Analysis of Gene Expression Data Spring Semester, 2004

Lecture 5: April 15, 2004
Lecturer: Ron Shamir Scribe: Michal Ozery-Flato and Israel Steinfeld!

5.1 Introduction

5.1.1 Functional Genomics

Having reached the end of the Human Genome Project, the question that needs to be asked
is: “What‘s next?”. The complete sequencing of the Human Genome is an immense task,
which is now nearing completion. While much work remains to be done even there, there
are a number of areas this knowledge opens up to research, which have thus far been nearly
impossible to pursue. Among those is “functional genomics” - the search for understanding
the functionality of specific genes, their relations to diseases, their associated proteins and
their participation in biological processes. Most of the knowledge gained so far in this area is
the result of painstaking research of specific genes and proteins, based on complex biological
experiments and homologies to known genes in other species. This “Reductionist” approach
to functional genomics is hypothesis driven (i.e., it can be used to check an existing hypoth-
esis, but not to suggest a new one). The advancements in both biological and computational
techniques are now beginning to make possible a new approach: the “Holistic” research
paradigm. This approach is based on high-throughput methods: global gene expression pro-
filing (“transcriptome analysis”) and wide-scale protein profiling (“proteome analysis”). In
the holistic approach, a researcher simultaneously measures a very large number of gene ex-
pression levels throughout a biological process, thereby obtaining insight into the functions
and correlations between genes on a global level. Unlike the reductionist approach, these
methods can generate hypotheses themselves.

5.1.2 Representation of gene expression data

Gene expression data can be represented as a real matrix, called the raw data matriz. Each
row in the matrix contains data regarding a specific gene, and each column represents a
condition, or a tissues profile. Thus, R;; is the expression level for gene 7, at condition j.
The expression data can represent ratios, absolute values, or distributions. The expression
pattern of a gene i is the i"" row of R;;. The expression pattern of a condition j is the ;%
column of R;;.

1Based in part on a scribe by Dror Fidler and Shahar Harrusi, April 2002, and on a scribe by Giora
Sternberg and Ron Gabo, May 2002.
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Figure 5.1: The raw data matrix maps conditions with gene expression. The Similarity
matrix is derived from the raw data matrix, according to a similarity, or distance function.

In some clustering algorithms the raw data matrix is preprocessed to compute a similarity
matrix S, where S;; reflects the similarity of the expression patterns of gene ¢ and gene j.
Note that the similarity matrix is larger than the raw data matrix since there are usually
much more genes than conditions. Figure 5.1 shows the data and similarity matrices.

5.1.3 Clustering applications

The analysis of expression profiles of genes or conditions can be helpful for many purposes,
such as:

e Deducing functions of unknown genes from known genes with similar expression pat-
terns.

e Identifying disease profiles - tissues with similar disease should yield similar expression
patterns.

e Deciphering regulatory mechanisms - co-expression of genes implies co-regulation.

e and more ...

5.1.4 The Clustering Problem

Genes are said to be similar if their expression patterns resemble, and non-similar otherwise.
The goal of gene clustering process is to partition the genes into distinct sets such that
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genes that are assigned to a same cluster should be similar, while genes assigned to different
clusters should be non-similar. Usually there is no one solution that is the "true” /correct
mathematical solution for this problem, but a good clustering solution should have two
merits:

1. Homogeneity: measures the similarity between genes assigned to the same cluster.
2. Separation: measures the distantnce/dis-similarity between the clusters. Each cluster

should represent a unique expression pattern. If two clusters have similar expression
patterns, then probably it would be better to unite them into one cluster.

Note that these two measures are in a way opposite- if you wish to increase the homogeneity
of the clusters you would increase the number of clusters, but in the price of reducing the
separation.

Clustering methods have been used in a vast number of fields. We can distinguish between
two types of clustering methods:

Agglomerative These methods build the clusters by looking at small groups of elements
and performing calculations on them in order to construct larger groups. The Hierar-
chal methods described here are of this sort.

Divisive A different approach which analyzes large groups of elements in order to divide
the data into smaller groups and eventually reach the desired clusters. We shall see
non hierarchal techniques which use this approach.

5.2 Hierarchic Clustering

This agglomerative approach attempts to place the input elements in a tree hierarchy struc-
ture in which the distance within the tree reflects element similarity. The elements are
located at the leaves of the tree. Thus, the closer the elements are in the tree, the more
similar they are.

