
Analysis of Gene Expression Data Spring Semester, 2004Leture 6: April 22, 2004Leturer: Ron Shamir Sribe: Elena Zilberman and Igor Kotenkov1
6.1 CLICK: Cluster Identi�ation via Connetivity Ker-nels6.1.1 IntrodutionCLICK (CLuster Identi�ation via Connetivity Kernels) is a new algorithm for luster-ing [13℄. The input for CLICK is the gene expression matrix. Eah row of this matrix is an\expression �ngerprint" for a single gene. The olumns are spei� onditions under whihgene expression is measured.The CLICK algorithm attempts to �nd a partitioning of the set of elements into lusters,so that two riterias are satis�ed: Homogeneity - �ngerprints of elements from the same lus-ter, alled mates, are highly similar to eah other; and Separation - �ngerprints of elementsfrom di�erent lusters, alled non-mates, have low similarity to eah other.The goal is to identify highly homogeneous sets of elements - onnetivity kernels (sub-sets of very similar elements) and add elements to kernels via similarity to average kernel�ngerprints.Uses tools from Graph Theory and probabilisti onsiderations.6.1.2 Probabilisti ModelMates - genes that belong to the same true luster.The CLICK algorithm makes the following assumptions:1. Similarity values between mates are normally distributed with parameters �T ; �T .2. Similarity values between non-mates are normally distributed with parameters �F ; �F .1Based on sribes by Giora Sternberg, and Ron Gabor, May 2, 2002, and by Irit Gat and Amos Tanay,May 30, 2002



2 Analysis of Gene Expression Data Tel Aviv Univ.Basi-CLICK(G(V;E))if (V (G) = fvg) thenmove v to the singleton set Relseif (G is a kernel) thenOutput V (G)else(H, �H, ut)  MinWeightCut(G)Basi-CLICK(H)Basi-CLICK( �H)end ifendFigure 6.1: The Basi-CLICK algorithm3. We expet that �T > �F , and �T , �F are small enough so we an separate the lusters.These assumptions are justi�ed empirially by simulations, and in some ases theoreti-ally (by the Central Limit Theorem).Parameters for the algorithm an be learned in two ways: from partially known solutionsor estimated using EM algorithm.6.1.3 The Basi CLICK AlgorithmThe CLICK algorithm represents the input data as a weighted similarity graph G = (V;E).In this graph verties orrespond to elements and edge weights are derived from the similarityvalues. The weight wij of an edge (i; j) reets the probability that i and j are mates, andis set to be: wij = ln p fM(Sij)(1� p) fN(Sij)where fM(Sij) / fN(Sij) is the value of the probability density funtion for mates/non-matesat Sij: fM(Sij) = 1p2��T e� (Sij��T )22�2Tand fN(Sij) = 1p2��F e� (Sij��F )22�2F
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Figure 6.2: Basi sheme of the CLICK algorithm. Split subsets of G, that ontain elementsfrom two kernels.The basi CLICK algorithm is desribed in Figure 6.1 and exempli�ed in Figure 6.2.The idea behind the algorithm is the following: given a onneted graph G, we would liketo deide whether V (G) is a subset of some true luster, or V (G) ontains elements from atleast two true lusters. In the �rst ase we say that G is pure. In order to make this deision,we test the following two hypotheses for eah ut C in G:� HC0 : C ontains only edges between non-mates.� HC1 : C ontains only edges between mates.G is delared a kernel if H1 is more probable for all uts. The deision of whether G is akernel relies on the following theorem:Theorem 6.1 G is a kernel i� the weight of MinCut(G) > 0.Proof: At �rst, we will make two assumptions:� Si;j-s are independent� mate relations are also independent



4 Analysis of Gene Expression Data Tel Aviv Univ.Then, using Bayes' Theorem, it an be shown that for any ut C in Gln Pr(H1jC)Pr(H0jC) = ln Pr(H1)f(CjH1)Pr(H0)f(CjH0)= ln pjCjQi;j2C fM(Sij)(1� p)jCjQi;j2C fN(Si;j)= Xi;j2C ln pfM(Si;j)(1� p)fN(Si;j) = Xi;j2CWij = W (C)Obviously, W (C) > 0 i� Pr(HC1 jC) > Pr(HC0 jC). If the minimum ut is positive, thenobviously so are all the uts. Conversely, if the minimum ut is non-positive, then for thatut Pr(HC1 jC) � Pr(HC0 jC), therefore G is not a kernel.Removing Negative Weight Edges The MIN-CUT problem for a weighted graph withboth positive and negative edges is NP-Complete2. In order to use the eÆient MIN-CUT algorithms we must remove the negative edges. By modifying the algorithmslightly, we an still use the new graph to �nd kernels in the original graph.Re�nementsThe Basi-CLICK algorithm divides the graph into kernels and singletons. These kernelsare expanded to the full lustering, using several re�nements:Adoption Step In pratie, \true" lusters are usually larger than just the kernel. Toaommodate this, in the re�ned algorithm, kernels \adopt" singletons to reate largerlusters. This is done by searhing for a singleton v and a kernel K, whose pairwise�ngerprint similarity is maximum among all pairs of singletons and kernels. The re�nedalgorithm iteratively applies the adoption step and then the Basi-CLICK algorithmon the remaining singletons, stopping when there are no more hanges.Merge Step In this step we merge lusters whose �ngerprints are similar (the justi�ationfor this is that, in pratie, lusters an ontain multiple kernels). The merging is doneiteratively, eah time merging two lusters whose �ngerprint similarity is the highest(provided that the similarity exeeds a prede�ned threshold).2MIN-CUT an be proved to be NP-Complete by redution from MAX-CUT [5, page 210℄.



