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4.1 Low level analysis of mi
roarrays4.1.1 Introdu
tionThis 
ourse deals with High level analysis of data gathered by mi
roarrays. Di�erent typesof High level analysis in
lude:� (Bi-)Clustering� Re
onstru
tion of trans
riptional networks� Indu
tion of 
lassi�
ation rulesAll of these high level analysis methods are based on the same raw data - A numeri
aldes
ription of the expression level for a number of genes, along a number of experiments.Low level analysis of mi
roarrays is the set of methods used to obtain this so 
alled rawdata from the physi
al data gathered from the mi
roarray (see Figure 4.1), i.e. luminan
emeasurements for ea
h probe on the array.The numeri
al values for expression levels should be extra
ted from the luminan
e levels,normalized, and systemati
 errors should be removed. All of these tasks are handled by Lowlevel analysis of mi
roarrays4.1.2 Types of mi
roarraysCurrently, 3 types of mi
roarrays are in widespread use:� Spotted 
DNA mi
roarrays� Spotted oligonu
leotide arrays produ
ed by Agilent� GeneChip arrays produ
ed by A�ymetrixEa
h of these mi
roarrays will be now presented.
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Figure 4.1: S
anned mi
roarray result.



Low level analysis of mi
roarrays 3Spotted 
DNA mi
roarraysIn a spotted 
DNA mi
roarray, ea
h probe is an mRNA sequen
e or an EST1 
reated by themethod of PCR. The probes' length is 300-1000 bp. The probes 
reated by PCR are doublestranded and heat or an alkalying agent is used to separate them .The probes are pla
ed onthe 
hip using a spotter, whi
h is a me
hani
 head that tou
hes test tubes 
ontaining theprobes and then tou
hes the mi
roarray, pla
ing the probes on it.The Spotted 
DNA mi
roarray su�ers from the fa
t that not all of the probes are singlestranded (there is no way to know how many of the probes were separated) thus hinderinghybridization, and very long, thus 
ausing 
ross-hybridization in whi
h a target binds witha probe, even though it doesn't not mat
h it 
ompletely. On the other hand, this is arelatively 
heap method to 
reate mi
roarrays and used primarily by resear
h fa
ilities to
reate their own 
hips. About 50 per
ent of the mi
roarrays used nowadays are Spotted
DNA mi
roarrays.Spotted oligonu
leotide arraysSpotted oligonu
leotide arrays are 
reated by Agilent and use syntheti
 oligonu
leotides asprobes. Ea
h probe is 60-70 bases long and pla
ed on the 
hip using an inkjet printer(Agilent uses HP for the printing te
hnology). Using syntheti
 oligonu
leotides means thatthe probes are single stranded, with known sequen
e, thus allowing better hybridization andless 
ross-hybridization. On the other hand, this method is mu
h more expensive.The probes' sequen
es are 
hosen a

ording to the purpose of the 
hip, i.e. the genes it issupposed to dete
t. There are a number of available types of 
hips:� Human{ Whole human genome mi
roarray{ 19k well 
hara
terized genes (1A){ 19k ESTs and predi
ted genes (1B)� Mi
e - 36K probes representing over 20k genes� Other organisms - Rat, Arabidopsis, ri
e, yeastAbout 5 per
ent of the mi
roarrays used nowadays are Spotted oligonu
leotide arrays.1ESTs are mRNA sequen
es that form a fra
tion of a gene's sequen
e
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Tel Aviv Univ.A�ymetrix GeneChip arraysA�ymetrix mi
roarrays are 
urrently the most 
ommonly used 
ommer
ial mi
roarrays.In these mi
roarrays, for ea
h gene that a mi
roarray is intended to dete
t, a number ofprobes(11-20) 
alled positive mat
h probes (PM) are set. These probes are about 25 bplong, mat
hing di�erent positions along the gene. Furthermore, for ea
h su
h probe, anotherprobe, a mismat
h probe (MM) is pla
ed on the mi
roarray (see Figure 4.2). This mismat
hprobe is identi
al to the 
orre
t probe with ex
eption of the base lo
ated in the middle.The mismat
h probe is used to dete
t 
ross-hybridization, in whi
h 
ase the probe and itsmismat
h probe will both bind to the target. When hybridization o

