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6.1 CLICK: Cluster Identi�
ation via Conne
tivity Ker-nels6.1.1 Introdu
tionCLICK (CLuster Identi�
ation via Conne
tivity Kernels) is a new algorithm for 
luster-ing [13℄. The input for CLICK is the gene expression matrix. Ea
h row of this matrix is an\expression �ngerprint" for a single gene. The 
olumns are spe
i�
 
onditions under whi
hgene expression is measured.The CLICK algorithm attempts to �nd a partitioning of the set of elements into 
lusters,so that two 
riterias are satis�ed: Homogeneity - �ngerprints of elements from the same 
lus-ter, 
alled mates, are highly similar to ea
h other; and Separation - �ngerprints of elementsfrom di�erent 
lusters, 
alled non-mates, have low similarity to ea
h other.The goal is to identify highly homogeneous sets of elements - 
onne
tivity kernels (sub-sets of very similar elements) and add elements to kernels via similarity to average kernel�ngerprints.Uses tools from Graph Theory and probabilisti
 
onsiderations.6.1.2 Probabilisti
 ModelMates - genes that belong to the same true 
luster.The CLICK algorithm makes the following assumptions:1. Similarity values between mates are normally distributed with parameters �T ; �T .2. Similarity values between non-mates are normally distributed with parameters �F ; �F .1Based on s
ribes by Giora Sternberg, and Ron Gabor, May 2, 2002, and by Irit Gat and Amos Tanay,May 30, 2002
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Tel Aviv Univ.Basi
-CLICK(G(V;E))if (V (G) = fvg) thenmove v to the singleton set Relseif (G is a kernel) thenOutput V (G)else(H, �H, 
ut)  MinWeightCut(G)Basi
-CLICK(H)Basi
-CLICK( �H)end ifendFigure 6.1: The Basi
-CLICK algorithm3. We expe
t that �T > �F , and �T , �F are small enough so we 
an separate the 
lusters.These assumptions are justi�ed empiri
ally by simulations, and in some 
ases theoreti-
ally (by the Central Limit Theorem).Parameters for the algorithm 
an be learned in two ways: from partially known solutionsor estimated using EM algorithm.6.1.3 The Basi
 CLICK AlgorithmThe CLICK algorithm represents the input data as a weighted similarity graph G = (V;E).In this graph verti
es 
orrespond to elements and edge weights are derived from the similarityvalues. The weight wij of an edge (i; j) re
e
ts the probability that i and j are mates, andis set to be: wij = ln p fM(Sij)(1� p) fN(Sij)where fM(Sij) / fN(Sij) is the value of the probability density fun
tion for mates/non-matesat Sij: fM(Sij) = 1p2��T e� (Sij��T )22�2Tand fN(Sij) = 1p2��F e� (Sij��F )22�2F



CLICK: Cluster Identi�
ation via Conne
tivity Kernels 3

Figure 6.2: Basi
 s
heme of the CLICK algorithm. Split subsets of G, that 
ontain elementsfrom two kernels.The basi
 CLICK algorithm is des
ribed in Figure 6.1 and exempli�ed in Figure 6.2.The idea behind the algorithm is the following: given a 
onne
ted graph G, we would liketo de
ide whether V (G) is a subset of some true 
luster, or V (G) 
ontains elements from atleast two true 
lusters. In the �rst 
ase we say that G is pure. In order to make this de
ision,we test the following two hypotheses for ea
h 
ut C in G:� HC0 : C 
ontains only edges between non-mates.� HC1 : C 
ontains only edges between mates.G is de
lared a kernel if H1 is more probable for all 
uts. The de
ision of whether G is akernel relies on the following theorem:Theorem 6.1 G is a kernel i� the weight of MinCut(G) > 0.Proof: At �rst, we will make two assumptions:� Si;j-s are independent� mate relations are also independent



4 Analysis of Gene Expression Data 

Tel Aviv Univ.Then, using Bayes' Theorem, it 
an be shown that for any 
ut C in Gln Pr(H1jC)Pr(H0jC) = ln Pr(H1)f(CjH1)Pr(H0)f(CjH0)= ln pjCjQi;j2C fM(Sij)(1� p)jCjQi;j2C fN(Si;j)= Xi;j2C ln pfM(Si;j)(1� p)fN(Si;j) = Xi;j2CWij = W (C)Obviously, W (C) > 0 i� Pr(HC1 jC) > Pr(HC0 jC). If the minimum 
ut is positive, thenobviously so are all the 
uts. Conversely, if the minimum 
ut is non-positive, then for that
ut Pr(HC1 jC) � Pr(HC0 jC), therefore G is not a kernel.Removing Negative Weight Edges The MIN-CUT problem for a weighted graph withboth positive and negative edges is NP-Complete2. In order to use the eÆ
ient MIN-CUT algorithms we must remove the negative edges. By modifying the algorithmslightly, we 
an still use the new graph to �nd kernels in the original graph.Re�nementsThe Basi
-CLICK algorithm divides the graph into kernels and singletons. These kernelsare expanded to the full 
lustering, using several re�nements:Adoption Step In pra
ti
e, \true" 
lusters are usually larger than just the kernel. Toa

