Analysis of Gene Expression Data Spring Semester, 2004
Lecture 6: April 22, 2004

Lecturer: Ron Shamir Scribe: Elena Zilberman and Igor Kotenkov'

6.1 CLICK: Cluster Identification via Connectivity Ker-
nels

6.1.1 Introduction

CLICK (CLuster Identification via Connectivity Kernels) is a new algorithm for cluster-
ing [13]. The input for CLICK is the gene expression matrix. Each row of this matrix is an
“expression fingerprint” for a single gene. The columns are specific conditions under which
gene expression is measured.

The CLICK algorithm attempts to find a partitioning of the set of elements into clusters,
so that two criterias are satisfied: Homogeneity - fingerprints of elements from the same clus-
ter, called mates, are highly similar to each other; and Separation - fingerprints of elements
from different clusters, called non-mates, have low similarity to each other.

The goal is to identify highly homogeneous sets of elements - connectivity kernels (sub-
sets of very similar elements) and add elements to kernels via similarity to average kernel
fingerprints.

Uses tools from Graph Theory and probabilistic considerations.
6.1.2 Probabilistic Model
Mates - genes that belong to the same true cluster.

The CLICK algorithm makes the following assumptions:
1. Similarity values between mates are normally distributed with parameters pr, or.

2. Similarity values between non-mates are normally distributed with parameters pp, op.

!Based on scribes by Giora Sternberg, and Ron Gabor, May 2, 2002, and by Irit Gat and Amos Tanay,
May 30, 2002
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Basic-CLICK(G(V, E))
if (V(G)={v}) then
move v to the singleton set R
elseif (G is a kernel) then
Output V(G)
else
(H,H, cut) < MinWeightCut(Q)
Basic-CLICK(H)
Basic-CLICK(H)
end if
end

Figure 6.1: The Basic-CLICK algorithm

3. We expect that ur > pup, and or, o are small enough so we can separate the clusters.

These assumptions are justified empirically by simulations, and in some cases theoreti-
cally (by the Central Limit Theorem).

Parameters for the algorithm can be learned in two ways: from partially known solutions
or estimated using EM algorithm.

6.1.3 The Basic CLICK Algorithm

The CLICK algorithm represents the input data as a weighted similarity graph G = (V, E).
In this graph vertices correspond to elements and edge weights are derived from the similarity
values. The weight w;; of an edge (i, j) reflects the probability that i and j are mates, and
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Figure 6.2: Basic scheme of the CLICK algorithm. Split subsets of G, that contain elements
from two kernels.

The basic CLICK algorithm is described in Figure 6.1 and exemplified in Figure 6.2.
The idea behind the algorithm is the following: given a connected graph G, we would like
to decide whether V(@) is a subset of some true cluster, or V(G) contains elements from at
least two true clusters. In the first case we say that G is pure. In order to make this decision,
we test the following two hypotheses for each cut C' in G-

e HE': C contains only edges between non-mates.
e HC: C contains only edges between mates.

G is declared a kernel if H; is more probable for all cuts. The decision of whether G is a
kernel relies on the following theorem:

Theorem 6.1 G is a kernel iff the weight of MinCut(G) > 0.
Proof: At first, we will make two assumptions:
e S;;-s are independent

e mate relations are also independent
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Then, using Bayes’ Theorem, it can be shown that for any cut C' in G
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Obviously, W(C) > 0 iff Pr(HC|C) > Pr(H{|C). If the minimum cut is positive, then
obviously so are all the cuts. Conversely, if the minimum cut is non-positive, then for that
cut Pr(HE|C) < Pr(H{'|C), therefore G is not a kernel. m

Removing Negative Weight Edges The MIN-CUT problem for a weighted graph with
both positive and negative edges is NP-Complete?. In order to use the efficient MIN-
CUT algorithms we must remove the negative edges. By modifying the algorithm
slightly, we can still use the new graph to find kernels in the original graph.

