Analysis of Gene Expression Data Spring Semester, 2004

Lecture 2: March 18, 2004

Lecturer: Ron Shamir Scribe: Eyal Balla and Dror Lupu!

2.1 Introduction

2.1.1 Sequencing by Hybridization

DNA Arrays or DNA Chips were proposed in the late 1980’s by several researchers indepen-
dently for the purpose of DNA sequencing (for example [10], [5] and [4]), and the technology
was named DNA Sequencing By Hybridization (SBH). This method may also be referred
to as "sequencing by k-tuple composition”. The idea is to build a two-dimensional grid (or
matrix) of all possible k-tuples (or "k-mers”) for a given k. At each (i,7) entry a distinct
k-tuple or probe is attached. The matrix of probes will be referred to as the "k-chip”, C(k),
or the "sequencing chip”. The DNA probes are referred to as oligonucleotides, or oligos for
short. Then, a sample of the single stranded DNA to be sequenced is presented to the matrix.
This DNA is labelled with a radioactive or fluorescent material. Each k-tuple present in the
sample hybridizes with its reverse complement in the matrix. After washing unhybridized
DNA from the chip, the hybridized k-tuples can be determined by a device, which detects
the labelled DNA. One can distinguish between two major formats of DNA arrays:

e Format I arrays, in which the targets are attached to the chip and the probes (oligos)
are ”in the air”. The major technique used for this format is Oligo-Fingerprinting.

e Format II arrays, where probes are on the chip and targets (to be sequenced) are ”in
the air”. These chips are either Oligonucleotide Arrays or cDNA Microarrays, where
each spot contains a cDNA clone from a known gene, instead of arbitrary short oligos.

2.1.2 SBH Technology

DNA Arrays can be manufactured with the use of VLSIPS (very large scale immobilized
polymer synthesis), where probes are grown one nucleotide at a time through a photolitho-
graphic process [9]. Every nucleotide carries a photolabile protection group protecting the
probe from further growing. This group can be removed by illuminating the probe with light.
In each chemical step, a pre-defined region of the array is illuminated (by using masks), thus
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removing a photolabile protecting group from that region and activating it for further nu-
cleotide growth. The entire array is then exposed to a particular nucleotide (carrying its
own protecting group), and reactions only occur in the activated regions. The light-directed
synthesis allows random access to all positions of the array and can be used to make arrays
with any probes at any site.

One of the companies specializing in designing and manufacturing ”Format II” arrays
is Affymetrix. The following section describes the technologies used for manufacturing the
GeneChip“array family. This array family is constructed of k-mer oligonucleotide of length
of up to 10 bases. The common size of the k-mer oligonucleotide is 8-10 bases.

Probe Array Design: First, the set of oligonucleotide probes to be synthesized is defined,
based on its ability to hybridize to the target loci or genes of interest. With this
information, computer algorithms are used to design photolithographic masks for use
in manufacturing the probe arrays. Along with every test match oligonucleotide used a
mismatch oligonucleotide is added. The mismatch oligonucleotide differ from the test
match oligonucleotide in only one base placed in the middle of the sequence.

Manufacturing: Probe arrays are manufactured by techniques similar to those employed in
the semiconductor industry. Using a series of photolithographic masks to define chip
exposure sites, followed by specific chemical synthesis steps, the process constructs
high-density arrays of oligonucleotides, with each probe in a predefined position in
the array (see 2.1). In the manufacture process multiple probe arrays are synthesized
simultaneously on a large glass wafer (several times the final chip size). This parallel
process enhances reproducibility and helps achieve economies of scale (decreases price
per unit). The wafers are then diced and packaged into chips.

Hybridization and Detection: Once fabricated, the GeneChip©probe arrays are ready
for hybridization. The nucleic acid sequence to be analyzed (the target) is isolated,
amplified and labelled with a fluorescent reporter group. The labelled target is then
incubated with the array and stained with florescent dye using the fluidics station and
hybridization oven. After the hybridization reaction is complete, the array is inserted
into the scanner, where patterns of hybridization are detected. The hybridization data
are collected as light emitted from the fluorescent reporter groups already incorporated
into the target, which is now bound to the probe array. Probes that most clearly
match the target generally produce stronger signals than those that have mismatches.
A matching Oligo is announced when the response of the match Oligo is stronger than
the mismatch Oligo designed for a specific sequence. Since the sequence and position
of each probe on the array are known, by complementarity, the identity of the target
sequence applied to the probe array can be determined.
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Figure 2.1: The photolitographic process

2.2 Sequence Reconstruction from Spectrum

SBH provides information about k-mers present in the DNA string, but does not provide
information about the positions of these k-mers. Definition: S is said to be the spectrum
of sequence T if S is a multiset of all k-long substrings of T (we assume that the multi
spectrum, the number of occurrences of each k-mer, is also known). Example: T =

ATGCAGGTCC, S = {ATG, AGG, CAG, GCA, GGT, GTC, TCC, TGC}.