ommodate this, in the re�ned algorithm, kernels \adopt" singletons to 
reate larger
lusters. This is done by sear
hing for a singleton v and a kernel K, whose pairwise�ngerprint similarity is maximum among all pairs of singletons and kernels. The re�nedalgorithm iteratively applies the adoption step and then the Basi
-CLICK algorithmon the remaining singletons, stopping when there are no more 
hanges.Merge Step In this step we merge 
lusters whose �ngerprints are similar (the justi�
ationfor this is that, in pra
ti
e, 
lusters 
an 
ontain multiple kernels). The merging is doneiteratively, ea
h time merging two 
lusters whose �ngerprint similarity is the highest(provided that the similarity ex
eeds a prede�ned threshold).2MIN-CUT 
an be proved to be NP-Complete by redu
tion from MAX-CUT [5, page 210℄.
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tivity Kernels 5Quality AssessmentWhen the "
orre
t" solution for the 
lustering problem is known, we 
an evaluate the algo-rithm's performan
e using 
omparison 
riteria as we have done with BioClust. The 
riteriaused here are the Ja

ard 
oeÆ
ient (as de�ned in the previous se
tions) and the Minkowski
oeÆ
ient. The latter is de�ned by qn01+n10n11+n10 . Note that unlike the Ja

ard and Mat
hing
oeÆ
ients, the Minkowski 
oeÆ
ient improves as it de
reases, with optimal value at 0.Unfortunately, in most 
ases the "
orre
t" solution for the 
lustering problems is un-known. In these 
ases we evaluate the quality of the solution by 
omputing two �gures ofmerit to measure the homogeneity and separation of the produ
ed 
lusters. For �ngerprintdata, homogeneity is evaluated by the average and minimum 
orrelation 
oeÆ
ient betweenthe �ngerprint of an element and the �ngerprint of its 
orresponding 
luster. Separation isevaluated by the weighted average and the maximum 
orrelation 
oeÆ
ient between 
luster�ngerprints. Formally:De�nition Homogeneity and Separation measures are de�ned as follows:We de�ne the �ngerprint of a set of elements to be the mean ve
tor of the �ngerprints of themembers of the set. Let X1; :::; Xt be 
lusters, C(u) be the 
luster of vertex u, F (X) andF (u) be the �ngerprints of a 
luster X and of element u respe
tively, and let S(x; y) denotethe similarity between �ngerprints x and y, then:Average Homogeneity HAve = 1jN jXu2N S(F (u); F (C(u)))Minimum Homogeneity HMin = minu2N S(F (u); F (C(u)))Average Separation SAve = 1Pi 6=j jXijjXjjXi 6=j jXijjXjjS(F (Xi); F (Xj))Maximum Separation SMax = maxi 6=j S(F (Xi); F (Xj))Logi
ally, a 
lustering improves when HAve and HMin in
rease, and when SAve and SMaxde
rease.Another method of quality assessment is setting a 
ertain similarity threshold and mea-suring the fra
tion of mates and non-mates above that threshold. Good 
lustering is expe
tedto yield higher values of similarity between mates (indi
ating homogeneity) and lower valuesbetween non-mates (indi
ating separation).
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Tel Aviv Univ.Program (algorithm) # Clusters Homogeneity SeparationHAve HMin SAve SMaxCLICK 30 0.8 -0.19 -0.07 0.65GENECLUSTER 30 0.74 -0.88 -0.02 0.97Table 6.1: A 
omparison between CLICK and GENECLUSTER [15℄ on the yeast 
ell-
y
ledataset [3℄. Expression levels of 6,218 S. 
erevisiae genes, measured at 17 time points overtwo 
ell 
y
les.6.1.4 Algorithm Performan
e ComparisonsThis se
tion 
ontains examples of 
omparisons between CLICK and other 
lustering algo-rithms, in various problems, in
luding expression data, oligo-�ngerprinting data and proteinsimilarity data (Tables 6.1, 6.2, 6.3, 6.4, 6.5 and Figures 6.3, 6.4, 6.5). Analysis of the re-sults (see Table 6.6) shows that CLICK outperforms all the 
ompared algorithms in termsof quality. In addition, CLICK is very fast, allowing 
lustering of thousands of elements inminutes, and over 100,000 elements in a 
ouple of hours on a regular workstation. Figure6.6 shows the result of a 
omparison in whi
h the authors of ea
h 
lustering algorithm wereallowed to run the test on their own. The graph shows a tradeo� between the homogeneityand separation s
ores; The further the algorithm is from the origin the \better" its overallperforman
e.In addition, CLICK was tested in simulations whi
h in
luded varying 
luster stru
turesand di�erent distribution parameters. Similarity values for mates and non-mates were dis-tributed normally: for ea
h 
luster stru
ture, standard deviation � was set at 5 for bothmates and non-mates, while the di�eren
e between the means of mates �T and non-mates�F was set at t� � for t = 2; 1; 0:8; 0:6. Results are shown in Table 6.7, evaluated using theJa