Advantages of hierarchal methods :

1. A single coherent global picture.

2. Intuitive for biologists. (similar representation is used in Phylogeny).
Disadvantages of hierarchic methods :

1. There is no explicit partition into clusters.

2. A human biologist with extensive knowledge might find it impossible to make sense of

the data just by looking at the tree, due to the size of the data, and the number of
errors.
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Figure 5.2: Hierarchal data can be represented as a rooted or un rooted tree

5.2.1 Hierarchical Representations

As was explained, a hierarchic representation uses a tree structure, in which the actual data
is represented at the leaves. The tree can be rooted or not. A particular tree representation is
a dendrogram. The algorithms for hierarchic clustering merge similar clusters, and compute
the new distances for the merged cluster. Hence, if ¢ is clustered with j, and both are
not similar to r, then D(i,r) = D(j,r) even though D(i,j) > 0. (D(n,m) is the distance
function) (See Figure 5.3).

5.2.2 Neighbor Joining Algorithm

A simple algorithm, based on neighbor merging, is due to Saitou and Nei [10]. The input
matrix is the distance matrix between elements. Initially each element is a cluster. At each
iteration we merge similar elements, and compute the new distances for the merged elements.
When the algorithm has finished we represent the results as a tree in which similar elements
are near.

The Neighbor Joining Algorithm :

1. Input : The Distance matrix D;;.
2. Find elements r,s such that D,; = min;;(D;;) .

3. Merge clusters r,s.
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Figure 5.3: In a dendrogram, distances are represented on the y-axis. Denote the leaves
a,b,c,d (from left to right). Then D(a,b) = 2.8 , D(a,c¢) = D(b,c) = 4.5, D(b,d) =
D(c,d) =5.0

4. Delete elements r,s, and add a new element ¢ with :

Dir + Dis - Drs
2

Dy = Dy =

5. Repeat, until one element is left.

6. Present the hierarchy as a tree with similar elements near each other.

5.2.3 Average linkage

Average linkage is a modification of the Neighbor Joining algorithm. The idea is the same
but when computing the new distances of created clusters, the sizes of the clusters that are
merged are taken into consideration. This algorithm was developed by Lance and Williams

[7], and Sokal and Michener [13].
The Average linkage Algorithm :

1. Input : The Distance matrix D;;, initial cluster sizes n,.

2. Iteration k£ : The same as the Neighbor Joining algorithm with the exception that the
distance from a new element ¢ is defined by:

n n
r Dzr‘i‘ s

: Dis
Ny + Ng Ny + Ng

Diy = Dy =




6 Analysis of Gene Expression Data (©)Tel Aviv Univ.

5.2.4 A General Framework

Lance and Williams, [7] also designed a general framework for hierarchal cluster merging
algorithms. In their framework the distance calculating function is :

Dit = Dti = OérD'ir + &sDis + ’}/‘Dl’f‘ - Dzsl

In the Average Linkage algorithm :

v=0
ny
o, =
Ny + Ng
nS
oy =
Ny + Ng

5.2.5 Hierarchical clustering of gene expression data

A series of experiments were performed on real gene expression data, by Eisen et al. [4] The
goal was to check the growth response of starved human fibroblast cells, which were given
serum. 8600 gene levels were monitored over 13 time-points (about two cell cycles). The
original data of test to reference ratios was first log transformed, and then normalized, to
have mean 0 and variance 1. Or formally:

t;;— fluorescence levels of target gene i in condition j.

r;;— same for reference.

D;; = 10%(%)'
N;; = [Dij —E(D;]

Std(Dy) - the normalized levels.

The similarity matrix was constructed from N;; as follows :

> Nigj - Ny

S =
M Ncond

Where Ncond is the number of conditions checked.

The Average Linkage method was applied on the similarity matrix, Where genes with low
activity (70%) were not participating in the analysis. The tree is presented by ordering the
leaves according to increasing subtree weight (see Figure 5.4 ). The weight can be average
expression level, time of maximal induction, or any other. Figure 5.5 demonstrates the
different output given by hierarchical when clustering gene expression data, and random
data.
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Figure 5.4: Source: [4]. The dendrogram resulting from the starved human fibroblast cells
experiment. five major clusters can be seen, and many non clustered genes. The genes in
the five groups serve similar functions : (A) cholesterol biosynthesis, (B) the cell cycle, (C)
the immediate-early response, (D) signaling and angiogenesis, and (E) wound healing and
tissue remodelling.
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Figure 5.5: Source: [4]. To demonstrate the biological origins of patterns seen in Figure 5.4,
data from Figure 5.4 was hierarchically clustered before and after random permutation within
rows (random 1), within columns (random 2), and both (random 3). Indeed, the data is
clustered visually, only when the "real” data was used (i.e. the ”clustered” column).