CLICK: Cluster Identi�ation via Connetivity Kernels 5Quality AssessmentWhen the "orret" solution for the lustering problem is known, we an evaluate the algo-rithm's performane using omparison riteria as we have done with BioClust. The riteriaused here are the Jaard oeÆient (as de�ned in the previous setions) and the MinkowskioeÆient. The latter is de�ned by qn01+n10n11+n10 . Note that unlike the Jaard and MathingoeÆients, the Minkowski oeÆient improves as it dereases, with optimal value at 0.Unfortunately, in most ases the "orret" solution for the lustering problems is un-known. In these ases we evaluate the quality of the solution by omputing two �gures ofmerit to measure the homogeneity and separation of the produed lusters. For �ngerprintdata, homogeneity is evaluated by the average and minimum orrelation oeÆient betweenthe �ngerprint of an element and the �ngerprint of its orresponding luster. Separation isevaluated by the weighted average and the maximum orrelation oeÆient between luster�ngerprints. Formally:De�nition Homogeneity and Separation measures are de�ned as follows:We de�ne the �ngerprint of a set of elements to be the mean vetor of the �ngerprints of themembers of the set. Let X1; :::; Xt be lusters, C(u) be the luster of vertex u, F (X) andF (u) be the �ngerprints of a luster X and of element u respetively, and let S(x; y) denotethe similarity between �ngerprints x and y, then:Average Homogeneity HAve = 1jN jXu2N S(F (u); F (C(u)))Minimum Homogeneity HMin = minu2N S(F (u); F (C(u)))Average Separation SAve = 1Pi 6=j jXijjXjjXi 6=j jXijjXjjS(F (Xi); F (Xj))Maximum Separation SMax = maxi 6=j S(F (Xi); F (Xj))Logially, a lustering improves when HAve and HMin inrease, and when SAve and SMaxderease.Another method of quality assessment is setting a ertain similarity threshold and mea-suring the fration of mates and non-mates above that threshold. Good lustering is expetedto yield higher values of similarity between mates (indiating homogeneity) and lower valuesbetween non-mates (indiating separation).



6 Analysis of Gene Expression Data Tel Aviv Univ.Program (algorithm) # Clusters Homogeneity SeparationHAve HMin SAve SMaxCLICK 30 0.8 -0.19 -0.07 0.65GENECLUSTER 30 0.74 -0.88 -0.02 0.97Table 6.1: A omparison between CLICK and GENECLUSTER [15℄ on the yeast ell-yledataset [3℄. Expression levels of 6,218 S. erevisiae genes, measured at 17 time points overtwo ell yles.6.1.4 Algorithm Performane ComparisonsThis setion ontains examples of omparisons between CLICK and other lustering algo-rithms, in various problems, inluding expression data, oligo-�ngerprinting data and proteinsimilarity data (Tables 6.1, 6.2, 6.3, 6.4, 6.5 and Figures 6.3, 6.4, 6.5). Analysis of the re-sults (see Table 6.6) shows that CLICK outperforms all the ompared algorithms in termsof quality. In addition, CLICK is very fast, allowing lustering of thousands of elements inminutes, and over 100,000 elements in a ouple of hours on a regular workstation. Figure6.6 shows the result of a omparison in whih the authors of eah lustering algorithm wereallowed to run the test on their own. The graph shows a tradeo� between the homogeneityand separation sores; The further the algorithm is from the origin the \better" its overallperformane.In addition, CLICK was tested in simulations whih inluded varying luster struturesand di�erent distribution parameters. Similarity values for mates and non-mates were dis-tributed normally: for eah luster struture, standard deviation � was set at 5 for bothmates and non-mates, while the di�erene between the means of mates �T and non-mates�F was set at t� � for t = 2; 1; 0:8; 0:6. Results are shown in Table 6.7, evaluated using theJaard oeÆient. As expeted, the larger the distane between the means of mates andnon-mates, the better the performane of the algorithm. It also seems that better resultsare obtained when luster sizes are larger.
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Figure 6.3: Soure: [13℄. CLICK's lustering of the yeast ell-yle data [3℄. x-axis: timepoints 0-80, 100-160 at 10-minute intervals. y-axis: normalized expression levels. The solidline in eah sub-�gure plots the average pattern for that luster. Error bars display themeasured standard deviation. The luster size is printed above eah plot.

