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10.1 Genetic Networks

10.1.1 Preface

An ultimate goal of a molecular biologist is to use genetic data to reveal fundamental cellular
processes, and their impact on complex organisms. In order to achieve this goal one has to
study how complex systems of several genes and proteins function and interact.

10.1.2 Genetic Networks

Definition A genetic network is a set of molecular components such as genes, proteins and
other molecules, and interactions between them that collectively carry out some cellular
function.

Genetic Networks describe functional pathways in a given cell or tissue, representing
processes such as metabolism, gene regulation, transport and signal transduction. Let us
examine several examples:

1. Expression of the Gene proB

Figure 10.1 depicts the gene’s expression and its role in catalyzing a specific chemical
reaction in the cell. The proB gene is being expressed into the gamma-glutamyl-
kinase protein, which catalyzes a reaction involving glutamate and ATP, that produces
gamma-glutamyl-phosphate and ADP compounds.

2. A Simple Metabolic Pathway - Proline Biosynthesis

The next example is part of a simple metabolic pathway, involving a chain of generated
proteins, which is shown on Figure 10.2. One of the final products of the chain,
proline, inhibits the initial reaction that started the whole process. This ”feedback
inhibition” pattern is highly typical to genetic networks, and serves to regulate the
process execution rate.

1Based in part on a scribe by Meital Levy and Giora Unger 2002, Koby Lindzen and Tamir Tuller 2002
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Figure 10.1: An example of the role of gene expression in catalyzing chemical reactions.

Figure 10.2: An example of a metabolic pathway: Proline biosynthesis.
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3. Methionine Biosynthesis in E-coli.

The following two figures show a more complex genetic network, describing Methionine
biosynthesis in E-coli. The second figure is a schematic representation of the pathway,
with most nodes omitted, but it can give a better idea of the overall topology.

4. Signal Transduction Network

This example, depicted in Figure 10.5, is that of signal transduction - a complex cellular
process initiated by a signaling protein, arriving from outside of a cell. This process
eventually affects gene expression in both the cytoplasm and inside the nucleus.

10.1.3 Experimental Startegies

Using a known structure of such networks it is sometimes possible to describe the behavior of
cellular processes, reveal their function and determine the role of specific genes and proteins in
them. That is why one of the most important and challenging problems today in molecular
biology is that of functional analysis - discovering and modelling Genetic Network from
experimental data.

Biological Tools

There are two central approaches in addressing this problem: The first approach tries to
find out the relation between two specific genes. An example of this approach is the usage
of 2-hybrid systems [2]. The second approach takes ”snapshots” of the expression levels of
many genes in different conditions, and according to that, tries to describe the network of
relations between these genes. An example of this approach is the usage of DNA microarray,
commonly used to monitor gene expression at the level of mRNA. The main contribution
of this technology is that numerous genes can be monitored simultaneously, making it pos-
sible to perform a global expression analysis of the entire cell. In this scribe we will cover
techniques related to the second approach.

Additional information about a genetic network may be gleaned experimentally by ap-
plying a directed perturbation to the network, and observing expression levels of every gene
in the network, in the presence of the perturbation. Perturbations may be genetic, in which
the expression levels of one or more genes are fixed by knockout (removal of the gene) or
overexpression (higher than usual level of gene expression), or environmental, in which one
or more non-genetic factors are altered, such as a change in environment, nutrition, or tem-
perature. Such biological experiments are very costly and very few such perturbations may
be performed at one time. Thus, reducing the number and cost of experiments is crucial.
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Figure 10.3: Methionine biosynthesis network in E-coli.

Figure 10.4: Schematic representation of the biosynthesis pathway presented in Figure 10.3.
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Figure 10.5: A genetic network that performs signal transduction from outside the cell into
the nucleus.

The methods presented above supply biological data in terms of expression levels of many
genes at different time points and under various conditions. The functional analysis of the
data can be defined as a computational problem, aiming to infer some plausible model of the
network from the observations, while keeping the number or cost of biological experiments at
a minimum. The model should describe how the expression level of each gene in the network
depends on external stimuli and expression levels of other genes. Additional goals include
construction of a knowledge-base of gene regulatory networks, and verification of pathways
or genetic network hypotheses.