5.3 Non-Hierarchal Clustering

5.3.1 K-means clustering

This method was introduced by Macqueen [8]. The idea is to partition the elements to K
clusters. The heuristic moves elements between clusters if it improves the
solution cost, EP which is a function that measures the quality of the partition.

K-means clustering :

1. Initialize an arbitrary partition P into k clusters.

2. For cluster j, element i ¢ j.
EP(i,j) = Cost of the solution if ¢ is moved to cluster j.

3. Pick EP(r,s) that is minimum.
4. move s to cluster r, if it improves EP.

5. Repeat until no improvement possible.
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Note that this method requires knowledge of k, the number of clusters, in advance. Since
K is fixed, the algorithm aims at optimizing homogeneity, but not separation, i.e., elements
in different clusters can still remain similar.
The most common use of the k-means algorithm is based on the idea of moving elements
between clusters. Element v; is moved between two clusters based on their distances to the
centers of the different clusters. The solution cost function in that case is defined by:

E? = Z Z D(v;, ¢p)
p i€p
Where ¢, is the centroid of cluster p and D(v;,c,) is the distance of v; from ¢,.
There are some variations of the algorithm involving changing of K. Also There are parallel
versions in which we move each element to the cluster with the closest centroid simultane-
ously, but then convergence is not guaranteed.

5.3.2 Self organizing maps

Kohonen 1997 [6] introduced this method. Tamayo et al [14], applied it to gene expression
data. Self organizing maps are constructed as follows. One chooses a grid, m x n, of nodes,
and a Distance function between nodes, D(Ny, Ny). Each of the grid nodes are mapped into
a k-dimensional space, at random. The gene vectors are mapped into the space as well. As
the algorithm proceed the grid nodes are iteratively adjusted (See Figure 5.6). Each iteration
involves randomly selecting a data point P and moving the grid nodes in the direction of P.
The closest node np is moved the most, whereas other nodes are moved by smaller amounts
depending on their distance from np in the initial geometry. In this fashion, neighboring
points in the initial geometry tend to be mapped to nearby points in k-dimensional space.
The process continues iteratively.

Self organizing maps :
1. Input: n-dim vector for each element (data point) p.

2. Start with a grid of £ = x m nodes, and a random n-dim associated vector fy(v) for
each grid node v.
3. Iteration i :
Pick a data point p. Find a node n, such that f;(n,) is the closest to p.

Update all node vectors v as follows :

fira(v) = fi(v) + H(D(np, v),4)[p = fi(v)]

Where H is a learning function which decreases with 4, and decreases with D(n,,v) .
i.e. nodes that are not near n, are less affected.
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Figure 5.6: Self organizing maps : Initial geometry of nodes in a 3 x 2 rectangular grid is
indicated by solid lines connecting the nodes. Hypothetical trajectories of nodes as they
migrate to fit data during successive iterations of the self organizing maps algorithm are
shown. Data points are represented by black dots, six nodes of the Self organizing map by
large circles, and trajectories by arrows.

4. Repeat until no improvement possible.

The clusters are defined by the grid nodes. We assign each point ( gene vector) to its nearest
node n,, (cluster). Note that this method also chooses the number of clusters in advance.

GENECLUSTER

GENECLUSTER is a software that implements self organizing maps (SOM) for gene ex-
pression analysis, developed by Tamayo et al, [14]. Some results can be seen in figure 5.7.
GENECLUSTER accepts an input file of expression levels from any gene-profiling method
(e.g., oligonucleotide arrays or spotted cDNA arrays), together with a geometry for the
nodes. The program begins with two preprocessing steps that greatly improve the ability
to detect meaningful patterns. First, the data is passed through a variation filter to elim-
inate those genes with no significant change across the samples. This prevents nodes from
being attracted to large sets of invariant genes. Second, the expression level of each gene is
normalized across experiments. This focuses attention on the shape of expression patterns
rather than on absolute levels of expression. A SOM is then computed. Each cluster is
represented by its average expression pattern (see Figure 5.7), making it easy to discern sim-
ilarities and differences among the patterns. The following learning function H(n,r,i) is used :
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Figure 5.7: Macrophage Differentiation in HL-60 cells. The Self organizing map algorithm
was applied to models of human hematopoietic differentiation. This process is largely con-
trolled at the transcriptional level, and is related to the pathogenesis of leukemia. 567 genes
were divided in to clusters using a 4x3 self organizing map. In each graph the normalized,
and averaged expression levels for each cluster are shown.