Figure 6.4: Yeast Cell Cyle: late G1 Cluster (luster 3 from Figure 6.3). The luster foundby CLICK ontains 91% of the late G1-peaking genes. In ontrast, in GeneCluster 87% areontained in 3 lusters.



8 Analysis of Gene Expression Data Tel Aviv Univ.
Program #Clusters #Singletons Minkowski Jaard Time(min)CLICK 31 46 0.57 0.7 0.8HCS 16 206 0.71 0.55 43Table 6.2: A omparison between CLICK and HCS on the blood monoytes DNAdataset [9℄. 2,329 DNAs puri�ed from peripheral blood monoytes, �ngerprinted with 139oligos. Corret lustering is known from bak hybridization with long oligos.
Program #Clusters #Singletons Minkowski Jaard Time(min)CLICK 2,952 1,295 0.59 0.69 32.5K-Means 3,486 2,473 0.79 0.4 {Table 6.3: A omparison between CLICK and K-Means [10℄ on the sea urhin DNA dataset.20; 275 DNAs puri�ed from sea urhin eggs, and �ngerprinted with 217 oligos. Corretlustering of 1,811 DNAs is known from bak hybridizations.

Program #Clusters Homogeneity SeparationHAve HMin SAve SMaxCLICK 10 0.88 0.13 -0.34 0.65Hierarhial 10 0.87 -0.75 -0.13 0.9Table 6.4: A omparison between CLICK and Hierarhial [4℄ lustering on the dataset ofresponse of human �broblasts to serum [11℄. Human �broblast ells starved for 48 hours,then stimulated by serum. Expression levels of 8,613 genes measured at 13 time points.
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Figure 6.5: Soure: [13℄. CLICK's lustering of the �broblasts serum response data [11℄.x-axis: 1-12: synhronized time-points. 13: unsynhronized point. y-axis: normalizedexpression levels. The solid line in eah sub-�gure plots the average pattern for that luster.Error bars display the measured standard deviation. The luster size is printed above eahplot.



10 Analysis of Gene Expression Data Tel Aviv Univ.Program #Clusters #Singletons Homogeneity Separation Time(min)CLICK 9,429 17,119 0.24 0.03 126.3SYSTERS 10,891 28,300 0.14 0.03 {Table 6.5: A omparison between CLICK and SYSTERS on a dataset of 117,835 pro-teins [12℄. Measures based on similarity when no orret solution is known: For a �xedthreshold t, homogeneity is the fration of mates with similarity above t, and separation isthe fration of non-mates with similarity above t.Elements Problem Compared to Improvement Time(min)517 Gene Expression Fibroblasts Cluster [4℄ Yes 0.5826 Gene Expression Yeast ell yle GeneCluster [15℄ Yes 0.22,329 DNA OFP Blood Monoytes HCS [9℄ Yes 0.820,275 DNA OFP Sea urhin eggs K-Means [10℄ Yes 32.572,623 Protein similarity ProtoMap [17℄ Minor 53117,835 Protein similarity SYSTERS [12℄ Yes 126.3Table 6.6: A Summary of the time performane of CLICK on the above mentioned datasets.CLICK was exeuted on an SGI ORIGIN200 mahine utilizing one IP27 proessor. Thetime does not inlude preproessing time. The \Improvement" olumn desribes whetherthe solution of the CLICK algorithm was better than the ompared algorithm.Ataxia TelangietasiaThe following experiment shows how lustering methods an aid our understanding of bio-logial proesses. Its aim was to study the expression patterns of a geneti disease, AtaxiaTelangietasia (A-T).A-T is a rare autosomal reessive disorder, haraterized by erebellar and thymi de-generation and predisposition to aner. The gene found to be responsible for A-T is ATM- an important mediator of ell responses to DNA damage, in partiular those that ontrolStruture 2 1 0:8 0:66� 60 1 1 0:98 0:8510� 30 1 0:96 0:71 0:110; :::; 80 1 1 0:97 0:83Table 6.7: CLICK simulation results (mean Jaard sore over 20 runs). The test inludedvarious luster strutures (rows) and distanes between �T and �F (in eah olumn, thedistane appearing in the title was used as a fator of the standard deviation �. The �rstolumn denotes a distane of 2�, et.).
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Figure 6.6: Comparison of lustering algorithms using homogeneity and separation riteria.The data onsisted of 698 genes, 72 onditions [14℄. Eah algorithm was run by its authorsin a \blind" test.
progression through the ell yle. The study of A-T is failitated by the existene of amouse homologue of ATM.In this experiment, DNA damage was indued both in normal mie and in ATM-de�ientmie via irradiation. Tissues were then obtained in 3 time-points - 0, 30 and 120 minutes afterirradiation - in order to hek for di�erenes in the ellular response. DNA's from thymus,erebellum and brain were hybridized to miroarrays representing 8; 000 transripts. Eahgene was sampled at 18 ombinations of tissue, genotype and time-point. The resulting datawas then proessed by the CLICK algorithm.The results are shown in Figure 6.7. Interestingly, some of the lusters showed di�erenesbetween the normal and ATM-de�ient samples. These di�erenes inluded onstitutiveexpression of genes in ATM-de�ient mie: whereas in normal mie a rise in the expressionlevel of these genes was noted in the time-points after 0, in ATM-de�ient mie the levelwas high already at 0 time, and did not hange signi�antly afterwards. These results maysuggest that these genes are involved in the response to the indued DNA damage, whih ishampered in ATM-de�ient mie.



