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3.1 Spectrum Alignment

This work by Pe’er et al. [5] presents an algorithm for reconstructing a target sequence using
the SBH technology integrated with known similar reference sequence. The goal is to get
the best reconstruction, given these two sources of information.

3.1.1 Motivation

Some motivation for using the method:

• Checking for specific mutation, e.g. Tay-Sachs, CF, Fragile-X, Gaucher. To date, those
tests are performed separately for each mutation with different technologies. Since we
know the sequence of the gene (and sometimes even where the mutation might appears)
we would like to use this information for finding the correct path of the SBH output.

• Identifying unknown micro-organism can be done by the sequence of a conserved known
gene.

• Identifying a specific strain by more divergent sequences.

• Finding the gene’s sequence in one species, given this gene’s sequence in another species.

• HLA-typing (graft recognition).

• Detecting somatic mutations (cancer).

All those challenges present one common problem: we need to reconstruct a target sequence
given a known similar reference sequence. Current technologies are either target-specific, or
ignore existing information on target (redo sequencing the target).

1based in part on scribe by Tamir Tuller and Kobi Lindzen 2002
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3.1.2 The Scheme

The scheme of finding the target sequence that fits best, both to the reference sequence and
the hybridization spectrum, includes the following steps:

1. Create a model that presents the reference sequence data.

2. Convert the SBH data into a graph.

3. Using those two presentation, reconstruct the target sequence.

HMM of the Reference Sequence

The reference sequence will be presented as a hidden markov model (HMM), using Position
Weight Matrix (PWM). It can be described as chain of states, one state for each nucleotide
in the reference sequence, with nucleotide probabilities vk(A), vk(C), vk(G), vk(T ) per each
state qk (see Figure 3.1). We build this model according to the known distribution of the
gene among the population, assuming they are independent.

Figure 3.1: A simple example HMM for the reference sequence ATG: The nucleotide T has
probability of 0.7 to appear in the second position. In this models there are no deletions or
insertions.

A more complicated HMM model can also include deletion and insertion states (see
Figures 3.2). Here we will present only the simple model, the interested reader is referred to
the paper [5]. More details on HMMs can be found in [10, 11].

Scoring according to the A-priori Distribution

The HMM score of the target sequence T = t1t2t3...tL is the probability of observing sequence,
given the PWM. For the gapless HMM we get (see Figure 3.1):

P (T = t1t2t3...tL|PWM) =
∏

j(vj(tj)) (3.1)

PWMScore(T )L = log P (T |PWM) =
∑

i

log(vi(ti)) (3.2)
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Figure 3.2: An HMM model allowing deletions and insertions. The triangles are deletion
states, the circles are insertion states and the squares are match states. The solid arrow
connect two states. The dashed arrow specifies emission.

For efficient computation of this score we will use the following identity:

PWMScoreL = PWMScoreL−1 + log(vL(tL)) (3.3)

The score can be generalized to general HMM. [5]

The Hybridization Graph

A hybridization experiment measures for each k-mer the intensity of its hybridization sig-
nal. Due to the randomized nature of hybridization, most signal level cannot be binirized
satisfactorily. Let Signal(x) be the intensity of each k-mer x upon the chip. For each k-mer
x we will calculate two probabilities:

P1(x) = Prob(signal(x)|x occurs along target) (3.4)

P0(x) = Prob(signal(x)|x does not occur along target) (3.5)

For the hybridization spectrum we build the following directed graph, G(V, E) (see Figure
3.3):

• The set of vertices V contains all the (k − 1)-mers in the spectrum.

• The set of edges E contains all k-mers observed in the hybridization. We build edges
between max overlap (k − 1)-mers, each edge is annotated with its P1(x) and P0(x)
probabilities.
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Figure 3.3: Example of the hybridization spectrum graph, the observed k-mer are written
on the edge with their probabilities. Each vertex presents k − 1-mer.

