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9.1 Promoter Analysis

9.1.1 Introduction to Promoter Analysis

As we studied in our first lecture, each cell contains a copy of the whole gene. But we have
many tissues that are constructed of different cells, that are responsible for various tasks.
Thus, each cell utilizes only a subset of its genes. Most genes are highly regulated their
expression is limited to specific tissues, developmental stages, physiological condition. What
we would like to find out is how the expression of genes is regulated.

Regulation of genes can be done in different stages of the gene expression. The process
of gene expression is regulated at multiple points including chromatin modifications (during
the process of DNA packaging), transcription control (our focus here), splicing, transport
and translation control. Biological regulation have more to it than just gene expression reg-
ulation, for example, protein interactions and post-translational modification are extremely
important in many processes that we are not dealing with here. The most common way
of regulation is called transcriptional regulation, which will be the main issue discussed in
the lecture. It is done during the transcription phase, when the DNA is transcripted into
preRNA.

9.1.2 Regulation of Transcription

The regulation of the transcription of a gene is mainly encoded in the DNA in a region called
promoter. Each promoter contains several short DNA subsequences, called binding sites
(BSs) that are specifically bound by regulatory proteins called transcription factors (TFs)
(see Figure 9.1). Transcription factors typically combines to form ”transcritpional switches”
that encode complex logical functionality to control gene expression given a multitude of
biological stimuli.

Transcription factors are proteins that bind to DNA region near the gene (the promoter
region) and regulate its transcription. They attach to the DNA at specific binding sites.
Transcription factors work in combinations forming complex logical schemes.

1Lecture Notes from 20.05.04.
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Figure 9.1: Binding sites.

An example of transcriptional switch is shown in figure 9.2. The regulatory role of the
E2F transcription factor is facilitated via its sequence specific binding site. However, binding
can be supressed if a second regulatory protein called Rb is binding E2F. Moreover, Rb effect
on E2F binding can be blocked by a third protein, called E7, and only in the presence of E7,
transcription can take place. Figure 9.3 gives us a 3D picture of what is happening during
the transcription factors attachment.

9.1.3 Cis and Trans Regulation

DNA sequence that acts to change the expression of the gene adjacent to it is cis-acting.
A trans-acting element acts to change the expression of the gene at a distance. Promoter
elements are cis acting. Sequence controlling the expression of the TF itself is trans acting.
This lecture will focus on analysis of cis-acting regulatory elements.

9.1.4 Regulation of Transcription

By binding to a genes promoter, TFs can either induce or repress the recruitment of the
transcription machinery. The conditions in which a gene is transcribed are determined by
the specific combination of BSs in its promoter. A good example of this process is shown in
figure 9.4 where a number of binding sites present, while the Tata protein is attached to one
of them.

One of the ways to study promoter analysis is by analyzing the expression levels of RNA.
The assumption is that genes that have similar expression levels, have similar transcriptional
regulation control and common binding sites. Thus, we can use the knowledge we have on
genom sequences in humans (or other species) in order to find promotor regions. In order
to find binding sites in those regions we could use the various methods of dealing with DNA
chips.

9.1.5 Promoter Region

The first thing we would like to define is how to find the promoter region in the DNA
sequence. The 5-end region of a gene is very likely to overlap with the genes promoter region.
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Figure 9.2: Source: [6] Regulation with E2F transcription factor.

Figure 9.3: Source: [6] 3D Regulation Structure.
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Figure 9.4: Regulation of Transcription.

Promoters are stretches of DNA sequences, generally located upstream of and overlapping
the transcription start site (TSS) of genes. The promoter region is the main regulatory
region for the expression of a gene. Thus, we will deal with Upstream Transcription Start
Site (TSS), meaning that promoter region appears before the transcripted area.

While looking for binding sites we would like to consider two options: too short TSS will
miss many real BSs (false negatives) while too long TSS will have lots of wrong hits (false
positives). Usually, the length of TSS is species dependent (e.g., yeast 600bp, thousands
in human), while the common practice is to use 500-2000bp. Also, experience show us
that we should analyze both strands of the DNA. We would also like to mask-out repetitive
sequences. Most of these sequences infiltrated the DNA during the evolution process and
are not significant for the transcription process.

9.1.6 Models for finding Binding Sites

We shell consider a number of models: exact string model, string mismatches model, degen-
erate string model and, finally, position weight matrix.

Exact String model The Exact String model will try to find an exact sequence in the
DNA sequence as shown in the example:
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Figure 9.5: Exact String.