10.1.4 Genetic Network Models

In the process of modeling a genetic network, one tries to find out which components are
involved in the network and the interactions between them. Several models have been
proposed in the literature to capture the notion of genetic networks and allow mathematical
solutions of the computational problem of modeling biological processes:

• Linear Model:
This model, proposed by D’haeseleer et al [5, 4], assumes that the expression level of
a node in a network depends on a linear combination of the expression levels of its
neighbours.

• Boolean Model:
Proposed by Kauffman[7]. It assumes only two distinct levels of expression - 0 and 1.
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According to this model, the value of a node at time t+ 1 is a boolean function of the
values of its neighbours at time t.

• Bayesian Model:
Proposed by Friedman et. al [6]. It attempts to model the behavior of the genetic
network as a joint distribution of different elements.

In this section we shall concentrate on the Boolean model. The Bayesian Model will be
discussed in detail in the next Lecture.

10.1.5 Boolean Network Model

According to the boolean model, a network is represented by a directed graph G = (V, F ),
where:

• V represents nodes (elements) of the network.

• F is a set of boolean functions (see below), that defines a topology of edges between
the nodes.

A node may represent either a gene or a biological stimulus, where a stimulus is any
relevant physical or chemical factor which influences the network and is itself not a gene or a
gene product. Each node is associated with a steady-state expression level xv, representing
the amount of gene product (in the case of a gene) or the amount of stimulus present in the
cell. This level is approximated as high or low and is represented by the binary value 1 or
0, respectively.

Network behavior over time is modeled as a sequence of discrete synchronous steps. The
set F = {fv|v ∈ V } of boolean functions assigned to the nodes defines the value of a node in
the next step, depending on values of other nodes, which influence it. The functions fv are
uniquely defined using truth tables. An edge directed from one node to another represents
the influence of the first gene or stimulus on that of the second. Thus, the expression level
of a node v is a boolean function fv of the levels of the nodes in the network which connect
(have a directed edge) to v.

Definition A trajectory is a sequence of consecutive states of the network. It can be viewed
as a list of N -dimensional vectors (N being the number of nodes in the network), each
representing a state.

10.1.6 A Complementary Approach

We can view an organism as a very large genetic network. If we knew all the interactions
of such a network, we could perfectly understand every single detail in the organism. That
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is, we could understand which genes, proteins and other molecules are involved in every
biological process, how exactly the process takes place, etc.

This might be the ultimate goal of biological science, but obviously we are light years
away from it. We therefore make a simplifying assumption. We model the organism as many
distinct genetic networks, which loosely interact among themselves.

Indeed, this is a heavy assumptions, but it is necessary in order for genetic networks to
be useful in modeling biological processes.

Instead of looking at a specific network, we look at general properties of ”network of
the kind” (eg. networks where each components has exactly 2 related components). Given
such a group of genetic networks, we can explore their properties (global structural features,
types of possible dynamic behaviors etc.). The search for generic properties may also provide
hints for the analysis of specific circuits (like which features to expect, what questions to
ask, etc.).

Definition An ensemble of genetic networks is composed of similar networks that share
some features. The non constrained features vary at random between networks in the en-
semble.

Properties of an Ensemble of Networks:

• Every network consists of N nodes (genes).

• Each gene is influenced directly by exactly k other input genes.

• For each node, the k input genes are chosen at random.

• For each node, its boolean function is chosen at random from the 22k
possible functions

(the table of the input has size of 2k states, and for each state the function can return
0 or 1).

10.1.7 Simplified Description

Following are a few assumptions taken in order to simplify the model:

• The activation of genes depends on proteins and chemicals.

• The synthesis of proteins participating in a regulatory process is very fast compared
to the regulatory process itself.

• Regulatory proteins decay much faster than the duration of the regulatory processes.

• The concentrations of the regulatory chemicals are constant.
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As a result of those assumptions, we can express the activation level (mRNA level or
protein level) in time t+δt as a function of the activation at time t. We will later use δt = 1.
This means that loss of memory occurs within δt time, that is, knowledge of steps before
time T is not needed.