002 if D(n,r) < p(i)
N — ) Tt100i )=
H(n,r,i) { 0 otherwise

where radius p(i) decreases linearly with i (p(0) = 3, p(T') = 0). T is the maximum number
of iterations, and D(n,r) denotes the distance within the grid.

5.4 Graph Clustering

The similarity matrix can be transformed into a similarity graph, Gy, where the vertices are
genes, and there is an edge between two vertices if their similarity is above some threshold

6, that is, (i,7) € E(Gy) ift S;; > 0.
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5.4.1 The Corrupted Clique Graph Model

The clustering problem can be modeled by a corrupted clique graph. A clique graph is a
graph consisting of disjoint cliques. The true clustering is represented by a clique graph
H (vertices are genes and cliques are clusters). Contamination errors introduced into gene
expression data result in a similarity graph C(H) which is not a clique graph. Under this
model the problem of clustering is as follows: given C'(H), restore the original clique graph
H and thus the true clustering.

Graph Theoretic Approach

A model for the clustering problem can be reduced to clique graph edge modification prob-
lems, stated as follows.

Problem 5.1 Clique graph editing problem

INPUT: G(V, F) a graph.

OUTPUT: Q(V, F) a clique graph which minimizes the size of the symmetrical difference
between the two edge sets: |[EAF|.

Clique graph editing problem is NP-hard [12].

Problem 5.2 Clique graph completion problem
INPUT: G(V, E) a graph.
OUTPUT: Q(V, F) a clique graph with £ C F' which minimizes |F \ E/|.

The clique graph completion problem can be solved by finding all connected components
of the input graph and adding all missing edges in each component. Thus the clique graph
completion problem is polynomial.

Problem 5.3 Clique graph deletion problem
INPUT: G(V, E) a graph.
OUTPUT: Q(V, F) a clique graph with F' C E which minimizes |E \ F|.

The clique graph deletion problem is NP-hard [9]. Moreover, any constant factor approx-
imation to the clique graph deletion problem is NP-hard as well [12].

Probabilistic Approach

Another approach is to build a probabilistic model of contamination errors and try to de-
vise an algorithm which, given C'(H), reconstructs the original clique graph H with high
probability.

One of the simplest probabilistic models for contamination errors is a random corrupted
clique graph. The contamination errors are represented by randomly removing each edge in
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Figure 5.8: The randomly corrupted clique graph model. Left: The original Clustering H of
4 clusters, 18 elements. Middle: Random contamination (flip each edge with a probability
p < 0.5), red edges denote edges that will be removed, blue edges denote added edges. Right:
G = C(H), the input (contaminated) graph.

the original clique graph H, with probability p < 0.5, and adding each edge not in H with
the same probability, p (see Figure 5.8). We will denote by 2(H, p) the set of all corrupted
clique graphs derived from H with contamination error fraction p using this model.

5.4.2 Probabilistic Clustering Algorithm

In this section we present a clustering algorithm of Ben-Dor et. al. [2], called Parallel
Classification with Cores (PPC).
We begin with a few definitions.

Definition A cluster structure is a vector (sq, ..., Sq), where each s; > 0 and ) s; = 1.
An n-vertex clique graph has structure (s, ..., $q) if it consists of d disjoint cliques of sizes
nsi, ..., NSq.

Definition A clique graph H(V, E) is called v-clustering (has v-cluster structure), if the
size of each clique in H is at least v|V|.

Definition For a fixed 0 < v < 1 we say that algorithm A reconstructs v-cluster structures
w.h.p. (with high probability), if for each 0 < 0 < 1 there exists ng such that for each n > ny
and for any graph G € Q(H,p), where H is a clique graph with n vertices and 7-cluster
structure, Prob(A(G) # H) < ¢. Formally stated, V6 > 0 3ng such that Vn > ng and for
any ~y-clustering over n vertices, H, we have Prob(A(C(H,p)) # H) < ¢, where C(H,p)
is the random contamination of H (with p probability of flipping), and A(C(H,p)) is the
output of algorithm A when run on input C(H, p).