ard 
oeÆ
ient. As expe
ted, the larger the distan
e between the means of mates andnon-mates, the better the performan
e of the algorithm. It also seems that better resultsare obtained when 
luster sizes are larger.
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Figure 6.3: Sour
e: [13℄. CLICK's 
lustering of the yeast 
ell-
y
le data [3℄. x-axis: timepoints 0-80, 100-160 at 10-minute intervals. y-axis: normalized expression levels. The solidline in ea
h sub-�gure plots the average pattern for that 
luster. Error bars display themeasured standard deviation. The 
luster size is printed above ea
h plot.

Figure 6.4: Yeast Cell Cy
le: late G1 Cluster (
luster 3 from Figure 6.3). The 
luster foundby CLICK 
ontains 91% of the late G1-peaking genes. In 
ontrast, in GeneCluster 87% are
ontained in 3 
lusters.
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Tel Aviv Univ.
Program #Clusters #Singletons Minkowski Ja

ard Time(min)CLICK 31 46 0.57 0.7 0.8HCS 16 206 0.71 0.55 43Table 6.2: A 
omparison between CLICK and HCS on the blood mono
ytes 
DNAdataset [9℄. 2,329 
DNAs puri�ed from peripheral blood mono
ytes, �ngerprinted with 139oligos. Corre
t 
lustering is known from ba
k hybridization with long oligos.
Program #Clusters #Singletons Minkowski Ja

ard Time(min)CLICK 2,952 1,295 0.59 0.69 32.5K-Means 3,486 2,473 0.79 0.4 {Table 6.3: A 
omparison between CLICK and K-Means [10℄ on the sea ur
hin 
DNA dataset.20; 275 
DNAs puri�ed from sea ur
hin eggs, and �ngerprinted with 217 oligos. Corre
t
lustering of 1,811 
DNAs is known from ba
k hybridizations.

Program #Clusters Homogeneity SeparationHAve HMin SAve SMaxCLICK 10 0.88 0.13 -0.34 0.65Hierar
hi
al 10 0.87 -0.75 -0.13 0.9Table 6.4: A 
omparison between CLICK and Hierar
hi
al [4℄ 
lustering on the dataset ofresponse of human �broblasts to serum [11℄. Human �broblast 
ells starved for 48 hours,then stimulated by serum. Expression levels of 8,613 genes measured at 13 time points.
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Figure 6.5: Sour
e: [13℄. CLICK's 
lustering of the �broblasts serum response data [11℄.x-axis: 1-12: syn
hronized time-points. 13: unsyn
hronized point. y-axis: normalizedexpression levels. The solid line in ea
h sub-�gure plots the average pattern for that 
luster.Error bars display the measured standard deviation. The 
luster size is printed above ea
hplot.
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Tel Aviv Univ.Program #Clusters #Singletons Homogeneity Separation Time(min)CLICK 9,429 17,119 0.24 0.03 126.3SYSTERS 10,891 28,300 0.14 0.03 {Table 6.5: A 
omparison between CLICK and SYSTERS on a dataset of 117,835 pro-teins [12℄. Measures based on similarity when no 
orre
t solution is known: For a �xedthreshold t, homogeneity is the fra
tion of mates with similarity above t, and separation isthe fra
tion of non-mates with similarity above t.Elements Problem Compared to Improvement Time(min)517 Gene Expression Fibroblasts Cluster [4℄ Yes 0.5826 Gene Expression Yeast 
ell 
y
le GeneCluster [15℄ Yes 0.22,329 
DNA OFP Blood Mono
ytes HCS [9℄ Yes 0.820,275 
DNA OFP Sea ur
hin eggs K-Means [10℄ Yes 32.572,623 Protein similarity ProtoMap [17℄ Minor 53117,835 Protein similarity SYSTERS [12℄ Yes 126.3Table 6.6: A Summary of the time performan
e of CLICK on the above mentioned datasets.CLICK was exe
uted on an SGI ORIGIN200 ma
hine utilizing one IP27 pro
essor. Thetime does not in
lude prepro
essing time. The \Improvement" 
olumn des
ribes whetherthe solution of the CLICK algorithm was better than the 
ompared algorithm.Ataxia Telangie
tasiaThe following experiment shows how 
lustering methods 
an aid our understanding of bio-logi
al pro
esses. Its aim was to study the expression patterns of a geneti
 disease, AtaxiaTelangie
tasia (A-T).A-T is a rare autosomal re
essive disorder, 
hara
terized by 
erebellar and thymi
 de-generation and predisposition to 
an
er. The gene found to be responsible for A-T is ATM- an important mediator of 
ell responses to DNA damage, in parti
ular those that 
ontrolStru
ture 2 1 0:8 0:66� 60 1 1 0:98 0:8510� 30 1 0:96 0:71 0:110; :::; 80 1 1 0:97 0:83Table 6.7: CLICK simulation results (mean Ja