12 Analysis of Gene Expression Data Tel Aviv Univ.

Figure 6.7: Clusters generated by the CLICK algorithm for the A-T experiment. y-axis:normalized expression levels. x-axis: 1-3: normal mie at times 0, 30, 120 (minutes); 4-6: ATM-de�ient mie at times 0, 30, 120. Note that in luster #1 we see onstitutiveexpression of the genes in ATM-de�ient mie at all three time-points, whereas in normalmie expression rises to about that level only after irradiation.



Introdution to Bilustering 136.1.5 Clustering - Future ResearhClustering pops up in many questions and problems in various �elds of interest, not only genelustering. In many pratial situations, the omplexity of the lustering is the dominantpart of the omplexity of the whole solution. In many ases, though, lustering heuristismay not perform well and produe poor lustering results.Therefore there is still room for improvement, both in theoretial lustering algorithms(and proofs), and in pratial algorithms and heuristis. Some of the possible avenues forprogress are indiated below.Theoretial Clustering� Reduing the restritions on luster sizes.� Novel approahes and better algorithms, improving on both quality of results andtime-omplexity.Pratial Clustering� Determining whih algorithms and heuristis are best suited for partiular lusteringjobs.� Improving on the optimization riteria.� Better ontrol over the tradeo� of auray versus speed, for instane using plausibleassumptions about the lustered entities in eah spei� implementation.� Devising new lustering/viewing tools, whih would allow interative setting of param-eters and modifying algorithm behavior, while viewing the results.6.2 Introdution to BilusteringAs we have seen in previous letures, a very entral method in the analysis of gene expres-sion data is lustering. Clustering algorithms are used to transform a very large matrix ofexpression values to a more informative olletion of gene or ondition sets. The members ofeah luster are assumed to share funtion or form some biologial module. Clustering is aglobal tehnique and as suh has several limitations. First, lustering partitions the elementsinto groups, so eah element may appear in at most one group. Seond, when lustering geneexpression data, we group the genes aording to their behavior over all experiments (simi-larly for onditions). This may be problemati when working with large databases that mayinlude many di�erent onditions, only few of whih trigger some ommon gene behavior.