Refinements

The Basic-CLICK algorithm divides the graph into kernels and singletons. These kernels
are expanded to the full clustering, using several refinements:

Adoption Step In practice, “true” clusters are usually larger than just the kernel. To
accommodate this, in the refined algorithm, kernels “adopt” singletons to create larger
clusters. This is done by searching for a singleton v and a kernel K, whose pairwise
fingerprint similarity is maximum among all pairs of singletons and kernels. The refined
algorithm iteratively applies the adoption step and then the Basic-CLICK algorithm
on the remaining singletons, stopping when there are no more changes.

Merge Step In this step we merge clusters whose fingerprints are similar (the justification
for this is that, in practice, clusters can contain multiple kernels). The merging is done
iteratively, each time merging two clusters whose fingerprint similarity is the highest
(provided that the similarity exceeds a predefined threshold).

2MIN-CUT can be proved to be NP-Complete by reduction from MAX-CUT [5, page 210].
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Quality Assessment

When the ”correct” solution for the clustering problem is known, we can evaluate the algo-
rithm’s performance using comparison criteria as we have done with BioClust. The criteria
used here are the Jaccard coefficient (as defined in the previous sections) and the Minkowski

coefficient. The latter is defined by /722710 Note that unlike the Jaccard and Matching

coefficients, the Minkowski coefficient improves as it decreases, with optimal value at 0.

Unfortunately, in most cases the ”correct” solution for the clustering problems is un-
known. In these cases we evaluate the quality of the solution by computing two figures of
merit to measure the homogeneity and separation of the produced clusters. For fingerprint
data, homogeneity is evaluated by the average and minimum correlation coefficient between
the fingerprint of an element and the fingerprint of its corresponding cluster. Separation is
evaluated by the weighted average and the maximum correlation coefficient between cluster
fingerprints. Formally:

Definition Homogeneity and Separation measures are defined as follows:

We define the fingerprint of a set of elements to be the mean vector of the fingerprints of the
members of the set. Let X7, ..., X; be clusters, C'(u) be the cluster of vertex u, F(X) and
F(u) be the fingerprints of a cluster X and of element u respectively, and let S(z,y) denote
the similarity between fingerprints x and y, then:

Average Homogeneity
1
Hpe = N Z S(F(u), F(C(u)))

ueEN

Minimum Homogeneity
Hygin = min S(F (u), F(C(u)
ue

Average Separation

1
Save = = > Xil|X;S(F(X)), F(X;
! Zi¢j|Xi||Xj|;| [GIS(F(X5), F(X5))

Maximum Separation

SMaz = T?%XS(F(Xi)a F(X;))
Logically, a clustering improves when H 4,. and H,s;, increase, and when S, and Syres
decrease.

Another method of quality assessment is setting a certain similarity threshold and mea-
suring the fraction of mates and non-mates above that threshold. Good clustering is expected
to yield higher values of similarity between mates (indicating homogeneity) and lower values
between non-mates (indicating separation).
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Program (algorithm) | # Clusters | Homogeneity | Separation
HAve ‘ HMm SAve ‘ SMaac
CLICK 30 0.8 | -0.19 | -0.07 | 0.65
GENECLUSTER 30 0.74 | -0.88 |-0.02 | 0.97

Table 6.1: A comparison between CLICK and GENECLUSTER [15] on the yeast cell-cycle
dataset [3]. Expression levels of 6,218 S. cerevisiae genes, measured at 17 time points over
two cell cycles.

6.1.4 Algorithm Performance Comparisons

This section contains examples of comparisons between CLICK and other clustering algo-
rithms, in various problems, including expression data, oligo-fingerprinting data and protein
similarity data (Tables 6.1, 6.2, 6.3, 6.4, 6.5 and Figures 6.3, 6.4, 6.5). Analysis of the re-
sults (see Table 6.6) shows that CLICK outperforms all the compared algorithms in terms
of quality. In addition, CLICK is very fast, allowing clustering of thousands of elements in
minutes, and over 100,000 elements in a couple of hours on a regular workstation. Figure
6.6 shows the result of a comparison in which the authors of each clustering algorithm were
allowed to run the test on their own. The graph shows a tradeoff between the homogeneity
and separation scores; The further the algorithm is from the origin the “better” its overall
performance.