10.1.8 Kauffman’s Model

Kauffman’s Model [7, 8] uses boolean gene levels, 1 for active and 0 for inactive. It also
assumes that time t + 1 is determined by a boolean function of the levels of a fixed set of
input genes at time t. This means it can use only 1-step memory. All updates are executed
in a deterministic way and are synchronized. External chemicals are not explicitly taken into
account. The module assumes we have N nodes. We choose random topology between the
nodes, than we choose random functions betweens the genes that effect a gene (”regulators”)
and the gene itself (the ”regulatee”), and than we choose random initial values for the nodes
at time 0. See 10.6.

Figure 10.6: C(t+ 1) the reulatee depends upon the regulators A(t) and B(t).

Kauffman’s Model is dynamic:

• At time 0, a level is given to every gene.

• At each time step t = 1, 2... every gene has a level xi(t), which is determined according
to the boolean functions.

• The global state of the system is X = [x1, x2, ....xn] and we say that X(t) alone
determines X(t + 1). As time passes, the system moves from state X(t) to X(t + 1),
X(t+ 2) and so on, following a trajectory.

The states can be thought of as corners in the unit hypercube and a step from one global
state to another can be thought of as shifting from one corner to another. Note, that a legal
move does not have to be between two adjacent corners, since adjacent corners differ only
by one bit. See 10.7 a 3-dimensional cube.
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Figure 10.7: The state space of 3 states.

Examples

Figure 10.8 gives an example of a simple boolean network and associated truth tables. This
example shows a network of three nodes - a, b and c. As one can see, the expression of c
directly depends on the expression of b, which in turn directly depends on a. Note that b
influences more than one node, a and c (”pleiotropic regulation”), and that a is influenced
by more than one node (”multigenic regulated”).

Figure 10.8: source: [10].A sample boolean network. The functions on the node are described
by the tables: the right column is the value of the regulatee at the next stage (depends on
the values of the other columns).

The assignment of values to nodes fully describes the state of the model at any given
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time. The change of model state over time is fully defined by the functions in F . Initial
assignment of values uniquely defines the model state at the next step and consequently, on
all the future steps. Thus, the network evolution is represented by its trajectory.

Figure 10.9 shows two such trajectories for the sample network. Since the number of
possible states is finite, all trajectories eventually end up in single steady state, or a cycle of
steady states.

Definition An attractor of a trajectory is a single steady state, or a cycle at the end of the
trajectory. The basin of attraction for a specific attractor is the set of all trajectories leading
to it.

Figure 10.9: source: [10].States trajectories. The upper trajectory has a cycle of 2 steady
states, while the lower trajectory ends in a single steady state. The basin of attraction of
the upper trajectory is [1, 0, 0], [0, 1, 0], [1, 0, 1], and the attractor of the upper trajectory is
[0, 1, 0], [1, 0, 1]

One or more attractors are possible. The network in our example has two attractors -
one is the steady state (0, 0, 0), and the other is a cycle (0, 1, 0) ↔ (1, 0, 1). The attractors
are reached when t → ∞. In a finite boolean network, one of the attractors is reached in a
finite time.

States in genetic networks are often characterized by stability - ”slight” changes in value
of a few nodes do not change the attractor. Biological systems are often redundant to ensure
that the system stays stable and retains its function even in the presence of local anomalies.
For example, there may be two proteins, or even two different networks with the same
function, to backup each other.
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10.1.9 Ensembles of Networks

We defined above what an ”ensemble of networks” is, and which properties it possesses.
However, each network has its own dynamics. The main features of the model, attractors
and basins, are determined by the degree of connectivity in each network. A degree of
connectivity k means that the in-degree of each node is exactly k.

Figure 10.10: An ensemble of random networks with (k = 2). Note that every node in every
network has degree 2.

High In-Degree

In the case that k is as high as N − 1:

• X(t+ 1) is completely uncorrelated to X(t), the output associated to each input set is
random. There is no correlation between outputs corresponding to two inputs which
differ even by a single bit. The system is chaotic and the homeostatic stability is very
low, nearby initial states go to different attractors, and changing one input function
completely destroys the basin structure.

• The number of attractors, about N/e, is very small compared to the 2N possible states.

• The cycles are huge, period size is around 20.5N .
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For example, for N = 100, 000 we get 1030,000 states, only 37,000 attractors and cycles
are as long as 1015,000.