String Mismatches model The String Mismatches model will try to find an almost the
exact sequence and will tolerate a mistake in one of the positions as shown in the example:

Figure 9.6: String Mismatch.

Degenerate String model The Degenerate String model, also known as consensus model
will try to find a sequence, but allows various bases to be placed in specific positions of the
sequence. In the example, positions 3,4 of the sequence could be represented by two or three
bases. This gives us 6 possible string to search for.

Figure 9.7: Degenerate String.

Position Weight Matrix model The Position Weight Matrix model, also known as
Position Specific Scoring Matrix model will create a matrix, where each column represents
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a position and each row represents a base and the value in the cell is the probability of the
base to appear in the specified position. When scanning the target, we compute the total
probability, while we assume that appearances of each base at any position are statistically
independent. As shown in the example, we compute various scores and choose those with
the higher scores (above predefined threshold) - higher probability.

Figure 9.8: Degenerate String.

There are also more complex models such as PWM with spacers, Markov model (depen-
dency between adjacent columns of PWM), Hybrid models, e.g., mixture of two PWMs and
more.

9.2 Technology

In this section we will present some of the common technologies used for promoter analysis.

9.2.1 Identifying regulatory elements

In this method we use a DNA fragment containing potential regulatory sequences (light
color), such as the region upstream from a regulated gene, is cloned next to a reporter gene
(dark color) encoding an easily assayed protein (for example, beta-galactosidase), see figure
9.9. The construct is put into cells and regulation is monitored by the activity of the reporter
gene.
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Figure 9.9: Source: [4]Identifying regulatory elements.
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9.2.2 Chromatin Immunoprecipitation (ChIP)

A procedure that identifies DNA elements occupied by DNA regulatory proteins in vivo
under a given set of conditions. Briefly, proteins are covalently cross-linked to DNA in living
cells, the cells are lysed, and DNA is fragmented via sonication. Antibodies to the binding
protein can then be used to immunoprecipitate the protein-DNA complex. This technique
provides a method of purifying the regulatory regions of the DNA bound to the protein at
the time of cross-linking. The purified DNA can be amplified and sequence information can
be obtained. (see [11])

Figure 9.10 shows the complex ChIP process. It includes the following stages: freezing
the current chemical stage, shearing the desired proteins and then to replicate these part of
the DNA by the PCR process.

Figure 9.10: Source: [5]Chromatin Immunoprecipitation.
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Figure 9.11: Source: [2]Strategy for analyzing genome-wide proteinDNA interactions. The
reference probe can either consist of DNA generated in parallel from a strain bearing a
deletion of the gene encoding the protein of interest (as depicted), or of unfractionated
genomic DNA amplified and labelled in the same manner. Alternatively, an epitope-tagged
version of the protein of interest can be immunoprecipitated with an antibody directed
against the epitope. The DNA microarray includes all of the intergenic regions or promoters
from the genome. The Cy5/Cy3 fluorescence ratio for each locus reflects its enrichment by
immunoprecipitation (IP) and therefore, in general, its relative occupancy by the cognate
protein.
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9.2.3 Location analysis

The genome-wide location analysis method allows protein-DNA interactions to be monitored
across the entire yeast genome. The method combines a modified chromatin immunorecipi-
tation (ChIP) procedure, which has been previously used to study protein-DNA interactions
at a small number of specific DNA sites, with DNA microarray analysis(see [1])

Figure 9.12: Source: [9]Location analysis.

9.3 Computational approaches to promoter analysis

In this section, we will present various techniques to find binding sites in groups of promoters.
We can divide the promoter analysis computational problem into three strategies:

• Given groups of co-regulated genes and known binding sites models (PWMs) find
enriched Cis elements in the groups, for instance, using PRIMA algorithm.

• Given a set of binding site models (PWMs) find CRM (cis-regulatory-modules) which
are sets of binding sites that tends to cluster together, for instance, using CREME
algorithm.
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Figure 9.13: Source: [9]Close-up of a scanned image of a microarray containing DNA frag-
ments representing 6361 intergenic regions of the yeast genome. The arrow points to a spot
where the red intensity is over-represented, identifying a region bound in vivo by the protein
under investigation.

Figure 9.14: Source: [9]Analysis of Cy3- and Cy5-labeled DNA amplified from 1ng of yeast
genomic DNA using a single-array error model (8). The error model cutoffs for P values
equal to 10-3 and 10-5 are displayed.
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Figure 9.15: Source: [9]Experimental design. For each factor, three independent experiments
were performed and each of the three samples were analyzed individually using a single-
array error model. The average binding ratio and associated P value from the triplicate
experiments were calculated using a weighted average analysis method.