14 Analysis of Gene Expression Data (©)Tel Aviv Univ.

Figure 5.9: Relative Density - the highest relative density of v is with cluster Cj (relative
density of v with clusters Cy, Cy, Cs, Cy is 1/2, 2/3, 3/4, 1/5, respectively).

Algorithm Idea

Assume that we have already clustered a subset S of vertices. Let us denote their clustering
by {C1, ..., Cp}. We will extend the clustering {C1, ..., Cp, } to include the elements of another
set S’, by putting each vertex v € S’ into the cluster C, to which it has the highest relative
density (affinity), that is, the highest ratio between the number of edges connecting v to
vertices in C, and the size of C' (see Figure 5.9). Formally put, we choose C' to be the cluster
C; which maximizes H"'uec'i(’iu’”)eE}'.

After the extension {C1, ..., C,, } is the clustering of SUS’. Note that during the extension
procedure we do not add new clusters, thus the number m of clusters is unchanged.

Later in this section, we shall show that if the clustering of S is correct then with high

probability S’ is also clustered correctly.

Algorithm Outline

Suppose we are given G(V, E), a corrupted clique graph, that is G € Q(H, p) for some clique
graph H with ~y-cluster structure. Because H has vy-cluster structure the maximum number
of cliques in H is m = [1/7].

The PPC algorithm will perform the following steps (see Figure 5.10):

1. Uniformly draw Sy C V, such that |So| = O(loglog(n));
2. Uniformly draw S; C V\\Sy, such that |S;| = O(log(n));
3. For each clustering of Sy into m clusters {C?, ..., C%}, perform:

(a) Extend the clustering {C?,...,C%} of Sy into clustering {C7},...,CL} of Sy U Si;
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Figure 5.10: PP Calgorithm steps shown schematically.

(b) Extend the clustering {C7,...,C}} into a clustering {C1, ...,C,,} of V;

4. Each clustering {C,...,C},} of V from the previous step determines a clique graph
C(V, E(C)); from all such clusterings {C1,...,C,,} of V| output the one which mini-
mizes |EAE(C)|;

Running Time
Running time of the algorithm is dominated by the execution of steps 3 and 4:
e Number of possible partitions of Sy into m clusters is ml%! = meloglos() — 1og°(n);

e For each partition we perform O(log(n) loglog(n)) operations in step 3a and O(nlog(n))
operations in step 3b, thus the overall running time of step 3 is O(nlog™(n));

e For each partition we perform O(n?) operations in step 4, thus the overall running time
in step 4 is O(n?log®(n));

e The overall running time of the algorithm is O(n?log®(n));
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Algorithm Correctness

Here we will give an outline of the proof. For the details of the proof please refer to [2].

Theorem 5.1 Chernoff 1952 [3]
Let X ~ Binomial(n,p). Let a < p < b, then:

P(X > bn) < exp(—nD(b||p))
P(X <an) < exp(—nD(allp))

Where D(al|p) is the relative entropy distance between (p,1—p) and (a,1—a), 0 < p,a < 1,

and is defined by:
D(allp) = plog(2) + (1 - )log(l_p)
a 1—a

Theorem 5.2 Let H be a clique graph with y-cluster structure. For the input graph G(V, E) €
Q(H,p) the output A(G) is H w.h.p.

Proof: (outline)
Consider the partition C' = {5({, ...Efn} induced by H on Sp:

e Using a simple sampling lemma it can be shown that w.h.p. each cluster of H has at

7150l ’Y\SO|
2

least representatives in Sy, thus each non empty cluster of C" has at least

elements;

e Using the Chernoff bound it can be shown that w.h.p. we extend C’to O correctly,
that is 61 is induced by H on Sy U Sy;

e Using the sampling lemma it can be shown that w.h.p. each cluster of H has at least

'y|.5'1\ t 'Y|Sl‘

representatives in S7, thus each non empty cluster of C' has at leas elements

(assummg that extension from C' to C' was done correctly);

e Using the Chernoff bound it can be shown that w.h.p. we extend C toC correctly,
that is C' is induced by H on V/;

e Thus in step 4 of the algorithm we have w.h.p. a correct clustering. To complete the
proof we must show that w.h.p. for each other partition C' that we have in step 4,
|EAE(C)| < |[EAE(C)];

Below we will show in some detail a result, which proves the last statement of the above
outline.
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Theorem 5.3 Let H be a clique graph with a ~y-cluster structure. Then w.h.p. for any
G € Q(H,p), H is the closest clique graph to G. That is, for any other clique graph C with
a y-cluster structure, the following holds w.h.p.: |E(H)AE(G)| < |E(C)AE(G)|.