In addition, CLICK was tested in simulations which included varying cluster structures
and different distribution parameters. Similarity values for mates and non-mates were dis-
tributed normally: for each cluster structure, standard deviation o was set at 5 for both
mates and non-mates, while the difference between the means of mates p7 and non-mates
r was set at t X o for t =2,1,0.8,0.6. Results are shown in Table 6.7, evaluated using the
Jaccard coefficient. As expected, the larger the distance between the means of mates and
non-mates, the better the performance of the algorithm. It also seems that better results
are obtained when cluster sizes are larger.
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Figure 6.3: Source: [13]. CLICK’s clustering of the yeast cell-cycle data [3]. x-axis: time
points 0-80, 100-160 at 10-minute intervals. y-axis: normalized expression levels. The solid
line in each sub-figure plots the average pattern for that cluster. Error bars display the
measured standard deviation. The cluster size is printed above each plot.

Figure 6.4: Yeast Cell Cycle: late G1 Cluster (cluster 3 from Figure 6.3). The cluster found
by CLICK contains 91% of the late G1-peaking genes. In contrast, in GeneCluster 87% are
contained in 3 clusters.
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| Program | #Clusters | #Singletons | Minkowski | Jaccard | Time(min) |
CLICK 31 46 0.57 0.7 0.8
HCS 16 206 0.71 0.55 43

A comparison between CLICK and HCS on the blood monocytes cDNA
dataset [9]. 2,329 ¢cDNAs purified from peripheral blood monocytes, fingerprinted with 139
oligos. Correct clustering is known from back hybridization with long oligos.

Table 6.2:

| Program | #Clusters | #Singletons | Minkowski | Jaccard | Time(min) |

CLICK 2,952 1,295 0.59 0.69 32.5
K-Means 3,486 2,473 0.79 0.4

Table 6.3: A comparison between CLICK and K-Means [10] on the sea urchin cDNA dataset.

20,275 ¢cDNAs purified from sea urchin eggs, and fingerprinted with 217 oligos. Correct
clustering of 1,811 cDNAs is known from back hybridizations.

Program | #Clusters | Homogeneity | Separation
HAve ‘ HM'm SAve ‘ SMax
CLICK 10 0.88 | 0.13 |-0.34 | 0.65
Hierarchical 10 0.87 | -0.75 | -0.13 | 0.9

Table 6.4: A comparison between CLICK and Hierarchical [4] clustering on the dataset of

response of human fibroblasts to serum [11]. Human fibroblast cells starved for 48 hours,
then stimulated by serum. Expression levels of 8,613 genes measured at 13 time points.
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Figure 6.5: Source: [13]. CLICK’s clustering of the fibroblasts serum response data [11].

X-axis:

1-12: synchronized time-points.

13: unsynchronized point.

y-axis: normalized

expression levels. The solid line in each sub-figure plots the average pattern for that cluster.
Error bars display the measured standard deviation. The cluster size is printed above each

plot.
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‘ Program ‘ #Clusters ‘ #Singletons ‘ Homogeneity ‘ Separation ‘ Time(min) ‘

CLICK
SYSTERS

9,429
10,891

17,119
28,300

0.24
0.14

0.03
0.03

126.3

Table 6.5: A comparison between CLICK and SYSTERS on a dataset of 117,835 pro-
teins [12]. Measures based on similarity when no correct solution is known: For a fixed
threshold ¢, homogeneity is the fraction of mates with similarity above ¢, and separation is
the fraction of non-mates with similarity above t.

| Elements | Problem | Compared to | Improvement | Time(min) |
517 Gene Expression Fibroblasts Cluster [4] Yes 0.5
826 Gene Expression Yeast cell cycle | GeneCluster [15] Yes 0.2
2,329 c¢DNA OFP Blood Monocytes HCS [9] Yes 0.8
20,275 c¢DNA OFP Sea urchin eggs K-Means [10] Yes 32.5
72,623 Protein similarity ProtoMap [17] Minor 53
117,835 Protein similarity SYSTERS [12] Yes 126.3

Table 6.6: A Summary of the time performance of CLICK on the above mentioned datasets.
CLICK was executed on an SGI ORIGIN200 machine utilizing one IP27 processor. The
time does not include preprocessing time. The “Improvement” column describes whether
the solution of the CLICK algorithm was better than the compared algorithm.