Problem 2.1 Sequence Reconstruction from Spectrum:
INPUT: A multi-set of k-mers S = {s1, ..., Sp—g+1}-
QUESTION: Given the spectrum .S, reconstruct the sequence T' that is spanned from it.

2.2.1 A Simple Solution: TSP / Hamiltonian Path
We define the following directed graph:

e Every occurrence of a k-mer in the spectrum is represented by a vertex in the graph
(a k-mer that appears more than once is represented by multiple vertices).

e Every pair of vertices u,v € V are connected by a directed edge e from u to v iff the
k — 1 suffix of u is identical to the & — 1 prefix of v. For example: {GCA, CAT} are
3-mers that are connected by a directed edge, since the 2-mer suffix of GCA equals the
2-mer prefix of CAT.
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A path traversing the graph defined above and visiting each node only once induces a
sequence T' that is the reconstruction of the spectrum.

Problem 2.2 Find a path traversing into each node exactly once.

INPUT: A directed graph H as defined above.

QUESTION: Find a path that visits each vertex exactly once (a Hamiltonian path - the
Travelling Salesman Problem) in H.

Example: In Figure 2.2 we can see a spectrum which is represented as a graph. In this
example, the solution is simple and unique, but in general, the Hamiltonian path is known to
be NP-complete. As a result, this approach is not practical for DNA sequence reconstruction.

@@@@@
G@@

Figure 2.2: A spectrum for T' = ATGCAGGTCC which is represented as a graph: each
k-mer is represented by a vertex.

2.2.2 SBH and the Eulerian Path Problem (EPP)

Pevzner [7] proposed a different approach, which reduces the SBH problem to the Eulerian
path problem, leading to a simple linear-time algorithm for sequence reconstruction. The
idea is to construct a graph, whose edges (rather than vertices) correspond to k-mers and to
find a path in the graph that visits every edge exactly once. In this approach, the vertices
are the full set of (k-1)-mers appearing in the spectrum (each appears as a single vertex).
A (k-1)-mer v is joined by a directed edge with a (k-1)-mer w if the spectrum S contains a
k-mer, for which the first (k-1) nucleotides are identical to v and the last (k-1) nucleotides
are identical to w. A k-mer appearing more than once will be translated into parallel edges.

A path traversing all edges exactly once induces a sequence T that is a reconstruction
of the spectrum given.
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Problem 2.3 Reconstruction problem - Eulerian Path:
INPUT: A directed graph as defined above, G.
QUESTION: Find a path visiting all edges of G (Eulerian path).

Example: In Figure 2.3 we can see the graph G representing the sequence
T=ACAAACGCACTTAA with the spectrum S= {AAA, AAC, ACA, CAC, CAA, ACG,
CGC, GCA, ACT, CTT, TTA, TAA}. Each 2-mer is represented by a vertex.
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Figure 2.3: Pevzner’s graph for T=ACAAACGCACTTAA.

This problem is known to be a simple one, with linear-time solution [11]. However, several
difficulties may occur that make the problem non-trivial:

e The solution is not necessarily unique (for example, we may detect an Eularian cycle,
instead of a path, which corresponds to multiple ambiguous solutions).

e The input data (the spectrum S) may contain errors (false positives, false negatives,
non-certain number of occurrences of each k-mer) - we will not be dealing with this
problem.

2.3 Ambiguous vs. Unique Solutions to SBH

2.3.1 Branching

Ambiguity of a SBH solution occurs if it is impossible to reconstruct the original sequence T
from Pevzner’s graph. This might happen when a branching exists in the graph, as shown
in Figure 2.4 (more details can be found in section 2.4). Note that a branching does not
necessarily lead to ambiguity. There may be branching that lead to a unique solution, as
shown in Figure 2.5.

2.3.2 Probability of Unique Reconstruction

We now study the problem of calculating the probability of unique reconstruction: Given a
n-long target for reconstruction from a k-mer chip, what is the probability of a unique recon-
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Figure 2.4: Ambiguity of a SBH solution.

Figure 2.5: A branching that lead to a unique solution.

struction? For simplicity, we assume that the nucleotides are independent and identically
distributed (i.i.d.) with probability p = i for each of A, T, G and C.