14 Analysis of Gene Expression Data Tel Aviv Univ.Suppose we are studying yeast ell biology. We may try to use gene expression datain order to identify funtional modules, i.e., large sets of genes sharing some importantellular funtion or proess. Clustering the genes may give good results as long as we aretargeting a very onrete subsystem. Indeed several works ([14, 6℄) used lustering to vastlyexpand our knowledge on ell yle or stress response. However, many genes, even in ourpartiular example, are important to both stress response and ell yle as the two systemsare intimately related, so lustering the joint data set would have to reate some arbitrarypartition of the two systems, loosing information on their ommon parts.A seond example for the limitations of lustering omes from linial studies of aner.We may luster tissues of many patients su�ering from several type of aner in order totry and identify linially important sublasses. We may also try to ompare our lasseswith some additional information on the patients (age, sex, type of aner, smoking years,prognosis). When using global lustering of the tissues we an only �nd one (hopefully themost signi�ant) signal in the data, for example we may separate the di�erent aner types.Other signals, whih may be important, will be missed sine we are assoiating tissues witha single e�et.To try and address these shortomings, the onept of bilustering was introduedto gene expression analysis. Bilustering was �rst de�ned in the seventies [8℄ and wasapplied to several domains before Cheng and Churh [2℄ oined its usage in omputationalbiology. Given a gene expression matrix, we searh for submatries that are tightly o-regulated aording to some soring riterion. We do not require the identi�ed submatriesto be disjoint or to over the entire matrix, instead we wish to build a diverse olletion ofsubmatries that will apture all the signi�ant signals in our data.Before going into details, we state again the basi reasoning of using bilustring andthe key di�erenes between bilustering and standard lustering. Bilustering is a loaltehnique by nature, i.e., we try to �nd loal, signi�ant signals in the data. Clustering, onthe other hand, tries to model the whole dataset by reduing it to a olletion of subsets.A suessful olletion of bilusters will provide a more detailed model of the data and anunover more biologial impliations of it. However, bilustering results will be harder tointerpret.6.3 Cheng and Churh's AlgorithmThe �rst appliation of bilustering to gene expression data was the work of Cheng andChurh (2000). Stating its goal as the ability to �nd signals more deliate than lusters,the methodology is based on a simple uniformity goal (the Mean Residue Sore, de�nedbelow) and uses a greedy algorithm to �nd one biluster, ombined iteratively to produe aolletion of bilusters.



Cheng and Churh's Algorithm 156.3.1 The AlgorithmWe denote the input matrix of expression data as A = (aij) and the rows (olumns) set byR (C). A submatrix is denoted by AIJ(I � R; J � C) and we use the auxiliary notationaIj = Pi2I aijjIj (sub olumn average) aiJ = Pj2J aijjJj (sub row average) and aIJ = Pi2I;j2J aijjIjjJj(submatrix average).We de�ne the Residue Sore of an element aij in a submatrix AIJ as RSIJ(i; j) = aij �aIj � aiJ + aIJ and the Mean Residue Sore of the submatrix as H(I; J) = Pi2I;j2J RS2ijjIjjJj.A ompletely uniform matrix will sore zero. A submatrix in whih all entries are the sumof a olumn parameter and a row parameter (aij = bi + j) would also sore zero. On theother hand a random submatrix (normally distributed with any parameter) would have thevariane of the distribution as its expeted sore. We de�ne a Æ biluster to be a submatrix(I; J) for whihH(I; J) � Æ. The bilustering algorithmwill searh for a Æ-biluster assumingthat the parameter Æ was hosen appropriately to avoid random signal identi�ation. Forexample, we may hoose Æ as the minimal (i.e. best) sore of the output of a lusteringalgorithm.The optimization problem of identifying the largest Æ-biluster (the one for whih jIj =jJ j is the largest) is NP hard as an be seen by a simple redution from BALANCEDCOMPLETE BIPARTITE SUBGRAPH. We are thus interested in heuristis for �ndinga large Æ biluster in reasonable time. We next present suh heuristi whih is a greedyalgorithm in essene, show how to speed it up and use it as a subroutine for �nding manybilusters.A naive greedy algorithm for �nding a Æ-biluster may start with the entire matrix andat eah step try all single rows/olumns addition/deletion, applying the best operation if itimproves the sore and terminating when no suh operation exists or when the biluster soreis below Æ. However, simply realulating all averages and mean residues for eah operationmay be too expensive for large matries. Cheng and Churh's algorithm uses the strutureof the mean residue sore to enable faster greedy steps. The idea is based on the followinglemma:Lemma 6.2 The set of rows that an be ompletely or partially removed with the net e�etof dereasing the mean residue sore of a biluster AIJ is :R = fi 2 I; 1jJ jXj2J RSI;J(i; j) > H(I; J)gIn words, it is safe to remove any row for whih the average ontribution to the total soreis greater then its relative share. The same argument is orret for olumns and gives riseto the following greedy algorithm that iteratively remove rows/olumns with the maximalaverage residue sore (Figure 6.8).



16 Analysis of Gene Expression Data Tel Aviv Univ.Input: Expression matrix A on genes S, onditions Cand a parameter Æ.Output: AIJ a Æ-biluster.Init: I = S,J = C.Iteration:Calulate aIj; aiJ and H(I; J). If H(I; J) � Æ output I; J .For eah row alulate d(i) = 1jJjPj2J RSI;J(i; j).For eah olumn alulate e(j) = 1jIjPi2I RSI;J(i; j).Take the best row or olumn and remove it from I or J .Figure 6.8: Single node deletion algorithm.Note that sine a 1 by 1 submatrix is always a Æ-biluster we should hope that the deletionalgorithm will terminate with a large biluster. It is natural to try and add rows/olumnsin an analogous way, using the equivalent lemma and algorithm (Figure 6.9):Lemma 6.3 The set of rows (olumns) that an be ompletely or partially added with thenet e�et of dereasing the sore of a biluster AIJ is :R = fi =2 I; 1jJ jXj2J RSI;J(i; j) � H(I; J)gInput : Expression matrix A, the parameter Æ and I; J speifying a Æ biluster.Output : AI 0; J 0 - a Æ-biluster with I � I 0; J � J 0.IterationCalulate aIj; aiJ and H(I; J).Add the olumns with 1jIjPi2I RSI;J(i; j) � H(I; J).Calulate aIj; aiJ and H(I; J).Add the rows with 1jJjPj2J RSI;J(i; j) � H(I; J).If nothing was added, halt.Figure 6.9: Node addition algorithm.The exat details of the heuristi are not neessarily optimal for any situation. Forexample, the algorithm presented here is tailored for ases where there are muh more rowsthan olumns.