Ataxia Telangiectasia

The following experiment shows how clustering methods can aid our understanding of bio-
logical processes. Its aim was to study the expression patterns of a genetic disease, Ataxia
Telangiectasia (A-T).

A-T is a rare autosomal recessive disorder, characterized by cerebellar and thymic de-
generation and predisposition to cancer. The gene found to be responsible for A-T is ATM
- an important mediator of cell responses to DNA damage, in particular those that control

‘Structure ‘ 2‘ 1 ‘ 0.8 ‘ 0.6 ‘

6x60 | 1] 1 |0.98]0.85
10x30 | 1]096|0.71| 0.1
10,..,80 | 1| 1 |0.97|0.83

Table 6.7: CLICK simulation results (mean Jaccard score over 20 runs). The test included
various cluster structures (rows) and distances between pr and pp (in each column, the
distance appearing in the title was used as a factor of the standard deviation o. The first
column denotes a distance of 20, etc.).
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Figure 6.6: Comparison of clustering algorithms using homogeneity and separation criteria.
The data consisted of 698 genes, 72 conditions [14]. Each algorithm was run by its authors
in a “blind” test.

progression through the cell cycle. The study of A-T is facilitated by the existence of a
mouse homologue of ATM.

In this experiment, DNA damage was induced both in normal mice and in ATM-deficient
mice via irradiation. Tissues were then obtained in 3 time-points - 0, 30 and 120 minutes after
irradiation - in order to check for differences in the cellular response. cDNA’s from thymus,
cerebellum and brain were hybridized to microarrays representing 8,000 transcripts. Each
gene was sampled at 18 combinations of tissue, genotype and time-point. The resulting data
was then processed by the CLICK algorithm.

The results are shown in Figure 6.7. Interestingly, some of the clusters showed differences
between the normal and ATM-deficient samples. These differences included constitutive
expression of genes in ATM-deficient mice: whereas in normal mice a rise in the expression
level of these genes was noted in the time-points after 0, in ATM-deficient mice the level
was high already at 0 time, and did not change significantly afterwards. These results may
suggest that these genes are involved in the response to the induced DNA damage, which is
hampered in ATM-deficient mice.
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Figure 6.7: Clusters generated by the CLICK algorithm for the A-T experiment. y-axis:
normalized expression levels. x-axis: 1-3: normal mice at times 0, 30, 120 (minutes); 4-
6: ATM-deficient mice at times 0, 30, 120. Note that in cluster #1 we see constitutive
expression of the genes in ATM-deficient mice at all three time-points, whereas in normal
mice expression rises to about that level only after irradiation.
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6.1.5 Clustering - Future Research

Clustering pops up in many questions and problems in various fields of interest, not only gene
clustering. In many practical situations, the complexity of the clustering is the dominant
part of the complexity of the whole solution. In many cases, though, clustering heuristics
may not perform well and produce poor clustering results.

Therefore there is still room for improvement, both in theoretical clustering algorithms
(and proofs), and in practical algorithms and heuristics. Some of the possible avenues for
progress are indicated below.

Theoretical Clustering

e Reducing the restrictions on cluster sizes.

e Novel approaches and better algorithms, improving on both quality of results and
time-complexity.

Practical Clustering

e Determining which algorithms and heuristics are best suited for particular clustering
jobs.

e Improving on the optimization criteria.

e Better control over the tradeoff of accuracy versus speed, for instance using plausible
assumptions about the clustered entities in each specific implementation.

e Devising new clustering/viewing tools, which would allow interactive setting of param-
eters and modifying algorithm behavior, while viewing the results.