ard s
ore over 20 runs). The test in
ludedvarious 
luster stru
tures (rows) and distan
es between �T and �F (in ea
h 
olumn, thedistan
e appearing in the title was used as a fa
tor of the standard deviation �. The �rst
olumn denotes a distan
e of 2�, et
.).
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Figure 6.6: Comparison of 
lustering algorithms using homogeneity and separation 
riteria.The data 
onsisted of 698 genes, 72 
onditions [14℄. Ea
h algorithm was run by its authorsin a \blind" test.
progression through the 
ell 
y
le. The study of A-T is fa
ilitated by the existen
e of amouse homologue of ATM.In this experiment, DNA damage was indu
ed both in normal mi
e and in ATM-de�
ientmi
e via irradiation. Tissues were then obtained in 3 time-points - 0, 30 and 120 minutes afterirradiation - in order to 
he
k for di�eren
es in the 
ellular response. 
DNA's from thymus,
erebellum and brain were hybridized to mi
roarrays representing 8; 000 trans
ripts. Ea
hgene was sampled at 18 
ombinations of tissue, genotype and time-point. The resulting datawas then pro
essed by the CLICK algorithm.The results are shown in Figure 6.7. Interestingly, some of the 
lusters showed di�eren
esbetween the normal and ATM-de�
ient samples. These di�eren
es in
luded 
onstitutiveexpression of genes in ATM-de�
ient mi
e: whereas in normal mi
e a rise in the expressionlevel of these genes was noted in the time-points after 0, in ATM-de�
ient mi
e the levelwas high already at 0 time, and did not 
hange signi�
antly afterwards. These results maysuggest that these genes are involved in the response to the indu
ed DNA damage, whi
h ishampered in ATM-de�
ient mi
e.
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Figure 6.7: Clusters generated by the CLICK algorithm for the A-T experiment. y-axis:normalized expression levels. x-axis: 1-3: normal mi
e at times 0, 30, 120 (minutes); 4-6: ATM-de�
ient mi
e at times 0, 30, 120. Note that in 
luster #1 we see 
onstitutiveexpression of the genes in ATM-de�
ient mi
e at all three time-points, whereas in normalmi
e expression rises to about that level only after irradiation.



Introdu
tion to Bi
lustering 136.1.5 Clustering - Future Resear
hClustering pops up in many questions and problems in various �elds of interest, not only gene
lustering. In many pra
ti
al situations, the 
omplexity of the 
lustering is the dominantpart of the 
omplexity of the whole solution. In many 
ases, though, 
lustering heuristi
smay not perform well and produ
e poor 
lustering results.Therefore there is still room for improvement, both in theoreti
al 
lustering algorithms(and proofs), and in pra
ti
al algorithms and heuristi
s. Some of the possible avenues forprogress are indi
ated below.Theoreti
al Clustering� Redu
ing the restri
tions on 
luster sizes.� Novel approa
hes and better algorithms, improving on both quality of results andtime-
omplexity.Pra
ti
al Clustering� Determining whi
h algorithms and heuristi
s are best suited for parti
ular 
lusteringjobs.� Improving on the optimization 
riteria.� Better 
ontrol over the tradeo� of a

ura
y versus speed, for instan
e using plausibleassumptions about the 
lustered entities in ea
h spe
i�
 implementation.� Devising new 
lustering/viewing tools, whi
h would allow intera
tive setting of param-eters and modifying algorithm behavior, while viewing the results.6.2 Introdu
tion to Bi
lusteringAs we have seen in previous le
tures, a very 
entral method in the analysis of gene expres-sion data is 
lustering. Clustering algorithms are used to transform a very large matrix ofexpression values to a more informative 
olle
tion of gene or 
ondition sets. The members ofea
h 
luster are assumed to share fun
tion or form some biologi
al module. Clustering is aglobal te
hnique and as su
h has several limitations. First, 
lustering partitions the elementsinto groups, so ea
h element may appear in at most one group. Se
ond, when 
lustering geneexpression data, we group the genes a