Figure 10.11: A 2-dimensional lattice view of a generic network, i.e., every cell in the lattice
represents a gene. It can be seen, that when the in-degree is high, most of the genes are
oscillating, that is, their state changes very frequently, and only few genes reach a constant
state. Furthermore, the oscillating genes form a giant component, instead of being scattered
all over the lattice.

Low In-Degree

In the case of k = 2:

• Basins are regular: nearby initial states usually reach the same attractor, high home-
ostatic stability, spontaneous order, even though inputs and functions are completely
random.

• The number of attractors is relatively high - about N1/2.

• Average cycle length is N1/2.

Phase Transition

For a k-input boolean function, define P = max{no. 1-outputs, no. 0-outputs}/2k. It’s
obvious that 0.5 ≤ P ≤ 1 . For P ≈ 0.5, the function is chaotic. For P ≈ 1, the function is
almost constant. In order to control the phase transition for different values of k by changing
P , for example, by using canalizing functions, a boolean function where there is at least one
value of one of the inputs that uniquely determines the output, irrespective of the others
(eg. AND, OR).



Genetic Networks 13

Figure 10.12: A 2-dimensional lattice view of a generic network with low in-degree. One
can see that the effect is opposite to that observed in Figure 10.11 - most of the genes are
constant, forming a giant component, while only few genes oscillate.

10.1.10 Concluding Remarks about Kauffman’s Model

A possible explanation of the model

The model is consistent with experimental observations over many different phyla. A ratio
that was observed is that the number of cell types is approximately the number of different
cycles which is approximately the number of genes0.5. A possible explanation is that a dif-
ferent cell start position will develop different types of cell. Another ratio that was observed
is the length of cell life is approximately the length of the cycle in the graph.

Summery

Kauffman’s model is a highly idealized representation of real genetic networks, due to the
following reasons:

• The relation between genes are discrete (boolean) rather than continuous.

• The network status at time t+ 1 depends only on its status at time t.

• Chemicals are not taken into account.

• Regulatory proteins are assumed to be synthesized very fast with respect to the regu-
lation process itself.

• Synchronous activation may introduce ”spurious cycles” in boolean dynamical systems.

• Fixed in-degree k is assumed for all genes.

However, Kauffman’s model allows us to address issues which would otherwise be ne-
glected, and to develop an appropriate language in which we can formulate key questions,
such as:
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• The importance of attractors in determining the properties of genetic networks.

• Robustness and basins of attraction.

• The importance of the average degree of connectivity.

Kauffman’s model also allows us to examine in a new way the interplay between selection
and self-organization. Moreover, it demonstrates the importance of studying ensembles of
networks to gain insight about their generic properties.
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10.2 Identification of Gene Regulatory Networks by

Gene Disruptions and Overexpressions

10.2.1 Preface

This section is based on the article of Akutsu et al. [3]. Almost all proofs and all figures
were take from this paper. In this section we show how to identify a gene regulatory network
from data obtained by multiple gene perturbations (disruptions and overexpressions) taking
into account the number of experiments and the complexity of experiments. An experi-
ment consists of parallel gene perturbations and their total number is the complexity of an
experiment.

10.2.2 Model Description and Definitions

We define the gene regulatory network as in the previous section. We further assume that
it satisfies the following conditions:

1. When the boolean function fv assigned to v has k inputs, k input lines (directed edges)
come from k distinct nodes u1, ..., uk other then v.

2. For each i = 1, ..., k there exists an input (a1, .., ak) ∈ {0, 1}k with fv(a1, ..., ak) 6=
fv(a1, .., āi, ..., ak) where āi is a complement bit of ai.

3. A node v with no inputs has a constant value (0 or 1).

Definition The state of a gene v is active (inactive) if the value of v is 1 (0).

Definition The node v is called AND(OR) node if the value of fv(a1, ..., ak) is determined
by the formula `(u1)∧ `(u2)∧ ...∧ `(uk) (`(u1)∨ `(u2)∨ ...∨ `(uk)) , where `(ui) is either ui

or ¬ui.

Definition An edge (u, vi) is called an activation edge (inactivation edge) if `(ui) is a positive
literal (negative literal).