6.2 Introduction to Biclustering

As we have seen in previous lectures, a very central method in the analysis of gene expres-
sion data is clustering. Clustering algorithms are used to transform a very large matrix of
expression values to a more informative collection of gene or condition sets. The members of
each cluster are assumed to share function or form some biological module. Clustering is a
global technique and as such has several limitations. First, clustering partitions the elements
into groups, so each element may appear in at most one group. Second, when clustering gene
expression data, we group the genes according to their behavior over all experiments (simi-
larly for conditions). This may be problematic when working with large databases that may
include many different conditions, only few of which trigger some common gene behavior.
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Suppose we are studying yeast cell biology. We may try to use gene expression data
in order to identify functional modules, i.e., large sets of genes sharing some important
cellular function or process. Clustering the genes may give good results as long as we are
targeting a very concrete subsystem. Indeed several works ([14, 6]) used clustering to vastly
expand our knowledge on cell cycle or stress response. However, many genes, even in our
particular example, are important to both stress response and cell cycle as the two systems
are intimately related, so clustering the joint data set would have to create some arbitrary
partition of the two systems, loosing information on their common parts.

A second example for the limitations of clustering comes from clinical studies of cancer.
We may cluster tissues of many patients suffering from several type of cancer in order to
try and identify clinically important subclasses. We may also try to compare our classes
with some additional information on the patients (age, sex, type of cancer, smoking years,
prognosis). When using global clustering of the tissues we can only find one (hopefully the
most significant) signal in the data, for example we may separate the different cancer types.
Other signals, which may be important, will be missed since we are associating tissues with
a single effect.

To try and address these shortcomings, the concept of biclustering was introduced
to gene expression analysis. Biclustering was first defined in the seventies [8] and was
applied to several domains before Cheng and Church [2] coined its usage in computational
biology. Given a gene expression matrix, we search for submatrices that are tightly co-
regulated according to some scoring criterion. We do not require the identified submatrices
to be disjoint or to cover the entire matrix, instead we wish to build a diverse collection of
submatrices that will capture all the significant signals in our data.

Before going into details, we state again the basic reasoning of using biclustring and
the key differences between biclustering and standard clustering. Biclustering is a local
technique by nature, i.e., we try to find local, significant signals in the data. Clustering, on
the other hand, tries to model the whole dataset by reducing it to a collection of subsets.
A successful collection of biclusters will provide a more detailed model of the data and can
uncover more biological implications of it. However, biclustering results will be harder to
interpret.

6.3 Cheng and Church’s Algorithm

The first application of biclustering to gene expression data was the work of Cheng and
Church (2000). Stating its goal as the ability to find signals more delicate than clusters,
the methodology is based on a simple uniformity goal (the Mean Residue Score, defined
below) and uses a greedy algorithm to find one bicluster, combined iteratively to produce a
collection of biclusters.
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6.3.1 The Algorithm

We denote the input matrix of expression data as A = (a;;) and the rows (columns) set by
R (C). A submatrix is denoted by A;;(I C R,J C C) and we use the auxiliary notation

. Qi Z 3 @
arj = LZTI" 2 (sub column average) a;; = Sielied 1

1]

o
% (sub row average) and a;; =
(submatrix average).

We define the Residue Score of an element a;; in a submatrix A;; as RSr;(i,j) = a;; —
2

arj — a;; + ary and the Mean Residue Score of the submatrix as H(I,J) = Zie[,jeJﬁ'
A completely uniform matrix will score zero. A submatrix in which all entries are the sum
of a column parameter and a row parameter (a;; = b; + ¢;) would also score zero. On the
other hand a random submatrix (normally distributed with any parameter) would have the
variance of the distribution as its expected score. We define a d bicluster to be a submatrix
(I, J) for which H(I,.J) <. The biclustering algorithm will search for a d-bicluster assuming
that the parameter 6 was chosen appropriately to avoid random signal identification. For
example, we may choose 4 as the minimal (i.e. best) score of the output of a clustering
algorithm.