Scoring According to the Spectrum

The spectrum score of the target sequence is the probability of observing spectrum, given
the target sequence:

SpecScoreL(T ) = log P (spectrum|T = t1t2t3...tL) = log{
∏
x∈T

P1(x)
∏
x/∈T

P0(x)} =

∑
x/∈T

log P0(x) +
∑
x∈T

log P1(x)−
∑
x∈T

log P0(x) +
∑
x∈T

log P0(x) =

∑
x

logP0(x) +
∑
x∈T

log(P1(x)/P0(x))

Let W (x) = log(P1(x)/P0(x)). Then:

SpecScoreL(T ) ≈
∑

x

logP0(x) +
∑

j

W (tj−k+1tj−k+2tj−k+3...tj) (3.6)

This score is weight of the path in G which corresponds to the target sequence. Again
efficient computation of the score can be achieved using the following identity:

SpecScoreL ≈ SpecScoreL−1 + W (current k-mer) (3.7)
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The Total Likelihood Score

Our goal now is to find the target sequence which corresponds to paths in both graphs. In
order to achieve it, the authors developed scoring method which combine the two information
sources. The total likelihood score is the sum of the spectrum and the PWM scores :

TotScoreL(T ) = SpecScoreL(T ) + PWMScoreL(T ) (3.8)

We search for T = t1t2t3...tL which maximizes the total score. We have seen we can solve
this problem using dynamic programming. For 0 < j < L and a (k − 1)-mer x let Sj(x) ≡
max{TotScorej(T )| sequence T ending with x}. Sj(x) can be calculated using the recursion:

Sj(x = x1x2 . . . xk−1) = max
x0

{Sj−1(x0x1 . . . xk−2) + W (x0x1 . . . xk−1)}+ log(vj(xk−1))

Sopt = maxx(SL(x)). Sopt gives us the best score for the joint path (with length L) in both
graphs. In order to get the corresponds path in each iteration we will keep the character
that brought us to this iteration and in the end we will be able to trace back the path (a
common technique with all dynamic programming variants).

Complexity

It is easy to see that running time and the space requirement are O(LK), as the size of the
table in our dynamic programming algorithm. The space requirement can be reduce by using
a divide and conquer approach [4],when using this approach we can get time complexity of
O(LKlogL) and space requirement of O(K + L). The typical length of the HMM, L, is
103 ≤ L ≤ 104, the probabilistic spectrum is of length K = O(4k), typically 8 ≤ k ≤ 10.

3.1.3 Simulation Studies

The algorithm was implemented and tested on simulated data. As a reference, a prefixes of
real genomic DNA sequences were used. Each simulated run randomly generates:

1. A target sequence according to a prescribed probability 1 : 200bp of substitution.
2. A probabilistic 8 - spectrum according to a prescribed hybridization error .
For simplicity, insertions and deletion were not allowed, substitution were equiprobable,

and all the probabilistic parameters were constant, i.e., position k-mer independent. For
each parameter set, several simulated data were generated and the algorithm was applied to
each.

Two figures of merit were checked:
1. Full success rate - The fraction of runs for which the target sequence was perfectly

reconstructed.
2. The percentage miss-called bases - The fractions of base-calling errors made by the

algorithm. The simulation results can be seen on Figures 3.4, 3.5, 3.6 and 3.7.
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Figure 3.4: Source: [5]. Success percentage versus the hybridization error level : The prob-
ability of full success in reconstructing the target sequence, as a function of the sequence
length, different graphs for different hybridization error levels.

Figure 3.5: Source: [5]. Success percentage versus the insertion/deletion level: The prob-
ability of full success in reconstructing the target sequence, as a function of the sequence
length, different graphs for different indels and similarity levels between the target and the
reference sequences.
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Figure 3.6: Source: [5]. Percentage of miss-called bases as a function of the sequence length
versus the hybridization error level.

Figure 3.7: Source: [5]. Percentage of miss-called bases as a function of the sequence length
versus the insertion/deletion level.
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3.2 Genotyping with Partial and Universal Arrays

3.2.1 Polymerase Signaling Assay

The Polymerase Signaling Assay (PSA) is an accurate method for parallel re-sequencing
which is effective to sequences up to several thousand base long. It is based on technology
developed by Orchid Biosciences Inc. PSA uses special probes that are built from non-specific
and specific parts. The non-specific part, the capture motif, is identical for all probes, and
its role is only to stabilize the target on the probe. The specific part is different between
probes, and it contains selected specific k-mer probes that tiles the target sequence and its
variants (A part of the target is bond to the non-specific part). If there is a perfect match
between the specific part and some part of the target, hybridization occurs which can be
detected via the emission of fluorescent from the probe. The fluorescent slide is then scanned
to detect the spot that signal a match between their probes and the target sequence.

