Analysis of Gene Expression Data Spring Semester, 2002

Lecture 7: May 05, 2004
Lecturer: Zohar Yakhini Scribe: Dror Lupu and Eyal Balla

7.1 Classification

This scribe is based on lecture presentation by Z. Yakhini.[1]

7.1.1 Overview

Genome projects have produced large amounts of data on the sequences of new genes whose
functions are as yet unknown. The functions of new genes are usually inferred by compar-
ing their sequences with those of known genes, but evaluation of the sequence homology of
individual genes does not make the most of the available sequence information. Therefore,
new methods and tools for extracting more biological information from homology searches
would be advantageous.

Classifying genes into groups according to their functionality would greatly support such
efforts. Classification of genes extracts information about genes from expression level chips
(such as in cDNA chips, Affimetrix chips and Agilent chips - see Figure 7.1). The methods
described hereafter use RNA expression data for classifying their carriers to hopefully mean-
ingful classes. We will mention several methods of classification and discuss the algorithms
used in some of them.

What can be achieved with Classification?

e Differentiation between normal and tumor tissues.
e Distinguishing between various types of pathology and stages in tumors.
e Help decide of the susceptibility of a treatment for various patients.

e Prognosis of risk levels of patients.



2 Analysis of Gene Expression Data (©)Tel Aviv Univ.

Figure 7.1: The expression levels in a gene array

7.1.2 Informative Genes

Informative Genes are those genes that are differentially expressed in the classes to which
the data has been classified into. It is these genes that will be the ones that will give us the
insight that will help achieve the goals mentioned in the previous section. Moreover finding
such genes can also help to radically reduce the dimensionality of the data we are dealing
with (see Figure 7.2).
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Figure 7.2: The figure shows the expression level of a single gene after sorting the expression
levels of the samples and assigning labels according to the known classes of each sample.
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7.1.3 Classification Scores
TNOM Score

The TNOM score gives scores to a classifier of two classes. The score is the minimum number
of errors that can be achieved using one separator that assigns all samples on its left one
class label and the second class label to all samples on its right.

A Perfect Classifier will get the TNOM score of 0, for there will be no errors using the
separator that has all of those labelled with the first label on its left and the latter label on
its right.

Separat;; Separator
of THOWM 4 of THOM 3

+ o+ o+ - - - - -
w
FPerfect Classifier
THOLI =0

Figure 7.3: The calculation of a TNOM two classifiers.

INFO Score

The Threshold Mutual Information Score known as the INFO Score is the minimal condi-
tional entropy of the annotation, given a threshold partition (minimum taken over thresh-

olds).

Separation Score

The Separation score assumes that both classes distribute with gaussian distribution (p1, o)

and (f9, 09) accordingly. The separation score is defined to be ﬁ This score maximizes
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Figure 7.4: The figure shows the threshold with the INFO Score of 3H(3) + 3H(2)

the likelihood when the score is at its maximum assuming the assumptions about the distri-
bution of the samples are correct.

7.1.4 P-values

Relevance scores are more useful when we can compute their significance. P-Value is the
probability of finding a gene with a given score if the labelling is random. P-values allow a
higher level statistical assessment of the quality of the data and provide a uniform platform
for comparing relevance, across data sets.

TNOM P-Values Calculation

In order to find the probability of a gene classifier getting a specific TNOM score the following
question arises. What is the probability that a vector with p ”+1” and q ”-1” which is drawn
uniformly is given the TNOM score of t.
Let us look at the corresponding paths in R? that begin in (0,0) and for each sample 7 in
vector v assigns position (¢, y(i—1)+wv(i)) where y(t) is the value the path is given at position
i and v(7) is the vector value in position i (see figure 7.5).

All paths for given (p,q) are bounded by the paths of the two perfect classifiers (see
figures 7.6 and 7.7).

Theorem 7.1 A wvector has a TNOM score < s iff the corresponding path crosses either of
the lines Y=p-s and Y=s-q.

Proof: Let (i) be the position in sample i. Then 7(i) = p(i) — ¢(i) then lets assume that
on left there should be ”+”. This leads to TNOM (i) = q(i) + p — p(i) = p — 7(i) < s.
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Paths in R? <

Figure 7.5: The figure shows the path created in R? by the vector (-1 +1 +1 +1 +1 -1 +1
-1-141-1-1+1)

Therefore 7(i) > p — s. The same could be done assuming there should be ”-” on the left
getting 7(i) < s —q. W

In order to evaluate the P-Value of a TNOM score we need to know how many of the
paths with the same (p,q) have at most the same TNOM score.

Problem 7.1 Find the number of paths with (p,q) that have a TNOM score of at most s.