The optimization problem of identifying the largest d-bicluster (the one for which || =
|J| is the largest) is NP hard as can be seen by a simple reduction from BALANCED
COMPLETE BIPARTITE SUBGRAPH. We are thus interested in heuristics for finding
a large 0 bicluster in reasonable time. We next present such heuristic which is a greedy
algorithm in essence, show how to speed it up and use it as a subroutine for finding many
biclusters.

A naive greedy algorithm for finding a d-bicluster may start with the entire matrix and
at each step try all single rows/columns addition/deletion, applying the best operation if it
improves the score and terminating when no such operation exists or when the bicluster score
is below §. However, simply recalculating all averages and mean residues for each operation
may be too expensive for large matrices. Cheng and Church’s algorithm uses the structure
of the mean residue score to enable faster greedy steps. The idea is based on the following
lemma:

Lemma 6.2 The set of rows that can be completely or partially removed with the net effect
of decreasing the mean residue score of a bicluster A;y is :

R={icl ﬁ S RSp(i.j) > H(IT)}

jes

In words, it is safe to remove any row for which the average contribution to the total score
is greater then its relative share. The same argument is correct for columns and gives rise
to the following greedy algorithm that iteratively remove rows/columns with the maximal
average residue score (Figure 6.8).
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Input: Expression matrix A on genes S, conditions C'
and a parameter 4.

Output: A;; a d-bicluster.

Init: 7 =S5,7=C.

Iteration:

Calculate ar;, a;y and H(I,J). If H(I,J) < ¢ output I, J.
For each row calculate d(i) = ﬁ > jer RS, 5).

For each column calculate e(j) = |—}| Y icr BS1(i, ).
Take the best row or column and remove it from I or .J.

Figure 6.8: Single node deletion algorithm.

Note that since a 1 by 1 submatrix is always a d-bicluster we should hope that the deletion
algorithm will terminate with a large bicluster. It is natural to try and add rows/columns
in an analogous way, using the equivalent lemma and algorithm (Figure 6.9):

Lemma 6.3 The set of rows (columns) that can be completely or partially added with the
net effect of decreasing the score of a bicluster Ary is :

R={i¢ ;=Y RS;;(i,j) <H(I,J)}

jeJ

1
|7l

Input : Expression matrix A, the parameter d and I, J specifying a ¢ bicluster.
Output : AI',.J’ - a §-bicluster with I C I',.J C .J'.

Iteration

Calculate a;j, a;y and H(I,J).

Add the columns with |—}| Y et BRS1 (i, 5) < H(I,J).

Calculate a;j, a;y and H(I,J).

Add the rows with ﬁ > jer RST(i,j) < H(IL, J).

If nothing was added, halt.

Figure 6.9: Node addition algorithm.

The exact details of the heuristic are not necessarily optimal for any situation. For
example, the algorithm presented here is tailored for cases where there are much more rows
than columns.
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The Cheng-Church algorithm suggests two additional improvements to the basic deletion-
addition algorithm. The first improvement suggests a multiple node deletion in cases
where the data set is large. This is done by removing at each deletion iteration all rows/columns
for which d(i) > aH(I,J) for some choice of . The idea is to perform large steps until
the submatrix is relatively small and indeed it is shown that such steps can be done safely
(without increasing the score).

The second algorithmic improvement involves the addition of inverse rows to the matrix,
allowing the identification of biclusters which contains co-regulation and inverse co-regulation
(i.e., cases where two genes always change in opposite directions).

As mentioned in the introduction, the goal of a biclustering algorithm is to identify all
(or many of) the signals in the data set, so clearly, finding one bicluster is not enough. The
Cheng-Church solution to this requirement uses the d-bicluster algorithm as a subroutine
and repeatedly applies it to the matrix. In order to avoid finding the same bicluster over and
over again, the discovered bicluster is masked away from the data, by replacing the values of
its submatrix by random values. The general biclustering scheme is outlined in Figure 6.10.

Input : Expression matrix A, the parameter §, the number of biclusters to report n
Output : n d-biclusters in A.

Iteration

Apply multiple node deletion on A giving I',.J'.

Apply node addition on I', J' giving I",.J".