urs only for the 
orre
tprobe, and not its mismat
h probe, we know that this is true hybridization.Lets us assume for example that the sequen
e of the gene to dete
t isATGCTGATCGATGCAGAATCGATCone possible (yet short) probe will be TGATC. The 
hips will 
ontain this probe and alsoTGTTC. The possible hybridization results will be analyzed as follows:� Both probes are dete
ted - 
ross-hybridization or non spe
i�
 binding has o

urred.this probe won't provide any useful information.� Only the 
orre
t probe is dete
ted - the wanted gene is present. Of 
ourse, in a realexperiment one would require all of the 
orre
t probes (or at least most of them) to bedete
ted in order to de
ide that the gene is present.� Neither probe was dete
ted - the wanted gene probably isn't present.

Figure 4.2: probe intensity for A�ymetrixAs in Agilent 
hips, there are tailor made 
hips for a number of organisms:
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roarrays 5� Human{ Human Genome U133 plus 2 - 47,000 probe sets for known genes andEST trans
ripts{ Human Genome Fo
us Array: 8,500 well annotated genes� Other organisms - Rat, Drosophilae, C. elegans, Arabidopsis, Yeast, Zebra Fish, E.Coli4.1.3 Image analysisThe �rst step in low level analysis of a mi
roarray is image analysis, a pro
ess in whi
h theraw visual data of observed illumination intensities is transformed into an estimate for geneexpression levels (for ea
h gene). This step is mostly 
omposed of image pro
essing tasks.Grid alignmentBefore extra
ting the intensity for ea
h probe, one has to lo
ate it. In order to lo
ate theprobes one has to superimpose a grid on the s
anned intensity levels pi
ture, thus �ndingthe border of ea
h probe. Unfortunately there are many error fa
tors (e.g. movement ofthe s
anner during the s
an) whi
h make it hard to align a grid with the entire pi
ture.This 
an be solved by segmenting the pi
ture and aligning ea
h segment to its own grid (seeFigure 4.3).A�ymetrix mi
roarrays are always 
reated with E-
oli probes along their border. Byadding E-
oli to the tested sample, one 
an make sure that these probes will be lighted(i.e. dete
ted) and will help determine the border of the 
hip, and its grid alignment (seeFigure 4.4).Target dete
tionTarget dete
tion is the pro
ess of de
iding whi
h pixels in the s
anned pi
ture will be usedto 
al
ulate the intensity of a probe. This task is espe
ially important in Spotted 
DNAmi
roarrays in whi
h the spotter 
reates an uneven spread of ea
h probe's 
opies, thus
reating an uneven intensity measurement for ea
h probe type (see Figure 4.5).Target intensity extra
tionGiven all of the relevant pixels for a probe, one needs to 
ompute a numeri
al value rep-resenting the expression level for that probe. This 
ould be the mean intensity value, themedian, et
.
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Figure 4.3: general grid alignment. [?℄