ording to their behavior over all experiments (simi-larly for 
onditions). This may be problemati
 when working with large databases that mayin
lude many di�erent 
onditions, only few of whi
h trigger some 
ommon gene behavior.
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Tel Aviv Univ.Suppose we are studying yeast 
ell biology. We may try to use gene expression datain order to identify fun
tional modules, i.e., large sets of genes sharing some important
ellular fun
tion or pro
ess. Clustering the genes may give good results as long as we aretargeting a very 
on
rete subsystem. Indeed several works ([14, 6℄) used 
lustering to vastlyexpand our knowledge on 
ell 
y
le or stress response. However, many genes, even in ourparti
ular example, are important to both stress response and 
ell 
y
le as the two systemsare intimately related, so 
lustering the joint data set would have to 
reate some arbitrarypartition of the two systems, loosing information on their 
ommon parts.A se
ond example for the limitations of 
lustering 
omes from 
lini
al studies of 
an
er.We may 
luster tissues of many patients su�ering from several type of 
an
er in order totry and identify 
lini
ally important sub
lasses. We may also try to 
ompare our 
lasseswith some additional information on the patients (age, sex, type of 
an
er, smoking years,prognosis). When using global 
lustering of the tissues we 
an only �nd one (hopefully themost signi�
ant) signal in the data, for example we may separate the di�erent 
an
er types.Other signals, whi
h may be important, will be missed sin
e we are asso
iating tissues witha single e�e
t.To try and address these short
omings, the 
on
ept of bi
lustering was introdu
edto gene expression analysis. Bi
lustering was �rst de�ned in the seventies [8℄ and wasapplied to several domains before Cheng and Chur
h [2℄ 
oined its usage in 
omputationalbiology. Given a gene expression matrix, we sear
h for submatri
es that are tightly 
o-regulated a

ording to some s
oring 
riterion. We do not require the identi�ed submatri
esto be disjoint or to 
over the entire matrix, instead we wish to build a diverse 
olle
tion ofsubmatri
es that will 
apture all the signi�
ant signals in our data.Before going into details, we state again the basi
 reasoning of using bi
lustring andthe key di�eren
es between bi
lustering and standard 
lustering. Bi
lustering is a lo
alte
hnique by nature, i.e., we try to �nd lo
al, signi�
ant signals in the data. Clustering, onthe other hand, tries to model the whole dataset by redu
ing it to a 
olle
tion of subsets.A su

essful 
olle
tion of bi
lusters will provide a more detailed model of the data and 
anun
over more biologi
al impli
ations of it. However, bi
lustering results will be harder tointerpret.6.3 Cheng and Chur
h's AlgorithmThe �rst appli
ation of bi
lustering to gene expression data was the work of Cheng andChur
h (2000). Stating its goal as the ability to �nd signals more deli
ate than 
lusters,the methodology is based on a simple uniformity goal (the Mean Residue S
ore, de�nedbelow) and uses a greedy algorithm to �nd one bi
luster, 
ombined iteratively to produ
e a
olle
tion of bi
lusters.