Orchid plates included 176 different probes, with 5bp specific probes. Those plates used
for analysis of Angiotestinoge (AGT) exon 2. The targets are amplicons of homozygote
wildtypes/mutants for a single mutation.

3.2.2 Problems of re-sequencing

Computational analysis is based on the spectrum alignment algorithm that was described
on the previous section.

Distilled Spectrum

One problem with the original spectrum alignment scheme used is that there are low signal-
to-noise regions along the target. The solution to this problem is using enhanced spectrum
alignment. The enhanced algorithm applies spectrum alignment iteratively: each iteration
identifies reliable regions (regions that have strong support in the spectrum), and then distill
them from the spectrum and re-iterate. In heterozygotes, same technique is applied to re-
sequence a second allele.

Handling Real signals

As seen in previous section, we used two probabilities, P0(x) and P1(x), in order to evaluate
the chances that probe x will be matched or unmatched by the target sequence. The problem
is that the real signals do not allow a threshold rule for probe matching, as seen in Figure
3.8: Each threshold to divide between true and false signals will incur a high error rate. The
solution to this problem is to learn the average matched and unmatched probabilities from
the spectrum reference, and use them as threshold.
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Figure 3.8: Source: [6]. Signal level distributions for matched and unmatched probes.

Another problem is that different probes have different signals. As we can see in figure
3.9, each of the probes might have a threshold to divide between true and false signals, but
the average of the thresholds will cause all the the probes of one kind to be matched, and all
the probes of the other kind to be unmatched. The solution for this problem is to empirically
estimate P0(x) and P1(x) on a per-probe basis.

Figure 3.9: Source: [6]. Signal level of two specific probes:TTAGC, whose signals are are
extremely high, and CGTGA whose signals are extremely low.

Because of those problems, various methods were used to calculate better P0(x) and
P1(x) values, using prior information from other datasets. For summary of the results see
Figure 3.10. More information about those methods can be found at [6].
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Re-Sequenced CF Arrays

Partial arrays with 176 probes were used for re-sequence CFTR exon 11. The reference that
was used was not only the genomic sequence, but also known mutation from the Human
Genom Mutation Database (HGMD). Out of 64 known polymorphism, 60.5 were correctly
typed, and only 4 spurious mutations were falsely detected (see Figure 3.11).

Figure 3.10: Source: [6]. Summary of re-sequencing using different training methods. (A)
Probe-independent. (B) Per-probe training using the experiment and with another three
matched and unmatched examples. (C) Per-probe training using all data sets. (D) Per-
probe training using all the data sets except the one that contains the target.

3.3 Gapped Chips for SBH

3.3.1 Motivation

As we saw in Pevzner’s algorithm for SBH reconstruction [8], if we use a classical SBH chip
with capacity of t probes, the length of random sequence (four independent letters, with



Gapped Chips for SBH 11

Figure 3.11: Source: [6]. Summary of re-sequencing results for CFTR.

probability of 1
4

each) that we are able to reconstruct unambiguously is O(
√

t), which is
quiet inefficient.

3.3.2 An Upper Bound

In their work Perparate, Frieze and Upfal [1] analyzed (base on information-theoretic ar-
gument) the maximal length that can be reconstructed with a general SBH chip, that is,
any variant of SBH chip. Their algorithms will be referred as PFU. Unlike the spectrum
alignment algorithms this algorithm uses no information about the target. PFU assumes
that hybridization is an error-free process, with no false negatives nor false positives.

Theorem 3.1 ([1]) For any fixed probability p > 0, the length of a random string that can
be unambiguously reconstructed with probability p by a chip with t probes is O(t).

Proof: For each probe on the chip we have the information whether it appeared in the
target (at least once) or not. Hence, there are 2t possible spectrum’s vectors and 4m sequences
of length m (see Figure 3.12).