For a gene v, a disruption of v forces v to be inactive and overexpression of v forces v
to be active. Let x1, ..., xp, y1, ..., yq be mutually distinct genes of G. An experiment with
gene overexpressions x1, ..., xp and gene disruptions y1, ..., yq is denoted by e = 〈x1, ..., xp ,
¬y1, ...,¬yq〉. The cost of e is defined as p + q. Three cases of gene expression conditions
(normal, disruption of gene A, overexpression of gene B ) are presented in figure 10.14.

Let us define the nodes with fixed values given experiment e:
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Figure 10.13: Source: [3]. Example of a gene regulatory network with 16 genes ( ⊕ means
”activation” and 	 means ”deactivation” of the gene). Gene F is activated by gene A and
is also inactivated by gene L (fF (A,L) = l(A) ∧ ¬l(L)). Gene D is expressed if all its
predecessors C,F,X1, X2 are expressed (AND - node).

Figure 10.14: Source: [3]. Gene expressions by disruption and overexpression from the gene
regulatory network of Figure 10.13 (0 - the gene is not expressed , 1 - the gene is expressed).
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Definition The node v is said to be invariant if it satisfies one of the following conditions:

• v belongs to e, i.e., v is disrupted or overexpressed in e.

• v has in-degree 0.

• v depends only on invariant nodes.

We now define different types of states of gene regulatory network G:

1. A global state of G is a mapping ψ : V → {0, 1}. The global states of the genes need
not be consistent with the gene regulation rules.

2. The global state ψ of G is stable under experiment e = 〈x1, ..., xp , ¬y1, ...,¬yq〉 if
ψ(xi) = 1 (i = 1, ..., p) , ψ(yj) = 0 (j = 1, ..., q) and it is consistent with all gene
regulation rules, i.e., for each node v with inputs u1, ..., uk , ψ(v) = fv(ψ(u1), ..., ψ(uk)).
Otherwise, it is called unstable.

3. The global state ψ of G is an observed global state under experiment e = 〈x1, ..., xp ,
¬y1, ...,¬yq〉 if it satisfies all gene regulation rules for invariant nodes.

4. The observed global state ψ of G is a native global state when no perturbations are
made (e = 〈〉).

We shall now prove upper and lower bounds for the number of experiments required for
identifying a gene regulatory network with n genes, depending on the in-degree constraint
and acyclicity. Table 10.1 summarizes the results. Computationally the running time of all
algorithms when the in-degree is bounded is polynomial.

10.2.3 Upper and Lower Bounds on the Number of Experiments

We first show that an exponential number of experiments are required in the worst case.

Proposition 10.1 Θ(2n−1) experiments must be performed in order to identify a gene reg-
ulatory network in the worst case.

Proof: Consider a boolean function of (n−1) variables f(x1, x2, .., xn−1) which is assigned
to the node xn. There are 22n−1

possible boolean functions of (n−1) variables. Hence we can
identify this function by examining 2n−1 assignments and less examinations will not suffice
(we get one output bit per experiment).

Proposition 10.2 n2n−1 experiments always suffice in order to identify a gene regulatory
network.
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Constraints Lower
bounds

Upper
bounds

None Ω(2n−1) O(2n−1)

In-degree ≤ D Ω(nD) O(n2D)

In-degree ≤ D
All genes are AND-nodes (OR-nodes)

Ω(nD) O(nD+1)

In-degree ≤ D
Acyclic

Ω(nD) O(nD)

In-degree ≤ 2
All genes are AND-nodes

(OR-nodes). No inactivation edges.

Ω(n2) O(n2)

Table 10.1: Source: [3]. Bounds on the number of experiments needed for reconstruction (n
- number of genes, D - maximum in-degree). As seen from the table, forcing more constrains
on the possible network topologies can improve experimental complexity significantly. The
cases of acyclic topologies and restricted monotone logic (AND/OR gates only) are simpler
mathematically but have no biological motivation.
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Proof: For each node 2n−1 experiments are sufficient to identify its Boolean function by
Proposition 10.1. Hence n2n−1 experiments suffice in order to identify the whole network.

Theorem 10.3 An exponential number of experiments are necessary and sufficient for the
identification of a gene regulatory network.