Store I", J" and replace Ay j» values by random numbers.

Figure 6.10: Cheng-Church biclustering algorithm.

6.3.2 Experiments

We next describe some of the experiments done by Cheng and Church to validate their
approach. Experiments were done using two datasets, one of human lymphoma ([1]) and the
other of yeast data ([16]). Working with the yeast data, the parameter § was chosen to be a
bit more then the minimal score of the reported clusters. A large set of random submatrices
of varying sizes was then scored and compared to the selected threshold. The simulation
showed that small d-biclusters have a considerable chance of being random (15% for 3 by
6 matrices, 0.06% for 10 by 6 matrices), but larger § — biclusters may be far from random
(although random here referees to random submatrices rather than random expression data).

Application of the algorithm to both datasets produced 100 biclusters on each, and
some effort was made to test their relation with global clustering and biological information.
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For example, the hierarchical clustering of the lymphoma tissues was compared with the
biclusters by testing the condition sets of each bicluster and its partition among the two
main branches of the hierarchy.

6.4 Coupled two-way clustering

6.4.1 Motivation.

The results of every gene microarray experiment are organized in an expression level matriz
@/ . A row of this matrix corresponds to a single gene, while each column represents a
particular sample. In a typical experiment simultaneous expression levels of thousands of
genes are measured.

Gene expression is influenced by the cell type, cell phase, external signals, and more. The
expression level matrix is therefore the result of all these processes mixed together. Our goal
is to separate and identify these processes and to extract as much information as possible
about them. The main difficulty is that each biological process on which we wish to focus
may involve a relatively small subset of the genes; the large majority of those present on
the microarray constitute a noisy background that may mask the effect of the small subset.
The same may happen with respect to samples. A straightforward approach to finding
pairs of subsets, (0;,.%;) of gens and samples that lead to “meaningful” clusters, could be
to take all possible submatrices of the original data and apply the standard (uncoupled)
two-way clustering procedure to every one of them. By keeping track of all stable clusters
that are formed in this process, and storing the identity of both genes and samples that
define the particular submatrix, one is guaranteed to find every possible stable partition
in the data. This approach is, of course, impossible to implement, because the number of
such submatrices grows exponentially with the size of the problem. CTWC provides an
efficient heuristic to generate such pairs of object and feature subsets by an iterative process
that severely restricts the possible candidates for such subsets; we consider and test only
those submatrices whose rows (columns) belong to genes (samples) that were identified (in
a previous iteration!) as a stable cluster. [7]

6.4.2 The algorithm.

Coupled two-way clustering defines a generic transformation from a one-dimensional cluster-
ing algorithm into a biclustering algorithm. The algorithm relies on having a one-dimensional
(standard) clustering algorithm that can discover significant (stable) clusters. Given such
an algorithm, the coupled two-way clustering procedure will recursively apply the one-
dimensional algorithm to submatrices, aiming to find subsets of genes giving rise to sig-
nificant clusters of conditions, or subsets of conditions giving rise to significant gene clusters.



Coupled two-way clustering 19

The submatrices defined by such pairing are called stable submatrices and correspond to
biclasters. The algorithm operates on a set of gene subsets )V and a set of condition subsets
U. Initially V = {V} and U = {U}.

The algorithm then iteratively selects a gene subset V' € V and a condition subset
U’ € U and applies the one dimensional clustering algorithm twice, to cluster V' and U’ on
the submatrix U’ x V', If stable clusters are detected, their genes/conditions subsets are
added to the respective sets V, U. The process is repeated until no new stable clusters can
be found. The implementation makes sure that each pair of subsets is not encountered more
than once.