Cheng and Chur
h's Algorithm 156.3.1 The AlgorithmWe denote the input matrix of expression data as A = (aij) and the rows (
olumns) set byR (C). A submatrix is denoted by AIJ(I � R; J � C) and we use the auxiliary notationaIj = Pi2I aijjIj (sub 
olumn average) aiJ = Pj2J aijjJj (sub row average) and aIJ = Pi2I;j2J aijjIjjJj(submatrix average).We de�ne the Residue S
ore of an element aij in a submatrix AIJ as RSIJ(i; j) = aij �aIj � aiJ + aIJ and the Mean Residue S
ore of the submatrix as H(I; J) = Pi2I;j2J RS2ijjIjjJj.A 
ompletely uniform matrix will s
ore zero. A submatrix in whi
h all entries are the sumof a 
olumn parameter and a row parameter (aij = bi + 
j) would also s
ore zero. On theother hand a random submatrix (normally distributed with any parameter) would have thevarian
e of the distribution as its expe
ted s
ore. We de�ne a Æ bi
luster to be a submatrix(I; J) for whi
hH(I; J) � Æ. The bi
lustering algorithmwill sear
h for a Æ-bi
luster assumingthat the parameter Æ was 
hosen appropriately to avoid random signal identi�
ation. Forexample, we may 
hoose Æ as the minimal (i.e. best) s
ore of the output of a 
lusteringalgorithm.The optimization problem of identifying the largest Æ-bi
luster (the one for whi
h jIj =jJ j is the largest) is NP hard as 
an be seen by a simple redu
tion from BALANCEDCOMPLETE BIPARTITE SUBGRAPH. We are thus interested in heuristi
s for �ndinga large Æ bi
luster in reasonable time. We next present su
h heuristi
 whi
h is a greedyalgorithm in essen
e, show how to speed it up and use it as a subroutine for �nding manybi
lusters.A naive greedy algorithm for �nding a Æ-bi
luster may start with the entire matrix andat ea
h step try all single rows/
olumns addition/deletion, applying the best operation if itimproves the s
ore and terminating when no su
h operation exists or when the bi
luster s
oreis below Æ. However, simply re
al
ulating all averages and mean residues for ea
h operationmay be too expensive for large matri
es. Cheng and Chur
h's algorithm uses the stru
tureof the mean residue s
ore to enable faster greedy steps. The idea is based on the followinglemma:Lemma 6.2 The set of rows that 
an be 
ompletely or partially removed with the net e�e
tof de
reasing the mean residue s
ore of a bi
luster AIJ is :R = fi 2 I; 1jJ jXj2J RSI;J(i; j) > H(I; J)gIn words, it is safe to remove any row for whi
h the average 
ontribution to the total s
oreis greater then its relative share. The same argument is 
orre
t for 
olumns and gives riseto the following greedy algorithm that iteratively remove rows/
olumns with the maximalaverage residue s
ore (Figure 6.8).
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Tel Aviv Univ.Input: Expression matrix A on genes S, 
onditions Cand a parameter Æ.Output: AIJ a Æ-bi
luster.Init: I = S,J = C.Iteration:Cal
ulate aIj; aiJ and H(I; J). If H(I; J) � Æ output I; J .For ea
h row 
al
ulate d(i) = 1jJjPj2J RSI;J(i; j).For ea
h 
olumn 
al
ulate e(j) = 1jIjPi2I RSI;J(i; j).Take the best row or 
olumn and remove it from I or J .Figure 6.8: Single node deletion algorithm.Note that sin
e a 1 by 1 submatrix is always a Æ-bi
luster we should hope that the deletionalgorithm will terminate with a large bi
luster. It is natural to try and add rows/
olumnsin an analogous way, using the equivalent lemma and algorithm (Figure 6.9):Lemma 6.3 The set of rows (
olumns) that 
an be 
ompletely or partially added with thenet e�e
t of de
reasing the s
ore of a bi
luster AIJ is :R = fi =2 I; 1jJ jXj2J RSI;J(i; j) � H(I; J)gInput : Expression matrix A, the parameter Æ and I; J spe
ifying a Æ bi
luster.Output : AI 0; J 0 - a Æ-bi
luster with I � I 0; J � J 0.IterationCal
ulate aIj; aiJ and H(I; J).Add the 
olumns with 1jIjPi2I RSI;J(i; j) � H(I; J).Cal
ulate aIj; aiJ and H(I; J).Add the rows with 1jJjPj2J RSI;J(i; j) � H(I; J).If nothing was added, halt.Figure 6.9: Node addition algorithm.The exa
t details of the heuristi
 are not ne
essarily optimal for any situation. Forexample, the algorithm presented here is tailored for 
ases where there are mu
h more rowsthan 
olumns.