Proof: (outline)

First we will show that given some random clique graph C' with a ~-cluster structure we
have w.h.p. |E(H)AE(G)| < |E(C)AE(G)]:

e A key observation is that C' is closer to G iff more than half of the edges in E(H)AE(C)
were flipped when generating graph G (please refer to Figure 5.11 for a schematic
proof);

e P(|E(C)AE(G)| < |E(H)AE(G)|) = P(number of edges flipped > ZH2EC,
e Using the Chernoff bound it can be shown that P(|E(C)AE(G)| < |[E(H)AE(G)|) <
exp(—|E(H)AE(C)|D(0.5]|p));

Now we have to show that for any clique graph C' with a vy-cluster structure we have
w.h.p. |[E(H)AE(G)| < |[E(C)AE(G)|.

e Consider all clique graphs C' with a v-cluster structure, such that |E(C)AE(H)| >

g(lg_ggj(@). The number of such graphs is m™ where m = [1/7]. Thus, using previous re-

sults, it can be easily shown that for any such C' w.h.p. |E(H)AE(G)| < |E(C)AE(G)];

e Consider all clique graphs C' with a v-cluster structure, such that |E(C)AE(H)| <

3(18%(&))7 a similar but more complicated argument shows that w.h.p. for any such C'

|[E(H)AE(G)] < |[E(C)AE(G)];

5.4.3 Practical Heuristic - Algorithm CAST

Although the theoretical ideas presented in the previous section show asymptotic running
time complexity of O(n?log®n), their implementation is still impractical (the constants, for
instance, are very large, as in the computation of all possible partitions of S, into m clusters
in step 3). Therefore, based on ideas of the theoretical algorithm, CAST (Cluster Affinity
Search Technique), a simple and practical heuristic, was developed. All the tests described
in subsequent sections were performed using this practical implementation of the theoretical
algorithm.

Let C be a cluster. Let \S;; be a similarity matrix and let v € V' be a gene. We define

the affinity of v to cluster C' by % Given an affinity threshold T we will say that v is
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Figure 5.11: Schematic proof of the key observation in Theorem 5.3. This figure depicts a
graph G (blank), an original clique graph H (green) and some other clique graph C' (green
with pattern). Consider E(H)AFE(G) and E(C)AE(G). Each edge (u,v) which belongs to
neither C nor to H, but belongs to G increments both E(H)AFE(G) and E(C)AE(G). Each
edge (u,v) which belongs to both C' and H, but does not belong to G also increments both
E(H)AE(G) and E(C)AE(G). Thus, the difference between E(H)AFE(G) and E(C)AE(G)
is due to patches that correspond to E(H)AE(C). Let us denote by A* the symmetric
difference constrained to edges in E(C)AE(H). Clearly |E(C)A*E(G)|+ |E(H)A*E(G)| =
|E(H)AE(C)|. Thus |E(C)A*E(G)| < |E(H)A*E(G)] iff |[E(H)A*E(G)| > EHSEC]
Hence, |E(C)AE(G)| < |E(H)AE(G)| iff |E(H)A*E(G)| > EHSEAL

a close gene to cluster C' if its affinity to C is above 7 and we will say that v is a weak gene
in C'if its affinity to C' is below 7.
Following are the steps of the practical implementation:

e Construct one cluster at a time and denote it by C'C'
e At each step either:
— Add a close gene to C'C;

— Remove a weak gene from C'C}

— Close C'C' when no addition or removal is possible;

e Repeat until all genes are clustered;

The main differences between the practical implementation and the theoretical algorithm
are:

e In the theoretical algorithm several partitions are formed and then the “best” partition
is chosen; in the practical implementation one partition is formed by building one
cluster at a time.
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e The theoretical algorithm considers the similarity graph, while the practical implemen-
tation processes the similarity matrix (the similarity value between any two genes can
assume any real value).

e In the theoretical algorithm, the clusters in a partition are extended by adding new
elements to them; the practical implementation also allows to remove a weak element
from a cluster.

Although little can be proved about the running time and performance of the practi-
cal implementation, the test results described in the next sections show that it performs
remarkably well, both on simulated data and on real biological data.

BioClust

BioClust is an implementation package of the CAST heuristic. The following section presents
results of applying BioClust on both synthetic data and real gene expression data.

