)·k(α) of them). Denote each such partition by W = 〈W1, . . . ,Wm〉 (some

Graph Clustering Approaches 13

subsets may be empty). Run the following enumerated steps starting with all these
partitions. For the analysis focus on a partition where each Wi is a subset of a distinct
true cluster Tj.

Such a partition is, indeed, considered, since we are considering all partitions. For this
case we can further assume, without loss of generality, that for each i we have Wi ⊂ Ti.

(a) Start with sets Xi = Wi. For all u ∈ U2 let i(X, u) be the index that attains the
maximum (1 ≤ i ≤ m) of deg(u, Wi)/|Wi|. Add u to that set. Let W (u) = Wi(T,u).

The collection of edges from u to W (u) are independent Bernoulli(1−α) (the draw-
ings of U1 and U2 were independent of everything else). Therefore deg(u, W (u)) ∼
Binomial(|W (u)|, 1−α). Using the Chernoff bound stated above we therefore have

PI

(
deg(u, W (u)) ≤ |W (u)|

2

)
< exp(−|W (u)|D(

1

2
||α))

< log(n)−k(α)D(1
2
||α) (2.2)

< log(n)−2, (2.3)

where |W (u)| ≥ k(α) log log(n) justifies (2.2). Similarly, for i 6= i(T, u), we have

deg(u, Wi) ∼ Binomial(|Wi|, α),

and thus

PI (deg(u, Wi) ≥ |Wi|/2) < exp(−|Wi|D(
1

2
||α))

< log(n)−2, (2.4)

whence i(X, u) = i(T, u) with high probability: PI (i(X, u) 6= i(T, u)) < m log(n)−2.
Finally, by a union bound

PI (i(X, u) 6= i(T, u) for some u ∈ U2) < 2m2 · k(α) log(n)−1. (2.5)

(b) Focusing on the part of the measure space where no error was committed in the
previous steps (in particular, all vertices were assigned to their original color),
we now have m subsets of vertices Xi ⊂ Ti, i = 1...m, each of size at least
k(α) log(n), unless the corresponding Ti is empty. We take all other vertices
and classify them using these subsets, as in the previous step. Let the resulting
partition be Y == 〈Y1, . . . , Ym〉 and for vertices v ∈ V let i(Y, v) be defined by

14 Analysis of Gene Expression Data c©Tel Aviv Univ.

v ∈ Yi(Y,v). Observe that all edges used in this classification are independent of the
algebra generated by everything previously done. This is true since in the previous
step only edges from U2 to U1 were considered, and these are of no interest here.
Therefore, the equivalents of (2.3) and (2.4) hold, yielding

PI (i(Y, v) 6= i(T, v) for any v ∈ V) < 2m2 · k(α)n−1. (2.6)

4. Amongst all outputs of the above, choose the partition which is closest (in the sym-
metric difference sense) to the input graph.

The total probability of failure in this process is estimated as follows

PI

(
The original partition V =

⋃m
i=1 Ti

is not one of the outputs

)
≤ 2η + 2m2 · k(α)

(
n−1 + log(n)−1

)
, (2.7)

which is arbitrarily small for large n and if η is chosen appropriately.
As noted above, we have less than log(n)2m log(m)·k(α) possible partitions of U1. Each such

partition leads to a clustering of all vertices in V , using the core clusters Xi , i = 1...m.
For each partition O(n log(n)) edges are considered in the classification step. Each edge is
considered at most once, as sums of disjoint edge subsets are compared to a threshold. Com-
puting the distance of each of the clique graphs produced to the input graph requires O(n2)
operations. Thus the total time complexity of the algorithm is O(n2 · log(n)2m log(m)·k(α)).

2.4.3 Practical Heuristic - Algorithm CAST

Although the theoretical ideas presented in the previous section show asymptotic running
time complexity of O(n2 logc n), their implementation is still impractical (the constants, for
instance, are very large, as in the computation of all possible partitions of U1 into at most
m clusters in step 3). Therefore, based on ideas of the theoretical algorithm, CAST (Cluster
Affinity Search Technique), a simple and practical heuristic, was developed. All the tests
described in subsequent sections were performed using this practical implementation of the
theoretical algorithm.
Suppose we are given G(V, E), a corrupted clique graph over n vertices, that is G ∈ Ω(H, p)
for some clique graph H. Let C be a cluster. Let Si,j be a similarity matrix and let v ∈ V

be a gene. We define the affinity of v to cluster C by
P

u∈C Su,v

|C| . Given an affinity threshold
τ we will say that v is a close gene to cluster C if its affinity to C is above τ and we will
say that v is a weak gene in C if its affinity to C is below τ . Following are the steps of the
practical implementation. Repeat the following until all genes are clustered:

Graph Clustering Approaches 15

• Start a new cluster at a time by picking an unclustered gene, and denote it by CC.
As long as changes occur, repeat the following steps:

– Add a close gene to CC;

– Remove a weak gene from CC;

Close CC when no addition or removal is possible;

The main differences between the practical implementation and the theoretical algorithm
are:

1. In the theoretical algorithm several partitions are formed and then the “best” partition
is chosen. The clusters in a partition are extended by adding new elements to them.
In the practical implementation one partition is formed by building one cluster at a
time, and removal of weak elements from a cluster is allowed. This enables correction
in case the seed of the forming cluster is wrong.