Figure 4.4: AÆmetrix 
hip grid alignment - An example of illuminating the 
orner andborders of the array.
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Figure 4.5: Intensity pi
ture for 
DNA mi
ro. Noti
e the 
rater like distribution of probes.[?℄Lo
al ba
kground 
orre
tionThe intensities measured may be severely biased due to dust, glare and non spe
i�
 binding.Lo
al ba
kground 
orre
tion is used to 
rudely 
orre
t these biases.4.1.4 Summation of probe set signals for A�ymetrix 
hipsAs was explained before, an A�ymetrix 
hip has a number of probes for ea
h gene it intendsto dete
t. In this step, needed only for A�ymetrix 
hips, one 
omputes a numeri
 expressionestimate for the gene, based on the expressions values for ea
h 
orre
t probe (PM) andmismat
h probe (MM). There are a number of methods to do this 
al
ulation ( [?℄, [?℄, [?℄).In general we will mark the expression level of probe j for gene i by index ij. The expressionlevel for positive probe j will be marked as PMij The expression level for mismat
h probe jwill be marked asMMij The true expression level for gene i will be marked �i The 
al
ulatedexpression level for gene i will be marked EiAverage Di�eren
e (MAS 4)This method is based on the idea that the gene expression level is estimated by the di�eren
ebetween the PM and the MM value, with the ex
eption of 
ompletely random error :�i + �ij = PMij �MMij
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an
el the noise we should take the mean value for all of the probes :Ei = P(PMij �MMij)T(T is the number of MM-PM probe 
ouples).A possible improvement is to ignore outliers - probes with intensities very di�erent fromthe rest and treat them as measurement errors.MAS 5The problem with the MAS4 model is that it assumes �ij has equal distribution so it 
ould be
an
elled by a simple mean. It appears that the distribution of errors depends on the generalintensity of the probe, and its mean value in
reases with the probes' expression levels.One way to redu
e this dependen
y is to use log transformation on the expression values.Thus one should 
al
ulate log(Ei) = P(log(PMij �MMij))TAgain, in order to handle obvious measurement errors, one 
ould give a smaller weightto values far from the mean (in 
omparison to the values' varian
e), i.e. uselog(Ei) = P(wj � log(PMij �MMij))TWhen wj is bigger when PMij;MMij are 
loser to their mean.dCHIPthe dCHIP method, devised by Li and Wong ( [?℄), is based on a model in whi
h in additionto random errors ea
h probe has a di�erent aÆnity to hybridization, i.e. some of the probesfor the same gene have stronger aÆnities and will be more expressed.�j � �i + �ij = PMij �MMijwhen �j is the aÆnity of probe j to hybridization.By using a number of gene 
hips with the same probes, one 
an use ML (maximumlikelihood) estimation to estimate the values of �j and �i
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roarrays 9Robust Multi-array Average(RMA)This method is based on the idea that the MM values 
ontain no additional informationabout the gene expression level. The reason is that it appears that MM values are verystrongly dependant on PM values (see Figure 4.6), and 
annot be used to improve resultsbased solely on PM values. Thus the model used is the same as in MAS 5 and dCHIP
ombined but ignores MM : log(�j � �i) + �ij = log(PMij)Again �i is estimated by using linear �tting.

Figure 4.6: A�ymetrix probes aÆnity e�e
t
To 
ompare the e�e
t of di�erent methods, a 
ontroled test was performed. 11 knownRNAs were added to a test sample in known 
on
entrations (whi
h were mu
h higher thanthe 
on
entrations of native sequen
es in the sample). The expression levels of these RNAsamples were 
al
ulated using ea
h of the methods and the results were 
ompared to the
orre
t values. Based on these tests, it appears that RMA is the best among the presentedmethods.
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Tel Aviv Univ.4.1.5 NormalizationThe normalization step is intended to deal with the fa
t that the results from identi
alexperiments on two identi
al mi
roarrays will never be exa
tly the same. In addition to un-avoidable random errors (see Figure 4.7) there are also systemati
 di�eren
es (see Figure 4.8)
aused by:� Di�erent eÆ
ien
ies of dyes. for example, green 
olored markers are stronger thenred ones (measured as stronger illumination) thus 
reating a bias between experimentsdone with green and red markers.� experimental di�eren
es (whether by mistake or be
ause of di�ering experimental pro-to
ols) will lead to di�erent amounts of mRNA in the tested sample, 
ausing di�erentexpression levels. This problem is espe
ially important when 
omparing data gatheredin di�erent laboratories.� Di�erent s
anning parameters� Di�eren
es between 
hips 
reated in di�erent produ
tion bat
hes.these di�eren
es 
an be 
orre
ted by the use of normalization methods whi
h are the pro
essof removing systemati
 errors (biases) from the data. Without 
orre
ting these di�eren
es,it is be impossible to 
ompare the results of two experiments.In the following graphs, the gene expression levels will be presented as a histogram oflog(intensity) values. The results from two 
hips (or two tests of the same sample withdi�ering markers) will be 
olored in red and green. for example see Figure 4.9Noti
e that even though a 
omparison of identi
al samples is used in the examples,normalization is important when 
omparing di�erent samples in order to dete
t di�erentialgenes. In su
h 
ases it is harder to normalize the results be
ause one 
annot know whetherthe di�erent expression levels are 
aused due to a
tual di�eren
es or a normalization problem.A normalization s
heme should answer two questions:� Whi
h genes (probes) are used for the normalization pro
ess� How is the normalization performed, i.e. what is the mathemati
al algorithm used tonormalize the values.There are a number of methods for 
hoosing the normalization genes, i.e. those genes onwhi
h the normalization s
heme will be based.
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Figure 4.7: expe
ted results with noise.