Cheng and Chur
h's Algorithm 17The Cheng-Chur
h algorithm suggests two additional improvements to the basi
 deletion-addition algorithm. The �rst improvement suggests a multiple node deletion in 
aseswhere the data set is large. This is done by removing at ea
h deletion iteration all rows/
olumnsfor whi
h d(i) > �H(I; J) for some 
hoi
e of �. The idea is to perform large steps untilthe submatrix is relatively small and indeed it is shown that su
h steps 
an be done safely(without in
reasing the s
ore).The se
ond algorithmi
 improvement involves the addition of inverse rows to the matrix,allowing the identi�
ation of bi
lusters whi
h 
ontains 
o-regulation and inverse 
o-regulation(i.e., 
ases where two genes always 
hange in opposite dire
tions).As mentioned in the introdu
tion, the goal of a bi
lustering algorithm is to identify all(or many of) the signals in the data set, so 
learly, �nding one bi
luster is not enough. TheCheng-Chur
h solution to this requirement uses the Æ-bi
luster algorithm as a subroutineand repeatedly applies it to the matrix. In order to avoid �nding the same bi
luster over andover again, the dis
overed bi
luster is masked away from the data, by repla
ing the values ofits submatrix by random values. The general bi
lustering s
heme is outlined in Figure 6.10.Input : Expression matrix A, the parameter Æ, the number of bi
lusters to report nOutput : n Æ-bi
lusters in A.IterationApply multiple node deletion on A giving I 0; J 0.Apply node addition on I 0; J 0 giving I 00; J 00.Store I 00; J 00 and repla
e AI00;J 00 values by random numbers.Figure 6.10: Cheng-Chur
h bi
lustering algorithm.6.3.2 ExperimentsWe next des
ribe some of the experiments done by Cheng and Chur
h to validate theirapproa
h. Experiments were done using two datasets, one of human lymphoma ([1℄) and theother of yeast data ([16℄). Working with the yeast data, the parameter Æ was 
hosen to be abit more then the minimal s
ore of the reported 
lusters. A large set of random submatri
esof varying sizes was then s
ored and 
ompared to the sele
ted threshold. The simulationshowed that small Æ-bi
lusters have a 
onsiderable 
han
e of being random (15% for 3 by6 matri
es, 0.06% for 10 by 6 matri
es), but larger Æ � bi
lusters may be far from random(although random here referees to random submatri
es rather than random expression data).Appli
ation of the algorithm to both datasets produ
ed 100 bi
lusters on ea
h, andsome e�ort was made to test their relation with global 
lustering and biologi
al information.
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Tel Aviv Univ.For example, the hierar
hi
al 
lustering of the lymphoma tissues was 
ompared with thebi
lusters by testing the 
ondition sets of ea
h bi
luster and its partition among the twomain bran
hes of the hierar
hy.6.4 Coupled two-way 
lustering6.4.1 Motivation.The results of every gene mi
roarray experiment are organized in an expression level matrixA . A row of this matrix 
orresponds to a single gene, while ea
h 
olumn represents aparti
ular sample. In a typi
al experiment simultaneous expression levels of thousands ofgenes are measured.Gene expression is in
uen
ed by the 
ell type, 
ell phase, external signals, and more. Theexpression level matrix is therefore the result of all these pro
esses mixed together. Our goalis to separate and identify these pro
esses and to extra
t as mu
h information as possibleabout them. The main diÆ
ulty is that ea
h biologi
al pro
ess on whi
h we wish to fo
usmay involve a relatively small subset of the genes; the large majority of those present onthe mi
roarray 
onstitute a noisy ba
kground that may mask the e�e
t of the small subset.The same may happen with respe
t to samples. A straightforward approa
h to �ndingpairs of subsets, (Oj;Fi) of gens and samples that lead to \meaningful" 
lusters, 
ould beto take all possible submatri
es of the original data and apply the standard (un
oupled)two-way 
lustering pro
edure to every one of them. By keeping tra
k of all stable 
lustersthat are formed in this pro
ess, and storing the identity of both genes and samples thatde�ne the parti
ular submatrix, one is guaranteed to �nd every possible stable partitionin the data. This approa
h is, of 
ourse, impossible to implement, be
ause the number ofsu
h submatri
es grows exponentially with the size of the problem. CTWC provides aneÆ
ient heuristi
 to generate su
h pairs of obje
t and feature subsets by an iterative pro
essthat severely restri
ts the possible 
andidates for su
h subsets; we 
onsider and test onlythose submatri
es whose rows (
olumns) belong to genes (samples) that were identi�ed (ina previous iteration!) as a stable 
luster. [7℄6.4.2 The algorithm.Coupled two-way 
lustering de�nes a generi
 transformation from a one-dimensional 
luster-ing algorithm into a bi
lustering algorithm. The algorithm relies on having a one-dimensional(standard) 
lustering algorithm that 
an dis
over signi�
ant (stable) 
lusters. Given su
han algorithm, the 
oupled two-way 
lustering pro
edure will re
ursively apply the one-dimensional algorithm to submatri
es, aiming to �nd subsets of genes giving rise to sig-ni�
ant 
lusters of 
onditions, or subsets of 
onditions giving rise to signi�
ant gene 
lusters.



Coupled two-way 
lustering 19The submatri
es de�ned by su
h pairing are 
alled stable submatri
es and 
orrespond tobi
lasters. The algorithm operates on a set of gene subsets V and a set of 
ondition subsetsU . Initially V = fV g and U = fUg.The algorithm then iteratively sele
ts a gene subset V 0 2 V and a 
ondition subsetU 0 2 U and applies the one dimensional 
lustering algorithm twi
e, to 
luster V 0 and U 0 onthe submatrix U 0 � V 0. If stable 
lusters are dete
ted, their genes/
onditions subsets areadded to the respe
tive sets V, U . The pro
ess is repeated until no new stable 
lusters 
anbe found. The implementation makes sure that ea
h pair of subsets is not en
ountered morethan on
e.Note that the pro
edure avoids the 
onsideration of all rows and 
olumns subsets, bystarting from an established row subset when forming sub
lusters of established 
olumnsubsets, and vi
a versa. The su