Cheng and Churh's Algorithm 17The Cheng-Churh algorithm suggests two additional improvements to the basi deletion-addition algorithm. The �rst improvement suggests a multiple node deletion in aseswhere the data set is large. This is done by removing at eah deletion iteration all rows/olumnsfor whih d(i) > �H(I; J) for some hoie of �. The idea is to perform large steps untilthe submatrix is relatively small and indeed it is shown that suh steps an be done safely(without inreasing the sore).The seond algorithmi improvement involves the addition of inverse rows to the matrix,allowing the identi�ation of bilusters whih ontains o-regulation and inverse o-regulation(i.e., ases where two genes always hange in opposite diretions).As mentioned in the introdution, the goal of a bilustering algorithm is to identify all(or many of) the signals in the data set, so learly, �nding one biluster is not enough. TheCheng-Churh solution to this requirement uses the Æ-biluster algorithm as a subroutineand repeatedly applies it to the matrix. In order to avoid �nding the same biluster over andover again, the disovered biluster is masked away from the data, by replaing the values ofits submatrix by random values. The general bilustering sheme is outlined in Figure 6.10.Input : Expression matrix A, the parameter Æ, the number of bilusters to report nOutput : n Æ-bilusters in A.IterationApply multiple node deletion on A giving I 0; J 0.Apply node addition on I 0; J 0 giving I 00; J 00.Store I 00; J 00 and replae AI00;J 00 values by random numbers.Figure 6.10: Cheng-Churh bilustering algorithm.6.3.2 ExperimentsWe next desribe some of the experiments done by Cheng and Churh to validate theirapproah. Experiments were done using two datasets, one of human lymphoma ([1℄) and theother of yeast data ([16℄). Working with the yeast data, the parameter Æ was hosen to be abit more then the minimal sore of the reported lusters. A large set of random submatriesof varying sizes was then sored and ompared to the seleted threshold. The simulationshowed that small Æ-bilusters have a onsiderable hane of being random (15% for 3 by6 matries, 0.06% for 10 by 6 matries), but larger Æ � bilusters may be far from random(although random here referees to random submatries rather than random expression data).Appliation of the algorithm to both datasets produed 100 bilusters on eah, andsome e�ort was made to test their relation with global lustering and biologial information.



18 Analysis of Gene Expression Data Tel Aviv Univ.For example, the hierarhial lustering of the lymphoma tissues was ompared with thebilusters by testing the ondition sets of eah biluster and its partition among the twomain branhes of the hierarhy.6.4 Coupled two-way lustering6.4.1 Motivation.The results of every gene miroarray experiment are organized in an expression level matrixA . A row of this matrix orresponds to a single gene, while eah olumn represents apartiular sample. In a typial experiment simultaneous expression levels of thousands ofgenes are measured.Gene expression is inuened by the ell type, ell phase, external signals, and more. Theexpression level matrix is therefore the result of all these proesses mixed together. Our goalis to separate and identify these proesses and to extrat as muh information as possibleabout them. The main diÆulty is that eah biologial proess on whih we wish to fousmay involve a relatively small subset of the genes; the large majority of those present onthe miroarray onstitute a noisy bakground that may mask the e�et of the small subset.The same may happen with respet to samples. A straightforward approah to �ndingpairs of subsets, (Oj;Fi) of gens and samples that lead to \meaningful" lusters, ould beto take all possible submatries of the original data and apply the standard (unoupled)two-way lustering proedure to every one of them. By keeping trak of all stable lustersthat are formed in this proess, and storing the identity of both genes and samples thatde�ne the partiular submatrix, one is guaranteed to �nd every possible stable partitionin the data. This approah is, of ourse, impossible to implement, beause the number ofsuh submatries grows exponentially with the size of the problem. CTWC provides aneÆient heuristi to generate suh pairs of objet and feature subsets by an iterative proessthat severely restrits the possible andidates for suh subsets; we onsider and test onlythose submatries whose rows (olumns) belong to genes (samples) that were identi�ed (ina previous iteration!) as a stable luster. [7℄6.4.2 The algorithm.Coupled two-way lustering de�nes a generi transformation from a one-dimensional luster-ing algorithm into a bilustering algorithm. The algorithm relies on having a one-dimensional(standard) lustering algorithm that an disover signi�ant (stable) lusters. Given suhan algorithm, the oupled two-way lustering proedure will reursively apply the one-dimensional algorithm to submatries, aiming to �nd subsets of genes giving rise to sig-ni�ant lusters of onditions, or subsets of onditions giving rise to signi�ant gene lusters.