Figure 4.8: expe
ted results with systemati
 bias.
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Figure 4.9: intensity histograms with bias.All gene normalizationUsing all of the genes on the 
hips for normalization is based on the assumption that most ofthe genes have the same expression levels in the two (di�erent) samples whi
h are 
ompared.The proportion of the di�erential genes is low (less than 20 per
ent). Thus we 
an assumethat by using all of the genes, we will have a large number of equally expressed genes for thenormalization and a
hieve good results.This method 
annot be used when the previous assumption is wrong. for example, whenthe samples are highly heterogeneous (e.g. samples from 
ompletely di�erent tissues).Housekeeping genes onlyThe idea is to use a small set of genes that, based on prior knowledge, are known to haveequal expression levels in the 
ompared samples. two 
urrently used normalization s
hemesare based on housekeeping genes:� A�ymetrix 
hips have a set of 100 housekeeping genes used for normalization� NHGRI's 
DNA mi
roarrays have a set of 70 housekeeping genesOne problem with using housekeeping genes is that they are usually expressed at highlevels, so they are not informative for the normalization of the low intensities range.
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roarrays 13Spiked in 
ontrolsIn the spiked in 
ontrols method, a number of 
ontrol mRNAs are added to ea
h sample.These mRNAs are taken from another organism (as to make sure that they do not exist inthe sample itself). The mi
roarrays are designed to have probes that dete
t these mRNAs.The 
ontrols are added in a range of 
on
entrations thus providing normalization data fordi�erent expression levels.This method's main limitation is that due to the fa
t that the 
ontrols are added onlyto the �nal sample, they 
annot 
ompensate for di�eren
es 
aused during its preparation.Only di�eren
es in the s
anning and image analysis steps 
an be 
ompensated. Imagine twosamples that were produ
ed with di�erent amounts of genes due to some experimental error.later, the 
ontrols are added in equal amounts, so they 
an provide no 
lue on the initial dif-feren
e. One should remember that sample preparation is probably the most 
ommon 
ausefor biases, rendering this method mu
h less e�e
tive. Furthermore, spikes normalization isbased on small (70-100) number of probes so it isn't as robust as the other methods.Invariant setContrary to the other methods, in the Invariant set method, one de
ides on the normalizationgenes only after the results are analyzed. The idea is to dete
t genes with similar expressionlevels in all of the 
hips, assume they should have identi
al expression level and base thenormalization s
heme on them. One way to dete
t these genes is by ranking the expressionlevels for all of the genes and 
hoose genes with the same rank (global biases should haveless e�e
t on the 
omparative rank of ea
h gene).On
e the normalization genes were 
hosen, there are a number of methods for the normal-ization itself. One should remember that all of these methods are always 
omputed basedon the expression levels of the normalization genes, and later the transformation is appliedto the entire data set.Global normalizationthis normalization s
heme is intended to equalize the mean value of expression levels. all ofthe values are multiplied by a 
onstant whi
h is the ratio between the mean expression levelof the normalization genes in the two samples. The normalization fa
tor k isk = P(E1i )P(E2i )when the summation is other normalization genes. (Eji is the expression level for gene i insample j). Normalization of E2i values is done by multipli
ation by k.
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Figure 4.10: Histogram before normalization.

Figure 4.11: Histogram after normalization.
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Figure 4.12: boxplots (see appendix 1) before and after global normalization.Loess normalization - lo
al linear �tLoess normalization( [?℄, [?℄) is based on the (true) assumption that the biases are intensitydependent, thus there is no one normalization fa
tor that 
an remove the biases for higher andlower expression genes. One should normalize di�erent expression level genes with di�erentfa
tors.Before ta
kling the Loess normalization, it is important to be familiar with the MvsAplots whi
h help dete
t intensity dependent biases. The X axis is the average intensity of agene in both samples(
hips): E1i � E2i2The Y axis is the log ratio of these intensities:log(E1iE2i )for example, �gure 4.12 shows a situation in whi
h there is no intensity dependent bias(the ratio between expression values(Y axis) does not 
hange a