• Given a set of co-regulated genes (from gene expression clustering) or putative targets
of a TF (from chip-ChIP) build motif models that are enriched in the sets. We will
show two algorithms to solve this problem: Random Projections and Meme algorithms.

9.3.1 PRIMA

PRIMA (PRomoter Integration in Microarray Analysis) is a program for finding transcrip-
tion factors (TFs) whose binding sites are enriched in a given set of promoters. PRIMA
is typically used for the analysis of large-scale gene expression data. Microarray (’DNA
chip’) measurements point to alterations in gene expression levels under varying biological
conditions, but they do not, however, directly reveal the transcriptional networks that un-
derlie the observed transcriptional modulations. PRIMA is aimed at the identification of
TFs that take part in these networks. The basic biological assumption is that genes that are
co-expressed over multiple biological conditions are regulated by common TFs, and therefore
are expected to share common regulatory elements in their promoters. By utilizing human
genomic sequences and models for binding sites (BSs) of known TFs, PRIMA identifies TFs
whose BSs are significantly over-represented in a given set of promoters. (see [7])

The algorithm: receives as its input: a target set (e.g., a list of co-expressed genes found
in a microarray experiment) and a background set (e.g., the 13K set) and PWMs of known
TFs. Its output is: p-values of enriched TFs

For each PWM:

• Compute a threshold score for declaring hits of the PWM (hit = subsequence that is
similar to the PWM = hypothetical BS)

• Scan BG and target-set promoters for hits.
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• Compute enrichment score to decide whether the number of hits in the target-set is
significantly higher than expected by chance, given the distribution of hits in the BG.
(Synergism test: Find co-occurring pairs of TFs)

In order to identify putative binding sites, or hits, of a TF, a threshold T(P) for the
similarity score of the TFs PWM P is determined. Subsequences with a similarity score
above T(P) are regarded as hits of P. The threshold for each PWM is computes as follows:

• Compute 2nd-order Markov-Model of BG seqs.

• Generate random seqs using MM (e.g., 1,000 seqs of length 1,000 bp)

• Set threshold s.t. PWM has f hits in the random sequences (e.g., f=100)

This ensures a pre-defined false-positives rate, but no guarantee on false-negatives rate.
Estimating false-negatives (positives) rate requires good positive (negative) training-sets.
The enrichment score is computed as follows: Suppose each promoter has 0 or 1 hits.
Let: B = # of BG promoters
T = # of target-set promoters
b = # of hits in BG promoters
t = # of hits in target-set promoters
Then: Prob. for t hits in target-set:

P (t) =

(
b
t

)(
B − b
T − t

)/(
B
T

)
Prob. for at least t hits:

p− value =
min{b,T}∑

i=t

P (i)

Now, we would like to take into account more than 1 hit per promoter. The reason for this
is that sometimes there is a number of BSs that are supposed to encourage the transcription.
It increases the possibility of getting a hit.
So, we will take into account up to 3 hits per promoter.
Let: B ,T = # of promoters in BG , target-set
b1 , b2 , b3 = # of BG promoters with 1,2,3 hits
t = total # of hits in target-set
Then: Prob. for at least t hits: (HG score)

p− value =

∑(
b1

i

)(
b2

j

)(
b3

k

)(
B − b1 − b2 − b3

T − i− j − k

)
(
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T

) , i + 2j + 3k ≥ t



14 Analysis of Gene Expression Data c©Tel Aviv Univ.

Synergism score: Find pairs of TFs that tend to occur in the same promoters
Let: T = # of promoters in target-set
t1 , t2 = # of promoters with 1+ hits of TF 1,2
t12 = # of promoters with 1+ hits of both TFs (w/o overlaps!)
Then: Prob. for co-occurrence of at least t12:

synergism− p− value =

∑(
t1
i

)(
T − t1
t2 − i

)
(

T
t2

) , i ≥ t12

PRIMA results on HCC: Whitfield et al. (Whitfield et al. 2002) partitioned the cell
cycle-regulated genes according to their expression periodicity patterns into five clusters
corresponding to different phases of the cell cycle. When the promoter sequences of these
clusters were scanned for enriched PWMs, two PWMs were enriched in a specific phase
cluster, but not in the 568 set as a whole. The results of the experiment are presented in
figures 16-18.