Note that the procedure avoids the consideration of all rows and columns subsets, by
starting from an established row subset when forming subclusters of established column
subsets, and vica versa. The success of the coupled two-way clustering strategy depends
on the performance of the given one-dimensional clustering algorithm. We note that many
popular clustering algorithms (e.g. K-means, Hierarchical, SOM) cannot be plugged into
the coupled two-way machinery, as they do not readily distinguish significant clusters from
non-significant clusters or make a-priori assumption on the number of clusters. It has been
reported by Getz et al. using SPC clustering algorithm is having good results. The results
of the algorithm can be viewed in a hierarchical form: each stable gene (condition) cluster
is generated given a condition (resp. gene) subset. This hierarchical relation is important
when trying to understand the context of joint genes or conditions behavior. For example,
when analyzing clinical data, Getz et al. have focused on gene subsets giving rise to stable
tissue clusters that are correlative to known clinical attributes. Such gene sets may have an
important biological role in the disease under study.

6.4.3 Choosing one-dimentional algorithm for CTWC

e Any reasonable clustering method can be used within the framework of CTWC, but the
optimal algorithm should have the following properties: the number of clusters should
be determined by the algorithm itself and not externally prescribed [ as is done when
using self-organizing maps (SOMs) and K-means | ; stability against noise; generating
a hierarchy (dendrogram) and providing a mechanism to identify in it robust stable
clusters; and ability to identify a dense set of points, which form a cloud of an irregular
nonspherical shape, as a cluster., also it must be limited to nested row & column
subsets, but not limited to nested submatrices

e Cluster stability is measured wrt parent bicluster
e Two biclusters are either disjoint or one is contained in the other.

e No. of (bi)clusters not prespecified
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”Super Paramagnetic Clustering” (SPC)

SPC, a hierarchical clustering method recently introduced by Blatt, is the algorithm that
best fits these requirements. The intuition that led to it is based on an analogy to the physics
of inhomogeneous ferromagnets.

The input for SPC is a distance or similarity matrix d;; between the objects &', calculated
according to the feature set .. A tunable parameter T' (“temperature”) controls the resolu-
tion of the performed clustering. One starts at 7' = 0, with a single cluster that contains all
the objects. As T increases, phase transitions take place, and this cluster breaks into several
subclusters that reflect the structure of the data.

At each T, probability of two objects having the same label is measured and if it is high
enough, they are given the same label.

Clusters keep breaking up as 7' is further increased, until at high enough values of T'
each object forms its own cluster. As opposed to most agglomerative algorithms, SPC has a
natural measure for the relative stability of any particular cluster: the range of temperatures,
AT, over which the cluster remains unchanged. The more stable a cluster is, the larger the
range AT through which it is expected to “survive”. For a stable cluster s, the corresponding
AT constitutes a significant fraction of T,,,., the temperature at which the data break into
single-point clusters. Inspection of the gene dendrograms of Fig. 6.12 reveals stable clusters
and stable branches. The choice of the value AT,, above which a cluster is considered as
stable, in the following way. We permuted at random elements of the expression matrix
under investigation, and applied SPC to the randomized matrix. AT, was selected so that
for 500 different random permutations no clusters that survived for AT > AT, were found.
This gives a bound on the probability that clusters that we labeled as stable were in fact an
artifact of noisy data.
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TWOWAY (U, V, E, ALG):
U : conditions. V : genes.
E : Gene expression matrix.

clusters of columns or rows
Initialize a hash table weight
Initialize Uy = {U}, Vi = {V'}
Initialize d =0,V =10
Initialize the sets hierarchy table Hy storing for gene clusters the
condition subsets used to generate them.
Initialize the sets hierarchy table Hy storing for condition clusters the
gene subsets used to generate them.
While (U; # 0 or Vi # ) do
Initialize empty sets Us, Vs.
For all (U, V') e (U x V1)U (U x V) U (U x V) do
Run ALG(Eyy+) to cluster the genes in V"
Add the stable gene sets to Vo
Set Hy[V"] = U’ for all new clusters V".
Run ALG(Eyy+) to cluster the conditions in U’
Add the stable condition sets to Us
Set Hy[U"] = V' for all new clusters U".
Assign U =UUU, V=V UV
Assign Uy = U, Vi = Vs
Report U,V and their hierarchies Hy, Hy .

ALG : one-dimensional clustering algorithm. Inputs a matrix and outputs significant (stable)

Figure 6.11: Coupled two-way clustering.
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