ording to the expressionlevels themselves(X axis))On the other hand, �gure 4.13 shows a situation in whi
h the ratio between expressionlevels 
hanges 
ompletely for di�erent expression levels. For lower expression levels one ofthe 
hips' values are measured to be higher than the other's, and this situation is reversed
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Figure 4.13: M vs A with no bias.for higher expression values. It is obvious that this situation 
annot be 
orre
ted by globalnormalization.Loess normalization �ts a lo
al regression 
urve to the M vs A graph and uses it to
al
ulate a normalization fa
tor that depends on the mean intensity. the normalization isperformed by multiplying ea
h gene expression level by the fa
tor �tting its expression level,thus normalizing �gure 4.13 to �gure 4.12Quantile normalizationContrary to the other normalization methods whi
h tried to equalize the mean expressionlevel between 
hips (global or per expression level), Quantile normalization for
es the 
hipsto have identi
al intensity distributions. (see Figure 4.14 and Figure 4.15)The idea is to make sure that both 
hips will have the same intensity distribution his-togram (Of 
ourse, it doesn't promise that the same genes will have the same intensities,only the same distribution of intensities).Quantile normalization is done by sorting the gene expression levels. let Eji be theexpression level of gene i in 
hip j. After sorting, let Êjk be the k-th largest expression levelfor 
hip j. Of 
ourse, this is the expression level of gene i for some i : Êjk = Eji . We now
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Figure 4.14: M vs A with bias.

Figure 4.15: After loess normalization.
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Figure 4.16: After quantile normalization.
ompute the median intensity for ea
h rank:�k = P ÊjkTNow we should normalize by repla
ing ea
h gene i with expression level Êjk with this median.In this way we make sure that for ea
h rank k, we will have an expression level on ea
h 
hipwith the same value, thus the 
hips will have the same expression level distribution.SummaryIt appears that Quantile normalization is the best normalization method. Loess has 
ompa-rable results, but Global normalization is not satisfa
tory( [?℄ [?℄). There are a number ofnormalization tools available:� BioCondu
tor 
an be used on both A�ymetrix and 
DNA mi
roarrays� dCHIP 
an be used only for A�ymetrix and is based on Quantile normalization, usingthe Invariant set method to 
hoose normalization genes� Expander 
an be used on both A�ymetrix and 
DNA mi
roarrays and 
an use bothQuantile normalization and Loess.
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Figure 4.17: Quantile normalization. Ea
h 
olor is a spe
i�
 gene, Ii denotes the rankedintensity of a gene.4.2 Identi�
ation of Di�erential GenesThe most 
ommon mi
roarray experiment is a 
omparison between 2 samples - a treatmentsample and a 
ontrol sample. The goal to identify genes that are di�erently expressed in thetwo samples. The number of mi
roarrays is usually very low (2-4). There are a number ofmethods to identify the di�erently expressed genes.An important perquisite of these methods is the ability to asses the 
han
e of falsepositives2. Without it, it is impossible to know whether the results of the experiment arereliable.4.2.1 Fold 
hangeIn this method, all of the genes with expression level 
hange (between treatment and 
ontrolsamples) of more then a given per
entage (e.g. 100 per
ent) are treated as di�erential genes.This naive method has a number of major limitations:� no estimation is given for the 
han
e of false positives� this method is biased toward lower expression genes, be
ause for those genes, evena small 
hange due to an error 
ould be enough to mark them as di�erential. (seeFigure 4.17) This situation 
ould be improved by using a 
uto� to �lter genes with atoo low expression level.2The 
han
e that a gene will be dete
ted as di�erential even though it isn't one
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onsideration of the variability of gene expression levels over a number ofmi
roarrays. For example, it is enough for one treatment mi
roarray to show a veryhigh expression level for a gene, for this gene to be marked as di�erential. yet, in othertreatment mi
roarrays this genes might have low expression level, possibly of someother biologi
al phenomena in the spe
i�
 sample analyzed by the �rst mi
roarray.(see Figure 4.18 for example)