In order to have an unambiguous reconstruction, each spectrum’s vector can define no
more than one possible sequence. Thus,

4m ≤ 2t ⇒ m ≤ 1

2
t⇒ m = O(t) (3.9)

Since there are vectors that do not match any m-long sequence we get m < 1
2
t. In order to

reconstruct unambiguously a fraction p of the 4m possible sequences we must have

p4m ≤ 2t ⇒ m = O(t) (3.10)
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Figure 3.12: Number of possible sequences Versus the number of possible vectors in the
spectrum.

Pevzner’s algorithm uses all t = 4k probes of length k. The expected length of sequences
it can unambiguously reconstruct is only

m = O(2k) = O(
√

t) = o(t) (3.11)

The PFU algorithms achieves m = Θ(t).

3.3.3 The PFU Algorithm

The key idea is to use ”universal” (don’t care) bases within the probes, that is, bases
that bind to any nucleotide (see Figure 3.13). Our probes will include specified bases and
unspecified (=universal) bases. For example the probe AC*G*G will be able to hybridize
with TGACAA, TGACCA ,TGACGA, TGACTA, TGCCAA, etc. Preparate et al. proposed
the following design for the probes (see Figure 3.13). Each probe is of the form Xs(U s−1X)r

where X ∈ {A, C,G, T} is a specified base and U denotes a universal base. For a given
r and s, the chip contains all probes of this form. According to the scheme we need to
determine r + s specified positions (the X’s in Figure 3.14) ⇒ The total number of probes
is t= 4r+s.
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Figure 3.13: An example of matching to universal probe, where s = 3, r = 3.

Figure 3.14: The scheme of a probe in PFU’s algorithm.

3.3.4 The Reconstruction Algorithm

We assume that we are given the s(r + 1)-prefix of the target string (we will show later how
to handle this assumption). Let Z be the putative sequence reconstructed so far (with length
greater than (s(r + 1) − 1)). Find set M0 of all the probes in the spectrum such that, the
(s(r+1)−1)-prefix of each of the probes matches the (s(r+1)−1)-suffix of Z. Let B0 be set
of possible extensions (the base located in position s(r+1) of probes ∈M0) - the next symbol
in Z. In case where the set B0 is empty, no extension exists and the algorithm terminate
with failure. In case where the set |B0| contains only one element, a single extension was
found and the corresponding symbol is appended to Z. Otherwise, (4 ≥ |B0| > 1), find set
M1 of all the probes such that their (sr − 1)-prefix matches (sr − 1)-suffix of Z and their
(s + 1)-suffix ”agrees” with any probe ∈M0. Let B1 be set of possible extensions (the bases
in position sr of probes ∈M1)

⋂
B0. Once again: In case where the set |B1| is empty declare

failure. If |B1| = 1-extend Z and continue, otherwise (|B1| > 1) continue with M2 according
to the general step. Figure 3.15 demonstrates this process.

In each phase we have s− 1 new specified bases that have to agree with Z.
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The Algorithm

Denote by L the sequence length. A formal description of the PFU algorithm follows.

M0, M1, . . . ,Mr ← ∅.
B0, B1, . . . , Br ← ∅.
For n = s(r + 1) + 1 to L− s(r + 1) do

1. j ← 0.

2. M0 ← ∀ probes Px ∈ Spectrum where (s(r + 1) − 1)-prefix of Px= (s(r + 1) −
1)-suffix of Z.

3. B0 ← Ps(r+1)∀P ∈M0.

4. If |B0| = 0

Declare "Failure".

End.

5. If |B0| = 1

ch← B01

Z ← Z + ch.

Next n.

6. If |B0| > 1

selectCandidate(+ + j).

Next n

selectCandidate(j)

1. If j > r

Declare "Failure".

End.

2. Mj ← ∀ probes Px ∈ Spectrum where (s(r + 1 − j) − 1)-prefix of Px= (s(r +
1− j)− 1)-suffix of Z AND ∃probe Qy ∈Mj−1 which "agrees" with the (sj +
1)-suffix of Px.

3. Bj ← Ps(r+1−j) ∀P ∈Mj

⋂
Bj−1.