Figure 9.16: Source: [8]Representation of TF PWMs in the cell cycle phase clusters. The
eight circles correspond to the PWMs that were highly enriched in promoters of cell cycle-
regulated genes. Each circle is divided into 5 zones, corresponding to the phase clusters.
The number adjacent to the zone represents the ratio of its prevalence in promoters con-
tained in each of the cell cycle phase clusters to its prevalence in the set of 13K background
promoters. Note that several TFs show a tendency towards specific cell cycle phases: e.g.,
over-representation of the E2F PWM in promoters of the G1/S and S clusters, and its
under-representation in promoters of the M/G1 cluster.
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Figure 9.17: Source: [8]Distribution of locations of TFs putative binding sites found in 568
cell cycleregulated promoters. Promoters were divided into six intervals, 200 bp each. For
each of the PWMs, the number of times its computationally identified binding sites appeared
in each interval was counted (after accounting for the actual number of bps scanned in each
interval. This number changes as the masked sequences are not uniformly distributed among
the six intervals). Locations of NRF-1, CREB, NF-Y, Sp1, ATF and E2F binding sites tend
to concentrate in the vicinity of the TSSs (chi-square test, p less than 0.01).

Figure 9.18: Source: [8]Pairs of PWMs that co-occur significantly in promoters of genes
regulated in a cell cycle manner. It was examined whether the PWMs can be organized into
regulatory modules. For each possible pair formed by these PWMs, we tested whether the
prevalence of cell cycle-regulated promoters that contain hits for both PWMs is significantly
higher than would be expected if the PWMs occurred independently. Eight significant pairs
were identified, each connected by an edge. The corresponding p-value is indicated next to
the edge. The edge connecting the E2F-NRF1 pair is dashed to indicate that its significance
is borderline.
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PRIMA future directions: Possible improvements to the algorithm could be in several
aspects. First, choice of the region to scan within the promoters could be improved. Finding
strand bias could improve normalization. In addition to that, more complex BSs models
could be used. The enrichment score could also be improved (by using other scores), since
as presented, it is problematic when promoters are of different lengths. Synergism can take
into account distance between hits and we could find synergism of multiple transcription
factors.

9.3.2 CREME - Cis-Regulatory Module Explorer

Abstract: Eukaryotic genes are often regulated by several transcription factors, whose
binding sites are spatially clustered and form cis-regulatory modules. CREME is a web-server
for identifying and visualizing cis-regulatory modules in the promoter regions of a given set of
potentially co-regulated genes. CREME relies on a database of putative transcription factor
binding sites (TFBS) that have been carefully annotated across the human genome using
evolutionary conservation with the mouse and rat genomes. An efficient search algorithm
is applied to this data set to identify combinations of transcription factors, whose binding
sites tend to co-occur in close proximity within the promoter regions of the input gene set.
These combinations are statistically evaluated, and significant combinations are reported
and visualized. (see [3]

Goal: Discover modules = groups of TFs whose BSs are abundant and tend to co-occur
in close proximity in promoters of co-expressed genes. The main characteristics of these
modules are: limited knowledge of TFs, uses PWMs to model BSs, ignores order of TFs
within the module, does not take into account multiple hits per TF.

Module = Set of PWMs
r = # of PWMs in the module
Instance of a module = A set of hits, at least one per PWM in the module, that occur in a
short interval in a promoter
w = length of interval

Figure 9.19: Example: Instance of a (r=3,w=30)- module.

The algorithm receives as its input: promoter sequences of BG and target sets PWMs of
known TFs, module parameters (r, w). The output of the algorithm is p-values of enriched
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modules.

The algorithm:

• Find enriched PWMs (p less than 0.01).

• Filter similar PWMs (more than 50% overlapping hits).

• Build a list of all (r,w)-modules that have instances in the target-set.

• Compute Monte-Carlo enrichment score of each module (given enrichment of PWMs),
and pass those with p less than 0.05.

• Filter similar modules (more than 75% overlapping instances).

If we look closely at the third step of the algorithm, we shell see that if n = # of given
PWMs then there are nr possible modules. We’ll check only those that actually have (one
or more) instances in the target-set.

Simplification (not required): Search for modules with a consecutive instance = a pro-
moter interval that contains 1+ hits for each PWM in the module, and no hits for other
PWMs

Finding modules with a consecutive instance in a promoter sequence using a hashing
algorithm.:
Let: M = list of all hits, ordered by position. We shall build a hash C of modules Copen = a
hash of active modules and their starting positions

Figure 9.20: Example: Instance of a (r=3,w=30)- module and possible instances of Copen.