Figure 4.18: Fold Change limit, Biased to low expression levels. Noti
e that for small values,a large fold 
hange o

urs even for a small 
hange
4.2.2 T-testThe T-test is based on normalizing the expression level 
hange, with the varian
e of the meanexpression levels (of the treatment and 
ontrol samples). In 
ase the expression level 
hangeis large in 
omparison with the varian
e of the mean expression values, one 
an assume thereis a real di�eren
e in gene 
on
entration, i.e. the gene is di�erential. On the other hand, evenif the di�eren
e is large, but the gene has high varian
e, we will not treat it as di�erential.
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Figure 4.19: Fold Change limit, variability over repli
ates is ignored. Noti
e that 
ases withlow and high varian
e get the same s
oreThe t-s
ore value is 
omputed the following way:t = Mt �M
rS2
n
 + S2tntwhile S2
 ; S2t are the varian
e estimates in 
ontrol and treatment samples respe
tively.M
;Mt are the mean levels in 
ontrol and treatment samples respe
tively. n
; nt are thenumber of 
ontrol and treatment samples respe
tively.It is possible to 
al
ulate a P-value3 for ea
h T-s
ore in order to asses the 
han
e for afalse positive (the 
han
e is the P-value itself).
Figure 4.20: Example of 
omputation of T-s
ore and P-value when 
omparing 
ontrol andtreatment.
4.2.3 Bonferroni 
orre
tionT-s
ore based methods are problemati
 when used for mi
roarray analysis. The reason isthe known statisti
al problem of multiple testing. When testing for a very large number of
ases (genes), one should take into a

ount the fa
t that the number of false positives is theP-value for the T-value of the 
uto� threshold, multiplied by the number of tests(genes). Ifthe P-value is 0:01,for example, and 10; 000 genes are tested, about 100 false positive geneswill be dete
ted! This poses a question on the validity of the mi
roarray results.3the 
han
e to have a given T-s
ore in 
ase of a random sample
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orre
tion( [?℄) states that in order to have a given 
han
e of false pos-itives q, while doing N experiments, one should aim for a P-value that is qN . This followsimmediately if one assumes that ea
h test result is independent. For example, given thenumbers des
ribed above, one should 
hoose P-value of 0:000001 in order to have a 
han
eof 0:01 for one false positive.The problem with the Bonferroni 
orre
tion is that the T-value required for su
h a lowP-value will most probably limit the number of true positives found. In summary, usingthe Bonferroni 
orre
tion promises a low 
han
e for false positives but also may 
ause alarge number of false negatives (di�erential genes that would be �ltered be
ause of the highT-value threshold).4.2.4 False Dis
overy RateThe idea behind false dis
overy rate (FDR)( [?℄, [?℄) is to 
hoose an a

eptable proportionof false positives among the genes de
lared as di�erential, for example 10 per
ent (thisper
entage will be marked q). The FDR method is to rank the tested genes a

ording totheir P-values and 
hoose as di�erential genes, only the �rst k genes, those with the lowestP-value so that pi � i � qNso we will guarantee that the false positives amount is not ex
eeded.The problem with FDR is that it, like the rest of the presented methods, assumes that thegene expression of di�erent genes on the 
hip is independant. This is biologi
aly in
orre
t -many genes' expressions are 
orrelated.4.2.5 Signi�
an
e Analysis of Mi
roarraySigni�
an
e Analysis of Mi
roarray (SAM)( [?℄) is intended to deal with the fa
t that geneexpressions are 
orrelated in an unknown manner. The idea is to use permutations to getan 'empiri
al' estimate for the FDR of the reported di�erential genes. Instead of using theabove FDR 
al
ulation, one tries to rename the di�erent genes and re
al
ulate, in order to�nd out the real 
orrelation.The SAM algorithm is :� Compute for ea
h gene a statisti
 that measures its relative expression di�eren
e in
ontrol vs 'treatment' (T-s
ore or a variant)� Rank the genes a

ording to their 'di�eren
e s
ore'
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ut o� d0 and 
onsider all genes above it as di�erential. the number of di�erentialgenes is Nd.� Permute the 
ondition labels, and 
ount how many genes got s
ore above d0. thenumber of genes is Np� Repeat on many (all possible) permutations and 
ount Npj� estimate FDR as the proportion: <Npj>Nd
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Figure 4.21: Explanation of boxplots diagramsBoxplots are method for graphi
al representation of a distribution, based on representingthe di�erent quartiles. The range is divided by �ve values (as shown in Figure 4.21):� The upper line indi
ates the maximal value.� The upper line in the 
olored box indi
ates the upper quartile of the values.� The middle line in the 
olored box indi
ates the median.� the lower line in the 
olored box indi
ates the lower quartile of the values.� The lower line indi
ates the minimal value.The �ve number summary leads to a graphi
al representation of a distribution 
alled theboxplot.