2. The theoretical algorithm considers the similarity graph, while the practical implemen-
tation processes the similarity matrix (the similarity value between any two genes can
assume any real value).

3. In the theoretical algorithm addition is done independently, while the practical imple-
mentation adds genes incrementally.

Although little can be proved about the running time and performance of the practi-
cal implementation, the test results described in the next sections show that it performs
remarkably well, both on simulated data and on real biological data.

BioClust

BioClust is an implementation package of the CAST heuristic. The following section presents
results of applying BioClust on both synthetic data and real gene expression data.

Clustering Synthetic Data

The simulation procedure is as follows (please refer to Figure 2.7 A for visualization of the
simulation procedure):

• Let H be the original clique graph.

• Generate G from H by independently removing each edge in H with probability p and
adding each edge not in H with probability p.

16 Analysis of Gene Expression Data c©Tel Aviv Univ.

cluster structure n p matching coeff. Jaccard coeff.
{0.4, 0.2, 0.1× 4} 500 0.2 1.0 1.0
{0.4, 0.2, 0.1× 4} 500 0.3 0.999 0.995
{0.4, 0.2, 0.1× 4} 500 0.4 0.939 0.775
{0.1× 10} 1000 0.3 1.0 1.0
{0.1× 10} 1000 0.35 0.994 0.943

Table 2.1: Performance of BioClust for different values of p and n. Mean values of matching
coefficient and Jaccard coefficient are given.

• Randomly permute the order of vertices in G and run BioClust with affinity threshold
τ = 0.5.

• Compare BioClust’s output to the original graph H.

There are several comparison criteria, which can be used to compare the algorithm’s
output to the original clique graph. Given two adjacency matrices A and B of two graphs
of the same size, let Nij be the number of entries on which A and B have values i and j,
respectively. The matching coefficient is defined by N00+N11

N00+N01+N10+N11
that is total number

of matching entries divided by total number of entries. The Jaccard coefficient is defined
by N11

N01+N10+N11
, which is similar to the matching coefficient, only with N00, the number of

entries which are zero in both matrices, removed. In sparse graphs N00 will be a dominant
factor, thus Jaccard coefficient is more sensitive when dealing with sparse graphs. With
both coefficients, the higher the value, the closer the result is to the real clustering. Both
coefficients have maximum value of 1, which implies perfect clustering.

Table ?? presents results of simulation for different values of contamination error p and/or
number of cluster entities n. The values of the matching coefficient and the Jaccard coefficient
are presented. It can be seen that the Jaccard coefficient is more sensitive. One can also
observe the effect of p and n on the performance of the algorithm.

Figure 2.7 B presents results of simulations for different values of n and p. It can be seen
that the properties of the theoretical algorithm are preserved in its practical implementation.
We get better performance when the number of clustered entities (vertices in H) increases.

Clustering Temporal Gene Expression Data

The gene expression data used in this experiment is from [13]. In this paper the authors
study the relationship among expression patterns of genes involved in the rat Central Nervous
System (CNS).

Gene expression patterns were measured for 112 genes along 9 different development
time points. The gene expression data for each gene was augmented with derivative values

Graph Clustering Approaches 17

to enhance the similarity for closely parallel but offset expression patterns, resulting in a
112 × 17 expression matrix. The similarity matrix was obtained using Euclidean distance.
The execution of BioClust resulted in eight clusters. Since partitioning to clusters is known
from [13] this experiment was done mainly for validation of the algorithm.

Figure 2.7 C and D presents the clustering results. Note that all clusters, perhaps with
the exception of cluster #1, manifest clear and distinct expression patterns. Moreover, the
agreement with the prior biological classification is quite good.

Clustering C. Elegans Gene Expression Data

The gene expression data used in this analysis is from [5]. Kim et al. studied gene regulation
mechanisms in the nematode C. Elegans. Gene expression patterns were measured for 1246
genes in 146 experiments, resulting in a 1246×146 expression matrix. The similarity matrix
was obtained using Pearson correlation.

The algorithm found 40 clusters. Only very few genes out of the 1246 were classified into
families by prior biological studies. The algorithm clustered these families quite well into
few homogeneous clusters (see Figure 2.8).

One example of the potential use of clustering for analyzing gene expression patterns is
shown in Figure 2.8. A six-gene cluster (cluster #24) contained two growth-related genes
and four anonymous genes. This suggests the possibility that the other four genes are also
growth-related, paving the way for future biological research.

Tissue Clustering

The gene expression data used in this experiment is from [1]. The authors describe an
analysis of gene expression data obtained from 62 samples of colon tissue, 40 tumor and 22
normal tissues. Gene expression patterns were measured for 2000 genes in the 62 samples,
using an Affymetrix chip. The similarity between each two samples was measured using
Pearson correlation. Note that here, the similarity is measured between tissues, not genes.