Gapped Chips for SBH 15

Figure 3.15: An example of the algorithm where s = 4, r = 4.

4. If |Bj| = 0

Declare "Failure".

End.

5. If |Bj| = 1

ch← Bj1.

Z ← Z + ch.

Next n.

6. If |B0| > 1

j ← j + 1.

selectCandidate(j).

3.3.5 Advantages of Gapped Probes

After we had reconstructed (n− 1)-prefix of Z, we have two options for the Zn symbol. The
case where we have only one candidate is trivial, but when prefix of several probes matches
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Figure 3.16: An example of the classical probe where n = 7. The confirmation does not
work because CCAACF implies CAACF in the spectrum.

Figure 3.17: An example of an universal probe where n = 7. CGUAUF does not imply
GAUFU . The spectrum contains GAUTU and not GAUFU , hence, Z7 = T .

the suffix of Z, the question is how to use other probes to disambiguate. For every position
in the sequence we have several probes (k - in the classical SBH, r - in this case) that can
confirm the original symbol. In classical SBH we would like to use the shifted probes to
confirm the correct base, but due to the fact that the information within the shifted probes
is dependent we cannot use them, as exemplified in Figure 3.16. Using gapped probes,
the probability of ambiguous extension in each aligned probe (with respect to a randomly
generated sequence), is almost independent of the other probes (see Figure 3.17). This is
the feature that gives this method its ”power”.

3.3.6 Removing the Prefix/Postfix Requirements

The PFU algorithm requires the (s(r + 1) − 1)-prefix of Z as an input. We have two ways
to resolve this requirement:

1. Biological solution - Attach a synthesized known string of length s(r + 1) as a pre-
fix/postfix to the target DNA (this can be achieved as part of the cloning process of
the target DNA).
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2. Reveal the needed prefix/postfix by standard sequencing machine or classical SBH chip
(for short sequences the results are reliable).

3.3.7 Universal Chips in Practice

There are several works that claim for molecules that can serve as universal bases (for
example [7]), but this issue is still vague. In any case, no universal chip has been realized
yet.

3.3.8 The Performance of the PFU Algorithm

In order to analyze the PFU algorithm r and s are set as follows: Two constants α > 1 and
β = o(log m) are chosen such that r > 0 and s > 1 are integers:

1. r = 1
α

log4 m + β.

2. s = log4 m + 1 + α− r.

As a result of those values we get that the length of a probe is s(r + 1) = O(log2 m).

Denote by F the event that the PFU Algorithm fails to reconstruct a random target
string of length m. Perparate et al. prove in their paper [1] the following theorem (we omit
the proof here):

Theorem 3.2 ([1]) The algorithm fails to sequence a random string of length m using the
above r, s then: Pr(F ) ≤ 4−α(1+β).

As a result of those values, we conclude the following theorem:

Theorem 3.3 The length of a random string that the PFU algorithm (using chip with ca-
pacity t) succeeds to reconstruct with high constant probability is Θ(t).

Proof: As we saw, the number of probes on the chip is 4r+s.

t = 4r+s = 4log4 m+1+α = m41+α ⇒ (3.12)

m = 4−(1+α)t⇒ (3.13)

m = Θ(t) (3.14)
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3.3.9 Results

Given r, s and the desired probability of failure p = P (F ), the length of the longest random
string that can be unambiguously reconstructed by the PFU algorithm with probability
(1− p) is:

m = r+2
√

p× 4(r+s−1)(1− 1
r+2

)

Figure 3.18 demonstrate the universal chip performance for r + s = 8. The capacity of this
chip (t) is 4r+s = 65, 536 probes (equivalent to a standard chip where k = 8). The s(r + 1)
column shows the probes’ length, Pr(F ) shows the requested failure rate of the algorithm
while m the sequence’s length is being determined according to this value. The m

t
column

presents the chip’s performance. As Preparata et al. proved, its upper bound is 50%. The
best design we can achieve for failure rate of 1% is with values r = 6, s = 2, where the
scheme of the probes will be XXUXUXUXUXUXUX. This allows reconstructing up to
2,739 bases. Obviously the results are better than classical SBH.