ess of the 
oupled two-way 
lustering strategy dependson the performan
e of the given one-dimensional 
lustering algorithm. We note that manypopular 
lustering algorithms (e.g. K-means, Hierar
hi
al, SOM) 
annot be plugged intothe 
oupled two-way ma
hinery, as they do not readily distinguish signi�
ant 
lusters fromnon-signi�
ant 
lusters or make a-priori assumption on the number of 
lusters. It has beenreported by Getz et al. using SPC 
lustering algorithm is having good results. The resultsof the algorithm 
an be viewed in a hierar
hi
al form: ea
h stable gene (
ondition) 
lusteris generated given a 
ondition (resp. gene) subset. This hierar
hi
al relation is importantwhen trying to understand the 
ontext of joint genes or 
onditions behavior. For example,when analyzing 
lini
al data, Getz et al. have fo
used on gene subsets giving rise to stabletissue 
lusters that are 
orrelative to known 
lini
al attributes. Su
h gene sets may have animportant biologi
al role in the disease under study.6.4.3 Choosing one-dimentional algorithm for CTWC� Any reasonable 
lustering method 
an be used within the framework of CTWC, but theoptimal algorithm should have the following properties: the number of 
lusters shouldbe determined by the algorithm itself and not externally pres
ribed [ as is done whenusing self-organizing maps (SOMs) and K-means ℄ ; stability against noise; generatinga hierar
hy (dendrogram) and providing a me
hanism to identify in it robust stable
lusters; and ability to identify a dense set of points, whi
h form a 
loud of an irregularnonspheri
al shape, as a 
luster., also it must be limited to nested row & 
olumnsubsets, but not limited to nested submatri
es� Cluster stability is measured wrt parent bi
luster� Two bi
lusters are either disjoint or one is 
ontained in the other.� No. of (bi)
lusters not prespe
i�ed
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Tel Aviv Univ."Super Paramagneti
 Clustering" (SPC)SPC, a hierar
hi
al 
lustering method re
ently introdu
ed by Blatt, is the algorithm thatbest �ts these requirements. The intuition that led to it is based on an analogy to the physi
sof inhomogeneous ferromagnets.The input for SPC is a distan
e or similarity matrix dij between the obje
ts O, 
al
ulateda

ording to the feature set F . A tunable parameter T (\temperature") 
ontrols the resolu-tion of the performed 
lustering. One starts at T = 0, with a single 
luster that 
ontains allthe obje
ts. As T in
reases, phase transitions take pla
e, and this 
luster breaks into severalsub
lusters that re
e
t the stru
ture of the data.At ea
h T , probability of two obje
ts having the same label is measured and if it is highenough, they are given the same label.Clusters keep breaking up as T is further in
reased, until at high enough values of Tea
h obje
t forms its own 
luster. As opposed to most agglomerative algorithms, SPC has anatural measure for the relative stability of any parti
ular 
luster: the range of temperatures,�T , over whi
h the 
luster remains un
hanged. The more stable a 
luster is, the larger therange �T through whi
h it is expe
ted to \survive". For a stable 
luster s, the 
orresponding�Ts 
onstitutes a signi�
ant fra
tion of Tmax, the temperature at whi
h the data break intosingle-point 
lusters. Inspe
tion of the gene dendrograms of Fig. 6.12 reveals stable 
lustersand stable bran
hes. The 
hoi
e of the value �T
, above whi
h a 
luster is 
onsidered asstable, in the following way. We permuted at random elements of the expression matrixunder investigation, and applied SPC to the randomized matrix. �T
 was sele
ted so thatfor 500 di�erent random permutations no 
lusters that survived for �T > �T
 were found.This gives a bound on the probability that 
lusters that we labeled as stable were in fa
t anartifa
t of noisy data.
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lustering 21
TWOWAY(U , V , E, ALG):U : 
onditions. V : genes.E : Gene expression matrix.ALG : one-dimensional 
lustering algorithm. Inputs a matrix and outputs signi�
ant (stable)
lusters of 
olumns or rowsInitialize a hash table weightInitialize U1 = fUg, V1 = fV gInitialize U = ;, V = ;Initialize the sets hierar
hy table HV storing for gene 
lusters the
ondition subsets used to generate them.Initialize the sets hierar
hy table HU storing for 
ondition 
lusters thegene subsets used to generate them.While (U1 6= ; or V1 6= ;) doInitialize empty sets U2;V2.For all (U 0; V 0) 2 (U1 � V1) [ (U1 � V) [ (U � V1) doRun ALG(EU 0V 0) to 
luster the genes in V 0:Add the stable gene sets to V2Set HV [V 00℄ = U 0 for all new 
lusters V 00.Run ALG(EU 0V 0) to 
luster the 
onditions in U 0:Add the stable 
ondition sets to U2Set HU [U 00℄ = V 0 for all new 
lusters U 00.Assign U = U [ U1, V = V [ V1Assign U1 = U2, V1 = V2Report U ;V and their hierar
hies HU ;HV .Figure 6.11: Coupled two-way 
lustering.
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