Clustering Synthetic Data

The simulation procedure is as follows (please refer to Figure 5.12 for visualization of the
simulation procedure):

e Let H be the original clique graph.

e Generate G from H by independently removing each edge in H with probability p and
adding each edge not in H with probability p.

e Randomly permute the order of vertices in G and run BioClust with affinity threshold
T =0.5.

e Compare BioClust’s output to the original graph H.

There are several comparison criteria, which can be used to compare the algorithm’s
output to the original clique graph. Given two adjacency matrices A and B of two graphs
of the same size, let INV;; be the number of entries on which A and B have values ¢ and j,
respectively. The matching coefficient is defined by Nog +%§21%i; N that is total number
of matching entries divided by total number of entries. The Jaccard coefficient is defined
by m, which is similar to the matching coefficient, only with Ny, the number of
entries which are zero in both matrices, removed. In sparse graphs Ny, will be a dominant
factor, thus Jaccard coefficient is more sensitive when dealing with sparse graphs. With
both coefficients, the higher the value, the closer the result is to the real clustering. Both

coefficients have maximum value of 1, which implies perfect clustering.
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Figure 5.12: Source: [2]. A visualization of the simulation procedure. A: The adjacency
matrix of the original clique graph H before introduction of errors. Position (i, 7) is white
if (i,j) € E(H), that is, if i and j belong to the same cluster. B: The same matrix after
introduction of errors. Note that the cluster structure is still visible for all but the smallest
clusters. C: The same as B but vertex order is randomly permuted. This is the actual
input to the algorithm. D: Matrix C reordered according to solution produced by the
algorithm. With the exception of perhaps the smallest clusters, the essential cluster structure
is reconstructed.

cluster structure n p | matching coeff. | Jaccard coeff.
{0.4,0.2,0.1 x 4} | 500 | 0.2 1.0 1.0
{0.4,0.2,0.1 x 4} | 500 | 0.3 0.999 0.995
{0.4,0.2,0.1 x 4} | 500 | 04 0.939 0.775
{0.1 x 10} 1000 | 0.3 1.0 1.0

{0.1 x 10} 1000 | 0.35 0.994 0.943

Table 5.1: Performance of BioClust for different values of p and n. Mean values of matching
coefficient and Jaccard coefficient are given.
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Figure 5.13: Source: [2]. Simulation results for H with cluster structure of {2, 1 1 1 1

The z-axis is n, the number of vertices in H (clustered entities), and y-axis is the mean
value of the Jaccard coefficient. Each curve corresponds to a specific probability p = « of
contamination error.

Table 5.1 presents results of simulation for different values of contamination error p
and/or number of cluster entities n. The values of the matching coefficient and the Jaccard
coefficient are presented. It can be seen that the Jaccard coefficient is more sensitive. One
can also observe the effect of p and n on the performance of the algorithm.

Figure 5.13 presents results of simulations for different values of n and p. It can be seen
that the properties of the theoretical algorithm are preserved in its practical implementation.
We get better performance when the number of clustered entities (vertices in H) increases.

Clustering Temporal Gene Expression Data

The gene expression data used in this experiment is from [15]. In this paper the authors
study the relationship among expression patterns of genes involved in the rat Central Nervous
System (CNS).

Gene expression patterns were measured for 112 genes along 9 different development
time points. The gene expression data for each gene was augmented with derivative values
to enhance the similarity for closely parallel but offset expression patterns, resulting in a
112 x 17 expression matrix. The similarity matrix was obtained using Euclidean distance.
The execution of BioClust resulted in eight clusters. Since partitioning to clusters is known
from [15] this experiment was done mainly for validation of the algorithm.
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Figure 5.14: Source: [2]. Applying the algorithm to temporal gene expression data [15]. The
solution generated by the algorithm is compared to the prior classification. For each cluster
(x-axis), bars composition in terms of biologically defined families. The height of each bar
(y-axis) represents the number of genes of a specific cluster family. Most clusters contain
predominantly genes from one or two families.

Figures 5.14 and 5.15 present the clustering results. Note that all clusters, perhaps with
the exception of cluster #1, manifest clear and distinct expression patterns. Moreover, the
agreement with the prior biological classification is quite good.

Clustering C. Elegans Gene Expression Data

The gene expression data used in this analysis is from [5]. Kim et al. studied gene regulation
mechanisms in the nematode C. Elegans. Gene expression patterns were measured for 1246
genes in 146 experiments, resulting in a 1246 x 146 expression matrix. The similarity matrix
was obtained using Pearson correlation.