10.2.4 Bounded In-degree Case With Bounded Cost

Since an exponential lower bound was proved in the general case, we consider a special
but practical case, in which the maximal in-degree is bounded by a constant D. First, we
consider the case D = 2.

Proposition 10.4 Ω(n2) experiments are necessary for identification even if the maximum
in-degree is 2 and all nodes are AND nodes, where we assume that the maximum cost is
bounded by a fixed constant C.

Proof: First, consider the case of C = 2. Assume that ¬x ∧ ¬y → z is assigned to z
and all other nodes have in-degree 0. Among all experiments only (¬x,¬y) can activate z.
Therefore, we must test Ω(n2) pairs of nodes in order to find (x, y).

Next, we consider the case of C = 3 with the same function ¬x ∧ ¬y → z. If we
disrupt or overexpress u, v, w such that x 6∈ {u, v, w} or y 6∈ {u, v, w} , we can only learn
that (u, v), (u,w), (v, w) are different from (x, y). Since there are Θ(n3) triplets and only
Θ(n) triplets can include {x, y}, Θ(n2) triplets must be examined in the worst case (each
experiment removes at most a constant number of pairs out of the Θ(n2) possible ones).

For cases of C > 3, similar arguments work: suppose C = k > 3, if we disrupt and/or
everexpress u1, ..., uk such that x 6∈ {u1, ..., uk} or y 6∈ {u1, ..., uk}, we can only know that

k!
2!·(k−2)!

pairs are different from (x, y). Since there are Θ(nk) k-mers and only Θ(nk−2) k-

mers can include {x, y}, Θ(n2) triplets must be examined in the worst case (each experiment
removes at most a constant number of pairs out of the Θ(n2) possible ones).

If C is not bounded, the above proposition does not hold. It is possible to identify
the above pair (x, y) by O(log(n)) experiments of maximum cost n, using a strategy based
on binary search. Although this strategy might be generalized for other cases, we do not
investigate it because experiments with high cost are not realistic. (The cells simply die if
they are heavily mutated.)

Next, we consider the upper bound.

Proposition 10.5 O(n4) experiments with maximum cost 4 are sufficient for identification
if the maximum in-degree is 2.
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Proof: We assume (w.l.o.g.) that all nodes are of in-degree 2 since identification of nodes
of in-degree 1 or 0 is easier. Let c be any node of V . We examine all assignments to all
quadruplets {a, b, x, y} with c 6∈ {a, b, x, y}. The boolean function g(a, b) is assigned to c
(i.e., fc ≡ g) if and only if c ≡ g(a, b) for any assignment to {a, b, x, y}, where c ≡ g(a, b)
means that the state of c equals to g(a, b). The ’only if’ part is trivial. We shall prove the ’if’
part. Suppose that g(a, b) is not assigned to c, i.e., fc = h(a, b) and h(a, b) 6= g(a, b). Clearly,
c ≡ g(a, b) does not hold. Next, consider the case where h(p, q) is assigned to c where h
may be equal to g and {p, q} ∩ {a, b} = ∅. In this case, c takes both 1 and 0 by changing
assignments to {p, q} even if the assignment to {a, b} is fixed. Therefore, c ≡ g(a, b) does
not hold. In the case remaining {p, q} ∩ {a, b} 6= ∅. Suppose fc ≡ h(p, b) and a 6= p. Then
there is a value of b so that h(0, b) 6= h(1, b), but then fc(a, b, p = 0, y) 6= fc(a, b, p = 1, y)
and c ≡ g(a, b) does not hold again. Since all assignments to all quadruplets are examined,
in total 0(n4) experiments are sufficient.

The above property holds even for an unstable graph because c is consistent under any
experiment on {a, b, x, y} if fc ≡ g(a, b).

Theorem 10.6 O(n2D) experiments with maximal cost 2D are sufficient for the identifi-
cation of a gene regulatory network of bounded in-degree D. On the other hand, Ω(nD)
experiments are necessarily in the worst case if the cost of each experiment is bounded by a
constant.

10.2.5 Efficient Strategies for Special Cases

In this section we consider the case where the network consists of AND and/or OR nodes.
In this case we assume that any AND (resp. OR) node c is inactive (resp. active) if at
least one literal appearing in the boolean function assigned to c is forced to 0 (resp. 1) by
disruption or overexpression of the gene corresponding to the literal. The above assumption
is biologically reasonable even when the network contains inconsistent nodes.