3.3.10 Summary

In their article Preparate et al. [1] proved:

1. Theoretical upper bound on length of random targets that any chip can unambiguously
reconstruct.

2. First time that a periodic gapped probe design was analyzed and a reconstruction
algorithm was given to it.

3. Provable performance reaches upper bound (up to a constant) - asymptotically optimal
design.

4. Outperforms previous methods also in practice - with real DNA and for practical values
of s and r.

5. A year later Preparata and Upfal showed a theoretic design that asymptotically reaches
the upper bound (without the constant) [9].

There are two main problems with this work:

1. Handling errors - need to analyze the results when the data on the chip is noisy. A
paper regarding this issue was published by Doi and Imai [2].

2. The realization of universal probes.
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Figure 3.18: The chip performance for all the possible values for r + s = 8. The number of
probes is t = 48 = 65, 536.

Figure 3.19: The chip performance for all the possible values for r + s = 9. The number of
probes is t = 49 = 262, 144.
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Figure 3.20: CGACTAAC - the unknown sequence. The prefix CG is known as well as the
probes (k = 3).

3.4 Handling Long Targets and Error in Sequencing by

Hybridization

This section summarizes the work of Halperin et al. [3], which includes:

1. A polynomial algorithm that handles errors in classical SBH and reconstructs the
correct sequence with probability of 1− ε.

2. A novel design of universal probes which gives improved results in the aspect of noise.

3. A polynomial algorithm for an error-prone SBH, using such arrays, with success prob-
ability of 1− ε and within log2 m factor of the upper bound (m denotes the sequence
length).

3.4.1 Classical SBH with Noise

A Trivial Algorithm

Extend by one base each time according to one of the positive probes that were not used till
now and agrees with the known prefix. For example, in Figure 3.20 the only way to extend
CG is by A, supported by the probe CGA.
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Figure 3.21: CGAC - known prefix. GACGT - false negetive, TTGTC,CGACA - false
positive, ACAGC,CAGCT - fooling probes.

Problems in Practice

1. False negative errors - probes that match the sequence but are missing from the spec-
trum.

2. False positive errors - probes in the experimental spectrum that do not match any
position in the sequence.

3. Fooling probes - probes that match other locations in the sequence and imply wrong
extensions in the current position.

Figure 3.21 exemplified the errors types. In order to handle those problems the idea is to
look ahead in the sequence and to check all other probes which can confirm or deny our
candidate. We will check all the k-length possible extensions and count how many probes
support each extension. In the end we will choose the ”winning” extension and extend our
sequence with the first symbol of that sequence.

Definition A bad path is a possible extension whose first base is false.

As we can see in Figure 3.21 we have four supporters to the correct path - CGACGTTAC
and three supporters to the bad path - CGACAGCTG (two fooling probes and one false
positive). In spite the fact that we do have errors we shall prove that the probability that
a bad path wins is small. The intuition for that is that ”voting process” is less sensitive to
errors.
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Lookahead Algorithm

Given a prefix s1, . . . , si:

1. Enumerate all 4k potential extensions a = a1, . . . , ak.

2. Pick an extension a′ such that the number of supporting probes si−k+2, . . . , si, a
′
1, . . . , a

′
k

is maximal.

3. Set si+1 = a′1.

For each reconstructed position (m) we need to enumerate 4k possible extensions and check
them with a k-size window around the current position. Hence, the running time is O(m4kk).

The Main Theorem

For analyzing the algorithm we make the following assumptions:

• False negative rate is q.

• False positive rate is p = O(2−k). In a classical k-chip we have 4k points and we
showed already that we can unambiguously reconstruct sequences of length O(2k).
Such p implies p4k = O(2k) false positive probes (the same order as our reconstructed
sequence). If we allow p > 2−k most of the signal we get will be false positive, thus the
requirement of such p is reasonable.

• The length of the sequence is m = O(2(1−3q)k).

• The probability of errors in each probe are equal and independent.

Theorem 3.4 The lookahead algorithm fails to reconstruct the sequence with probability
bounded by an arbitrary small constant (1− ε).

Proof sketch

• We expect to see in the spectrum k supporters to the correct symbol. Due to false
negative error each one of them has probability of 1− q to be seen. Hence, the number
of supporting probes for the correct path X ∼ B(k, 1− q).