The algorithm found 40 clusters. Only very few genes out of the 1246 were classified into
families by prior biological studies. The algorithm clustered these families quite well into
few homogeneous clusters (see Figure 5.16).
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Figure 5.15: Source: [2]. Applying CAST to temporal gene expression data [15]. Each graph
presents expression patterns of genes in a specific cluster. The x-axis represents time, while
the y-axis represents normalized expression level.
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Figure 5.16: Source: [2]. Some results of the CAST algorithm applied to the nematode
gene expression data of Kim et. al. Top: expression patterns for clusters #21 to #40. x
axis: conditions (matrix columns) in arbitrary order. y axis: intensity level. Most of the
genes’ functions are unknown, so only few genes are color coded. Blue: sperm genes; red:
yeast genes (control) ; gray: unknown. Note the homogeneity of cluster #30. Bottom
Left: expression patterns of the genes in cluster #1, consisting of 31 genes. Bottom Right:
Expression patterns of the six genes in cluster #24. This cluster contains two growth related
genes, linl5 and E2F. This suggests the hypothesis that the other four members of this
cluster have related functions.
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One example of the potential use of clustering for analyzing gene expression patterns is
shown in Figure 5.16. A six-gene cluster (cluster #24) contained two growth-related genes
and four anonymous genes. This suggests the possibility that the other four genes are also
growth-related, paving the way for future biological research.

Tissue Clustering

The gene expression data used in this experiment is from [1]. The authors describe an
analysis of gene expression data obtained from 62 samples of colon tissue, 40 tumor and 22
normal tissues. Gene expression patterns were measured for 2000 genes in the 62 samples,
using an Affymetrix chip. The similarity between each two samples was measured using
Pearson correlation. Note that here, the similarity is measured between tissues, not genes.

BioClust formed 6 clusters of the data. Figure 5.17 shows the distribution of tumor and
normal tissues in the six clusters produced.

The main goal of clustering here is to achieve a separation of tumor and normal tissues.
This experiment demonstrates the usefulness of clustering techniques in learning more about
the relationship of expression profiles to tissue types.

Improved Theoretical Results

In [11], Tsur & Shamir have introduced a generalized random clique graph model with
improved theoretical results, including reduction of the 2(n) restriction on cluster sizes, and
stronger results when cluster sizes are almost equal.
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Figure 5.17: Source: [2]. Distribution of tumor and normal tissues in the six clusters pro-
duced by the CAST algorithm.



Bibliography

[1] U. Alon, N. Barkai, D. A. Notterman, G. Gish, S. Ybarra, D. Mack, and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. PNAS, 96:6745-6750, June 1999.

[2] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3/4):281-297, 1999.

[3] H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Annals of Mathematical Statistics, 23:493-509, 1952.

[4] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. PNAS, 95:14863-14868, 1998.

5] S.  Kim. Department of Developmental Biology, Stanform University,
http://cmgm.stanford.edu/~kimlab/.

[6] T. Kohonen. Self-Organizing Maps. Springer, Berlin, 1997.

[7] G.N. Lance and W.T. Williams. A general theory of classification sorting strategies. 1.
hierarchical systems. The computer journal, 9:373-380, 1967.

[8] J. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and
Probability, pages 281-297, 1965.

9] A. Natanzon. Complexity and approximation of some graph modification problems.
Master’s thesis, Department of Computer Science, Tel Aviv University, 1999.

[10] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425, 1987.

[11] R. Shamir and D. Tsur. Improved algorithms for the random cluster graph model. In
Proc. 8th Scandinavian Workshop on Algorithm Theory (SWAT °02), LNCS 2368, pages
230-239. Springer-Verlag, 2002.

27



28 BIBLIOGRAPHY

[12] R. Sharan, R. Shamir, and D. Tsur. Cluster graph modification problems. In Proc. 28th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG °02),
To appear.

[13] R. Sokal and C. Michener. A statistical method for evaluating systematic relationships.
Univeristy of Kansas Science Bulletin, 38:1409-1438, 1958.

[14] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander,
and T.R. Golub. Interpreting patterns of gene expression with self-organizing maps:
Methods and application to hematopoietic differentiation. PNAS, 96:2907-2912, 1999.

[15] X. Wen, S. Fuhrman, G. S. Michaels, D. B. Carr, S. Smith, J. L. Barker, and R. Somogyi.
Large-scale temporal gene expression mapping of central nervous system development.
PNAS, 95(1):334-339, 1998.