Theorem 10.7 A gene regulatory network which consists of AND and/or OR nodes and
has maximum in-degree D can be identified by O(nD+1) experiments.

Proof: Here we only show strategy for a network that consists of AND nodes of in-degree
2. It can be generalized though, to the other cases. We examine all assignments to all triplets
{a, b, x} with c 6∈ {a, b, x}. The function g(a, b) is assigned to c (i.e., fc = g) if and only
if c ≡ g(a, b) for any assignment to {a, b, x}. Following the proof in Proposition 10.5, we
only have to consider the case that h(p, q) is assigned to c and {p, q} ∩ {a, b} = ∅. Consider
an assignment to {a, b, p} for which g(a, b) = 1. If c is not active we can conclude that
c ≡ g(a, b) does not hold. If c is active, we can inactivate c by changing the assignment
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to p since only one assignment to {p, q} can activate c. Thus , c ≡ g(a, b) does not hold.
Therefore, the above property holds and O(n3) experiments are sufficient in total.

Next, we consider the acyclic case for which we obtain an optimal bound.

Definition A set of nodes {x1, x2, ..., xk} has influence on y if there exist two experiments
e1 and e2 on {x1, x2, ..., xk} such that e1 activates y and e2 inactivates y.

Definition A set of nodes {x1, x2, ..., xk} has influence on {y1, y2, ..., yp} if {x1, x2, ..., xk}
has influence on at least one of {y1, y2, ..., yp}.

Definition A set of nodes {x1, x2, ..., xk} has strong influence on y if there exist two ex-
periments e1 and e2 on {x1, x2, ..., xk} such that e1 activates y and e2 inactivates y, and e1
differs from e2 only on a single xi.

The above definitions are invalid if the network is unstable (i.e., has an inconsistent node) or
has multiple stable states. Henceforth , we assume that the network cannot have inconsistent
nodes except ones that are disrupted or overexpressed. Moreover, for stable networks, we
make a biologically reasonable assumption that a set of nodes {x1, x2, ..., xk} does not have
influence on a node to which there is no direct path from any of {x1, x2, ..., xk}.

Theorem 10.8 An acyclic gene regulatory network of maximum in-degree D can be identi-
fied by Θ(nD) experiments.

Proof: The lower bound directly follows from Proposition 10.4 and Theorem 10.6. We
prove the upper bound only for D = 2. Other cases can be proved in similar way. Moreover,
we only show the strategy for a node with a∧ b→ c although it can be generalized to other
types of nodes. We assume (w.l.o.g.) that all nodes are of in-degree 2 as in Proposition 10.5.
Let P be a set of pairs (x, y) satisfying the following conditions: c is active under 〈x, y〉, and
c is inactive under the other assignments to (x, y). Then a ∧ b→ c if and only if (a, b) ∈ P
and (a, b) does not have influence on any other pair (x, y) ∈ P . If a∧ b→ c, then (a, b) ∈ P
must hold. Moreover, (a, b) does not have influence on any other pair in P since the network
is acyclic. Conversely, if a ∧ b → c does not hold, then (a, b) 6∈ P or (a, b) has influence on
at least one node x, such that there is an edge from x to c. Therefore, we can identify the
network by O(n2) experiments with maximum cost 2.

For cyclic networks with in-degree, 2 experiments of cost 2 do not suffice. It is possible
to identify such network in some cases in O(nD) experiments. The strategy is based on
detection of strongly connected components.
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10.2.6 Related Problems: Consistency and Stability of Networks

Along with the identification of the gene regulatory network, there exist several important
problems. Here we observe two of them.

1. The consistency problem: given a network G′(V ′, F ′), check whether or not this net-
work coincides with an underlying gene regulatory network G(V, F ), that is not given
explicitly.

Theorem 10.9 Exponential number of experiments are necessary and sufficient to
check the consistency of a given gene regulatory network.

2. The stability problem: given a network G(V, F ), check whether or not it is stable (in
a native state), i.e., there is a global state consistent with all gene regulation rules.

Theorem 10.10 Testing the stability of a given gene regulatory network under an
experiment is NP-complete.
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