• For a bad path with j fooling probes, the number of supporting probes is Y = Y 1+Y 2,
where:

The number of fooling probes is Y 1 ∼ B(j, 1− q) - Their probability to appear is
also 1 − q (since they are also ”exposed” to the false negative error). The number of
false positives is Y 2 ∼ B(k − j, p).
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• The algorithm fails if at some point X < Y .

• We can sum over all possible values for j

Pbad = sumk
j=0P [X < Y |jfooling] · P [jfooling].

• Eventually we get two cases for values of j:

Large j: many fooling probes in the bad path - small probability, since it requires
resemblance to the current location substring.

Small j: means that X is even smaller and the reason for this is many false negatives
for the correct path probes. This event also has a low probability since we have a
geometric distribution for it.

3.4.2 Gapped Probes Design

Following PFU’s algorithm, Halperin et al. suggest to use a universal bases within the
probes, but while Preparta et al. suggested a periodic chip this work presents a random
design, means, the location of the don’t care on the probe will be set randomly. Each such
setting will be a probe family (the common feature of the family member will be their
unspecified bases location), all the families will have the same number of specified (or un
specified) bases (see Figure 3.22). The probes are designed with the following features:

• The length of each probe is ck + 1 (where c > 1).

• Each probe has k + 1 specified bases, the rest are universal.

• The last symbol is always a specified base.

• There are βk (β > 1) families of probes.

• For each family: pick randomly set of k positions of specified bases, and implement all
4k+1 possibilities (the last position is also specified).

• The total number of probes (capacity of the chip) is t = βk4k+1.

3.4.3 The Reconstruction Algorithm

Again we will count how many probes ’vote’ for a possible extension:

• For each specified base x, count how many probes support s1, . . . , sck, x.

• Set sck+1 to be the base with maximal support.
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Figure 3.22: Two random families. Each family has 44 = 256 members.
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Complexity

For each position (m) and for each family (O(k)), we need to This technique increases the
chance for finding the check for positive signals only for four members (which equal in the
ck-prefix and differ in their last position) ⇒ O(km). Each family chooses different specific
locations and this adds disqualification elements. Due to the random selection, the families
are independent and that enabled the authors to analyze the algorithm’s performance.

Gapped SBH - Error-Free Case

The authors prove in their work [3], the following theorem:

Theorem 3.5 ([3]) If there are no hybridization errors, the sequence length is m = O(4k/k)
and the number of probes is n = Θ(k4k), then the algorithm fails with probability bounded by
an arbitrary small constant.

Since the number of probes is O(k4k), the length of the reconstructed sequence is optimal
up to log2 factor (which is worse than PFU’s algorithm).

Gapped SBH - Error-Prone Case

The main result of the authors is:

Theorem 3.6 ([3]) In the error-prone case, where the length of the sequence is m < ( (1−q)4k

5k
),

the number of probes is n > 5k4k

1−q
and the false positive rate is p < (1−q)

430
, then the algorithm

fails with probability bounded by an arbitrary small constant.

Here we also have log2 factor distance from the theoretical upper bound with no noise (which
holds also in the case of noise).

3.4.4 Results

The authors compared their algorithm results on real DNA with the results of heuristic im-
plementation of the PFU algorithm with noise by Doi and Imai [2]. Figure 3.23 demonstrates
the success rate in reconstructing the sequence of the algorithms as function of the sequence
length. A sequence with 1500 bases can be reconstructed perfectly with the algorithm of
Halperin et al., while with Preparata et al. algorithm, it can be reconstructed only with 80%
success rate.

In Figure 3.24 the chip capacity is 410 probes and it presents the possible length of the
reconstructed sequence as a function of the error rate when we demand 90% reconstruction
success rate. In both figures p = q.
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Figure 3.23: Source: [3]. Comparing the gapped design. Chip capacity = 48 probes. In
Halperin et al. p = q = 0.005, in Preparata et al. p = q = 0.001.
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Figure 3.24: Source: [3]. Effect of both False positives and negatives. Chip capacity = 410

probes. Assume p = q. The results are for 90% reconstruction success.
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