The Reflection Principal

Lets assume that we want to find the number of paths with TNOM score < s of path with
p "+” and q ”-”. Then using the previous theorem we need to consider the path that cross
p-s and s-q. We will show the analysis for p-s.

Theorem 7.2 There is a one-to-one correspondence and onto mapping between the paths
that start with (0,0) and end at (p + q,p — q) and cross p-s and the path that start with
(0,2% (p—s)) and end in (p+ q,p — q) (see figure 7.8).

Proof: Let ¢ be the first position in which the path [ crosses p —s. Then it will be mapped
to the path with the part until ¢ reflected along p — s with the remaining of [ untouched.
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Figure 7.6: The figure shows the path created in R? by the Perfect classifier with 7 plus and
6 minus with the plus first

This mapping is onto because each path from (0,2 % (p — s)) crosses p — s to get to p — ¢
and therefore a reflected path from (0,0) can be found. A one to one correspondence can
be shown because either the first part of the path is different (which will lead to a different
reflection and therefore another path) or the last part is different (which also leads to a
different path) and therefore is a one to one correspondence and onto mapping. m

Calculating the number of paths starting with (0,0) and ending with (p + ¢,p — ¢q) is

(p;q). The number of paths starting at (0,2 x (p — s)) and ending at (p + ¢,p — ¢) is the

same the number of paths from (0,0) to (p+ ¢,p — ¢ — 2 (p — s)), which is equal to (szrq)
The same analysis could be done for the lower bound s — ¢. However doing this some paths
are counted twice. The paths that are counted twice are those that cross both bounds.
Counting these path is not possible. However we can count the path that first cross the
higher bound and then cross the lower bound or vice versa. But again doing so will not
suffice because the paths can recross the bounds again and be recounted. This leads us to
the full probability theorem. However one does not need all the arguments for the number
of recrosses. since the path is p + ¢ long and in order to recross after a first cross the path
will grow in at least p — s — s 4+ ¢ = p + ¢ — 2s then the maximum number is bounded.
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Figure 7.7: The figure shows the path created in R? by the Perfect classifier with 7 plus and
6 minus with the minus first

7.1.5 Using P-Values

After calculating the P-values for each score these values could be compared to the ones
found in the experiment. If the values found in the experiment are significantly higher than
those calculated by the P-Values then it is statistically valid.

7.1.6 INFO Score P-Values

The analysis for INFO Score P-Values calculation is similar to the TNOM analysis in the
fact that they too are bounded between the two perfect classifiers. However there is no
criteria that holds for all ¢ such that if 7(z) > k then the INFO score < then s. Such criteria
is i-dependent. Such a criteria is computable using dynamic programming.

7.1.7 Gaussian Error Score

Until now we dealt with two class partitions only, the Gaussian Error Score could be gen-
eralized to deal with an arbitrary number of classifiers. First the distribution functions are
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Figure 7.8: The Reflection Principal activated.

calculated according to the classification given. After which the error

pleg()lpre, ore)p(I'(1))
>r p(eg(t)|pr, or)p(I)

is calculated for each sample and the sum of errors is the score of the classifier. When again
a lower score is a better score.

Err(t)=1-

7.1.8 Single Gene Voters

The single voter procedure assigns a score to each gene g for each class T, that represents
the magnitude of the sample g coming from class T. The votes are between 0 and 1 and can
be calculated using the following calculation:

p(x’ll'l_‘p UF1)p(F1)7p(x|NF2a UFz)p(F2)> "-ap($|UF5a UFS)p<Fs)
>or p(z|pr, or)p(l)

Vo(x) =

7.1.9 Linear Programming Classifier

The Linear Programming Classifier computes a set of weights w, where g ranges over all
genes. These weights are computed by solving the linear program constraints that finds the
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max r for which

Y wy(Vy(eg(t), T(t)) = Vyleg(t),T)) > r

for all samples ¢ in the training data and for all classes I" # I'(¢).
A new sample ¢ will be assigned to the class I' that maximizes >, wyV;(e4(t),T).

7.1.10 Other classifying methods

Other classifying methods are available. Among them are:
e Naive Bayesian
e SVM - Support Vector Machines

e K-NN - K- nearest neighbors

7.1.11 Validation of classifiers using LOOCV

Leave One Out Cross Validation (LOOCYV) is a method for validating the classifying of using
the training data. The method runs the classifying algorithm on the training data without
using one (or one part) of the training data. This left-out data set is used to verify that the
classification model created is not too specific but can also generalize. This is done leaving
out each one of the items (or parts) of the training data when the classification chosen is the
one that performed best with the left-out data.
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