Coupled two-way lustering 19The submatries de�ned by suh pairing are alled stable submatries and orrespond tobilasters. The algorithm operates on a set of gene subsets V and a set of ondition subsetsU . Initially V = fV g and U = fUg.The algorithm then iteratively selets a gene subset V 0 2 V and a ondition subsetU 0 2 U and applies the one dimensional lustering algorithm twie, to luster V 0 and U 0 onthe submatrix U 0 � V 0. If stable lusters are deteted, their genes/onditions subsets areadded to the respetive sets V, U . The proess is repeated until no new stable lusters anbe found. The implementation makes sure that eah pair of subsets is not enountered morethan one.Note that the proedure avoids the onsideration of all rows and olumns subsets, bystarting from an established row subset when forming sublusters of established olumnsubsets, and via versa. The suess of the oupled two-way lustering strategy dependson the performane of the given one-dimensional lustering algorithm. We note that manypopular lustering algorithms (e.g. K-means, Hierarhial, SOM) annot be plugged intothe oupled two-way mahinery, as they do not readily distinguish signi�ant lusters fromnon-signi�ant lusters or make a-priori assumption on the number of lusters. It has beenreported by Getz et al. using SPC lustering algorithm is having good results. The resultsof the algorithm an be viewed in a hierarhial form: eah stable gene (ondition) lusteris generated given a ondition (resp. gene) subset. This hierarhial relation is importantwhen trying to understand the ontext of joint genes or onditions behavior. For example,when analyzing linial data, Getz et al. have foused on gene subsets giving rise to stabletissue lusters that are orrelative to known linial attributes. Suh gene sets may have animportant biologial role in the disease under study.6.4.3 Choosing one-dimentional algorithm for CTWC� Any reasonable lustering method an be used within the framework of CTWC, but theoptimal algorithm should have the following properties: the number of lusters shouldbe determined by the algorithm itself and not externally presribed [ as is done whenusing self-organizing maps (SOMs) and K-means ℄ ; stability against noise; generatinga hierarhy (dendrogram) and providing a mehanism to identify in it robust stablelusters; and ability to identify a dense set of points, whih form a loud of an irregularnonspherial shape, as a luster., also it must be limited to nested row & olumnsubsets, but not limited to nested submatries� Cluster stability is measured wrt parent biluster� Two bilusters are either disjoint or one is ontained in the other.� No. of (bi)lusters not prespei�ed



20 Analysis of Gene Expression Data Tel Aviv Univ."Super Paramagneti Clustering" (SPC)SPC, a hierarhial lustering method reently introdued by Blatt, is the algorithm thatbest �ts these requirements. The intuition that led to it is based on an analogy to the physisof inhomogeneous ferromagnets.The input for SPC is a distane or similarity matrix dij between the objets O, alulatedaording to the feature set F . A tunable parameter T (\temperature") ontrols the resolu-tion of the performed lustering. One starts at T = 0, with a single luster that ontains allthe objets. As T inreases, phase transitions take plae, and this luster breaks into severalsublusters that reet the struture of the data.At eah T , probability of two objets having the same label is measured and if it is highenough, they are given the same label.Clusters keep breaking up as T is further inreased, until at high enough values of Teah objet forms its own luster. As opposed to most agglomerative algorithms, SPC has anatural measure for the relative stability of any partiular luster: the range of temperatures,�T , over whih the luster remains unhanged. The more stable a luster is, the larger therange �T through whih it is expeted to \survive". For a stable luster s, the orresponding�Ts onstitutes a signi�ant fration of Tmax, the temperature at whih the data break intosingle-point lusters. Inspetion of the gene dendrograms of Fig. 6.12 reveals stable lustersand stable branhes. The hoie of the value �T, above whih a luster is onsidered asstable, in the following way. We permuted at random elements of the expression matrixunder investigation, and applied SPC to the randomized matrix. �T was seleted so thatfor 500 di�erent random permutations no lusters that survived for �T > �T were found.This gives a bound on the probability that lusters that we labeled as stable were in fat anartifat of noisy data.