The details of the algorithm are shown in figure 9.21
The running time of the algorithm is O(r|M|) since Copen contains at most r modules.
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Figure 9.21: Source: [10] An algorithm for identifying all motif clusters with at least one con-
secutive instance in a given sequence. Procedures Insert(H,e) and Delete(H,e) insert/delete
an element from a hash table H.

9.3.3 Motif Finding Tools

Motif(l,d) = string M of length l that appears in many of the given promoters, each occur-
rence contains (exactly) d mismatches. For example, the string ”CATA” is a (4,1)-motif in:
AGGCCTAGGTG , GTAAACATGAAG , ACCAGAGAG.

Our Goal is given a set of t promoters, and l, d, find the (l,d)-motif(s) that appear in at
least t of the promoters.

Random Projection

Main idea of the algorithm is: choose a projection h : 4l → 4k, hash each l-mer x in the
input sequence to its bucket h(x). h(x) is constructed by choosing k (out of l) positions at
random. Many instances of the motif are likely to fall into the same bucket = motif bucket,
thus buckets with large count are likely to correspond to a motif.

The algorithm : Run m iterations:

• Choose a random projection h.

• Scan promoters using h and fill buckets.

• For each bucket with count larger than s, try to recover motif using an iterative refine-
ment procedure.

Figure 9.22 shows an example of random projection, where l=5, d=1, k=3 , motif:
M=CATAG, h(x1x2x3x4x5 )=x1x2x5, The motif bucket is CAG. In the example, we can
use any base for x3 and x4 and we look at all the sub-sequences that fall into the same
bucket. And we find x3 and x4 according to the most frequent sub-sequences.
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Figure 9.22: Random Projection

Analysis : Choosing of k and s can be very important, since for larger k values we get
more buckets, but in every one of them there more true sub-sequence values. When k is
small, we get less buckets, but in every one of them there are more false positives.

Good values for k and s are as follows: k = l - d - 1 (to keep average bucket size small)
s = 2t(L− l + 1)/4k

where L = average promoter length.
The probability that a motif instance hashes to the motif bucket is:

B(α, s, t′) =
∑(

t′

i

)
αi(1− α)t′−i, 0 ≤ i < s

since l-d known positions define a bucket.
The probability that fewer than s (out of t) motif instances hash to the motif bucket (in

a single iteration):

B(α, s, t′) =
∑(

t′

i

)
αi(1− α)t′−i, 0 ≤ i < s

The probability that s or more motif instances hash to the motif bucket in at least 1 (out
of m) iteration:

1− (B(α, s, t′))
m

Thus, the number of iterations required to ensure a certain success rate, p is:

m =
⌈
log(1− p)/log(B(α, s, t′))

⌉
Refinement procedure: Let: S = multiset of l-mers that hashed to current bucket
fi = BG distribution of base i
A, W = 4 x l matrices
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Initialize: Ai,j (# l-mers in S with base i at pos j) + fi

Wi,j ← log2(
pi,j

fi

)andpi,j = Ai,j

/∑
k
Ak,j

Repeat until convergence:

• Reset A: Ai,j, fi.

• Score all l-mers in promoters using W.

• Add to A each l-mer with positive score.

• Compute W’ from A.

• if(entropy(W
′
) < entropy(W))⇒ (W←W

′
)

Scan promoters using W, select best l-mer from each promoter (with positive score), and
output their consensus.

MEME Algorithm

MEME uses the method of Bailey and Elkan to identify likely motifs within the input set of
sequences. You may specify a range of motif widths to target, as well as the number of unique
motifs to search for. MEME uses Bayesian probability to incorporate prior knowledge of the
similarities among amino acids into its predictions of likely motifs. The resulting motifs
are output as profiles. A profile is a log-odds matrix used to judge how well an unknown
sequence segment matches the motif.

MEME is one of the most popular programs for motif finding. It uses the expectation-
maximization (EM) approach: first obtain an initial motif (which may not be very good),
then iteratively obtain a better motif with the following two steps:
Expectation: compute the statistical composition of the current motif and find the proba-
bility of finding the site at each position in each sequence.
Maximization: These probabilities are used to update the statistical composition. (see
(see [12]

The Algorithm: Let: zi,j= prob. of BS at pos j in promoter i pb,c = prob. of base b at
pos c in motif.

Main steps:
Choose starting p
Repeat until convergence of p:
Re-estimate z from p
Re-estimate p from z
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