BioClust formed 6 clusters of the data. Figure 2.9 shows the distribution of tumor and
normal tissues in the six clusters produced.

The main goal of clustering here is to achieve a separation of tumor and normal tissues.
This experiment demonstrates the usefulness of clustering techniques in learning more about
the relationship of expression profiles to tissue types.

Improved Theoretical Results

Shamir & Tsur [9] have introduced a generalized random clique graph model with improved
theoretical results, including reduction of the Ω(n) restriction on cluster sizes, and stronger
results when cluster sizes are almost equal.

18 Analysis of Gene Expression Data c©Tel Aviv Univ.

a b

c d
A B

C D

Figure 2.7: Source: [2]. A) A visualization of the simulation procedure. a: The adjacency matrix of the original
clique graph H before introduction of errors. Position (i, j) is white if (i, j) ∈ E(H), that is, if i and j belong to the same
cluster. b: The same matrix after introduction of errors. Note that the cluster structure is still visible for all but the smallest
clusters. c: The same as b but vertex order is randomly permuted. This is the actual input to the algorithm. d: Matrix c
reordered according to solution produced by the algorithm. With the exception of perhaps the smallest clusters, the essential
cluster structure is reconstructed. B) Simulation results for H with cluster structure of { 1

2
, 1
4
, 1
8
, 1
16

, 1
16

}. The x-axis is n, the
number of vertices in H (clustered entities), and y-axis is the mean value of the Jaccard coefficient. Each curve corresponds
to a specific probability p = α of contamination error. C) Applying the algorithm to temporal gene expression data [13]. The
solution generated by the algorithm is compared to the prior classification. For each cluster (x-axis), bars composition in terms
of biologically defined families. The height of each bar (y-axis) represents the number of genes of a specific cluster family.
Most clusters contain predominantly genes from one or two families. D) Applying CAST to temporal gene expression data [13].
Each graph presents expression patterns of genes in a specific cluster. The x-axis represents time, while the y-axis represents
normalized expression level.

Graph Clustering Approaches 19

Figure 2.8: Source: [2]. Some results of the CAST algorithm applied to the nematode gene
expression data of Kim et. al. [5]. Top: expression patterns for clusters #21 to #40. x
axis: conditions (matrix columns) in arbitrary order. y axis: intensity level. Most of the
genes’ functions are unknown, so only few genes are color coded. Blue: sperm genes; red:
yeast genes (control) ; gray: unknown. Note the homogeneity of cluster #30. Bottom
Left: expression patterns of the genes in cluster #1, consisting of 31 genes. Bottom Right:
Expression patterns of the six genes in cluster #24. This cluster contains two growth related
genes, lin15 and E2F. This suggests the hypothesis that the other four members of this
cluster have related functions.

20 Analysis of Gene Expression Data c©Tel Aviv Univ.

Figure 2.9: Source: [2]. Distribution of tumor and normal tissues in the six clusters produced
by the CAST algorithm.

Bibliography

[1] U. Alon, N. Barkai, D. A. Notterman, G. Gish, S. Ybarra, D. Mack, and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. PNAS, 96:6745–6750, June 1999.

[2] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3/4):281–297, 1999.

[3] H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952.

[4] T. M. Cover and J. M. Thomas. Elements of Information Theory. John Wiley & Sons,
London, 1991.

[5] S. Kim. Department of Developmental Biology, Stanform University,
http://cmgm.stanford.edu/∼kimlab/.

[6] T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1997.

[7] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and
Probability, pages 281–297, 1965.

[8] A. Natanzon. Complexity and approximation of some graph modification problems.
Master’s thesis, Department of Computer Science, Tel Aviv University, 1999.

[9] R. Shamir and D. Tsur. Improved algorithms for the random cluster graph model. In
Proc. 8th Scandinavian Workshop on Algorithm Theory (SWAT ’02), LNCS 2368, pages
230–239. Springer-Verlag, 2002.

[10] R. Sharan, A. Maron-Katz, N. Arbili, and R. Shamir. EXPANDER: EXPres-
sion ANalyzer and DisplayER, 2002. Software package, Tel-Aviv University,
http://www.cs.tau.ac.il/∼rshamir/expander/expander.html.

21

22 BIBLIOGRAPHY

[11] R. Sharan, R. Shamir, and D. Tsur. Cluster graph modification problems. In Proc. 28th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’02),
To appear.

[12] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander,
and T.R. Golub. Interpreting patterns of gene expression with self-organizing maps:
Methods and application to hematopoietic differentiation. PNAS, 96:2907–2912, 1999.

[13] X. Wen, S. Fuhrman, G. S. Michaels, D. B. Carr, S. Smith, J. L. Barker, and R. Somogyi.
Large-scale temporal gene expression mapping of central nervous system development.
PNAS, 95(1):334–339, 1998.