Coupled two-way lustering 21
TWOWAY(U , V , E, ALG):U : onditions. V : genes.E : Gene expression matrix.ALG : one-dimensional lustering algorithm. Inputs a matrix and outputs signi�ant (stable)lusters of olumns or rowsInitialize a hash table weightInitialize U1 = fUg, V1 = fV gInitialize U = ;, V = ;Initialize the sets hierarhy table HV storing for gene lusters theondition subsets used to generate them.Initialize the sets hierarhy table HU storing for ondition lusters thegene subsets used to generate them.While (U1 6= ; or V1 6= ;) doInitialize empty sets U2;V2.For all (U 0; V 0) 2 (U1 � V1) [ (U1 � V) [ (U � V1) doRun ALG(EU 0V 0) to luster the genes in V 0:Add the stable gene sets to V2Set HV [V 00℄ = U 0 for all new lusters V 00.Run ALG(EU 0V 0) to luster the onditions in U 0:Add the stable ondition sets to U2Set HU [U 00℄ = V 0 for all new lusters U 00.Assign U = U [ U1, V = V [ V1Assign U1 = U2, V1 = V2Report U ;V and their hierarhies HU ;HV .Figure 6.11: Coupled two-way lustering.



22 Analysis of Gene Expression Data Tel Aviv Univ.



Bibliography[1℄ A.A. Alizadeh et al. Distint types of di�use large B-ell lymphoma identi�ed by geneexpression pro�ling. Nature, 403(6769):503{511, 2000.[2℄ Y. Cheng and G.M. Churh. Bilustering of expression data. In Pro. ISMB'00, pages93{103. AAAI Press, 2000.[3℄ RJ. Cho et al. A genome-wide transriptional analysis of the mitoti ell yle. MolCell, 2:65{73, 1998.[4℄ M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and displayof genome-wide expression patterns. PNAS, 95:14863{14868, 1998.[5℄ M. R. Garey and D. S. Johnson. Computers and Intratability: A Guide to the Theoryof NP-Completeness. W. H. Freeman and Co., San Franiso, 1979.[6℄ A. P. Gash et al. Genomi expression programs in the response of yeast ells toenvironmental hanges. Mol Biol Cell, 11:4241{57, 2000.[7℄ Gad Getz, Erel Levine, and Eytan Domany. Coupled two-way lustering analysis ofgene miroarray data PNAS, 97:12079{12084, 2000.[8℄ J.A. Hartigan. Clustering Algorithms. John Wiley and Sons, 1975.[9℄ E. Hartuv, A. Shmitt, J. Lange, S. Meier-Ewert, H. Lehrah, and R. Shamir. Analgorithm for lustering DNA �ngerprints. Genomis, 66(3):249{256, 2000.[10℄ R. Herwig, A.J. Poustka, C. Muller, C. Bull, H. Lehrah, and J. O'Brien. Large-salelustering of DNA-�ngerprinting data. Genome Researh, 9:1093{1105, 1999.[11℄ V.R. Iyer, M.B. Eisen, D.T. Ross, G. Shuler, T. Moore, J.C.F. Lee, J.M. Trent, L.M.Staudt, J. Hudson Jr., M.S. Boguski, D. Lashkari, D. Shalon, D. Botstein, and P.O.Brown. The transriptional program in the response of human �broblasts to serum.Siene, 283 (1), 1999. 23



24 BIBLIOGRAPHY[12℄ A. Krause, J. Stoye, and M. Vingron. The systers protein sequene luster set. NuleiAids Researh, 28(1):270{272, 2000.[13℄ R. Sharan and R. Shamir. Clik: A lustering algorithm with appliations to geneexpression analysis. In Proeedings of the 8th Annual International Conferene on In-telligent Systems for Moleular Biology, (ISMB '00), pages 307{316. AAAI Press, 2000.[14℄ P. T. Spellman, G. Sherlok, et al. Comprehensive identi�ation of ell yle-regulatedgenes of the yeast Saharomyes erevisiae by miroarray hybridization. Mol. Biol.Cell, 9:3273{3297, 1998.[15℄ P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander,and T.R. Golub. Interpreting patterns of gene expression with self-organizing maps:Methods and appliation to hematopoieti di�erentiation. PNAS, 96:2907{2912, 1999.[16℄ S. Tavazoie, JD. Hughes, MJ. Campbell, RJ. Cho, and GM. Churh. Systemati deter-mination of geneti network arhiteture. Nature Genetis, 22:281{285, 1999.[17℄ G. Yona, N. Linial, and M. Linial. Protomap: Automati lassi�ation of proteinsequenes, a hierarhy of protein families, and loal maps of the protein spae. Proteins:Struture, Funtion, and Genetis, 37:360{378, 1999.