A crude heuristic is based on the observation that k-mers repeats often lead to non-unique
reconstruction. We can therefore claim that a sufficient condition for unique reconstruction
is: having no (k-1)-long repeats leading to different nodes (no branches in graph). There are
approximately (g) potential repeats of length & — 1 corresponding to pairs of positions in

the DNA sequence of length n. Each of them occurs with probability (i)k’l. One must also
take into account that the next base must be different between the two repeats in order for

it to be a branch. This adds a (% factor to the pair probability. Since (g) o~ %2, the expected

number of repeats is approximately "72 . (i)k*1 . %. Solving %2 . (i)k”% ~ 1 yields 4% ~ 2n?.
Hence, a rough estimation of n is the following:

n ~ 4k (2.1)

We note that the number of sites on the DNA chip, which contains all possible combina-
tions of k-long probes of the four possible nucleotides is 4*. Hence, the length of a uniquely
reconstructible target is approximately 1/chip size.
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2.4 Alternating Cycles in Colored Graphs

We wish to better estimate the length of a uniquely reconstructible target that can be
achieved using a DNA chip of size k. In order to do that we’ll present a different problem
of alternating cycles in colored graphs, and conclude some facts that will be applicable in
deducing a bound on £ in our original construction problem.

Consider an undirected 2-colored graph G(V, E).

Definition: An alternating path in G is a path in which no two consecutive edges have
the same color.

2.4.1 Order Transformations of Alternating Paths

Let F' = ..x...y...x...y... be an alternating path in a 2-colored graph G, where z,y € V.
Vertices x and y partition I’ into five sub-paths F' = I} Fy F3F,F5.

Definition: The transformation F' = FiFyF3F F5 = F* = F1F,F3F5F5 is called order
exchange if F* is an alternating path (see Figure 2.6).

Figure 2.6: Source: [9]. Order exchange.
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Let ' = ..xz..x.. be an alternating path in a 2-colored graph G, where z € V.
Vertex x partitions F' into three sub-paths F' = F F5F3.

Definition: The transformation ' = F1F3F3 = F* = F1EF3 is called order reflection
if F* is an alternating path (see Figure 2.7). Note that the order reflection F' = F* in a
2-colored graph exists if and only if F5 is an odd cycle. Otherwise, if F5 is an even cycle,
than the first and last edges in F» must be from different colors, and thus F} EF?, would not
be an alternating path in G.

Figure 2.7: Source: [9]. Order reflection.

2.4.2 Alternating Eulerian Cycles in 2-Colored Graphs

Theorem 2.1 [8] Every two alternating Eulerian cycles in a 2-colored graph G can be trans-
formed into each other by a series of order transformations (exchanges and reflections).

Proof: Let X and Y be two alternating Eulerian cycles in G. Consider the set of alternating
Eulerian cycles C' obtained from X by all possible series of order transformations. Let
X* = xy..t, be a cycle in C' having the longest common prefix with Y = y;...y,,, i.e.
r1..x; = yy1...y; for I < m. If [ = m, the theorem holds. Otherwise, let v = x; = y;, i.e.
er = (v,241) and ey = (v, y;41) are the first different edges in X* and Y, respectively (see
Figure 2.8). Since X* and Y are alternating paths, the edges e; and e; must have the same
color. Since X* is Eulerian path, X* contains the edge e;. Clearly, ey succeeds e; in X*.



Alternating Cycles in Colored Graphs 9

There are two cases (see Figure 2.8), depending on the direction of the edge e; in the path
X* (towards or from vertex v):

Case | wj 3

Figure 2.8: Source: [9]. Transformations between alternating Eulerian cycles.

Case 1: Edge e5 = (y141,v) in the path X* is directed towards v. In this case, X* =
{z1..02111...y11v...xy ;. Since the colors of the edges e; and es coincide, the transfor-
mation X* = F1F2F3 = F1F2F3 = X* is an order reflection (Figure 2.9). There-
fore, X** € C and at least [ + 1 initial vertices in X** and Y coincide, contradicting
the choice of X* as the longest prefix of Y.

Case 2: Edge ey = (v,y;41) in the path X* is directed from v. In this case vertex v partitions
the path X* into three parts: prefix X; ending at v, cycle X5, and suffix X3 starting at
v (see Figure 2.10). X, and X3 have a vertex z; =z, (I < j < k <m) in common (Y
is an Eularian cycle and therefore it also traverses e;. To do so Y must enter the loop
in some edge - or it will not reach v again to traverse e;). Therefore, the cycle X* can
now be rewritten as X* = F} FoF3F,Fy (Figure 2.10). Consider the edges (xy, zx41)
and (z;_1, ;) that are drawn with thick lines.

e [f the colors of these edges are different, then X** = F} Fy F3F, F5 is the alternating
cycle obtained from X* by means of the order exchange shown in Figure 2.10,

top. At least [+ 1 initial vertices of X** and Y coincide, contradicting the choice
of X~*.
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e If the colors of the edges (xy, zx41) and (z;_1, ;) coincide (Figure 2.10, bottom),
then X™ = F1F4EF3F5 is obtained from X* by means of two order reflections
g and h: g F1F2F3F4F5 = F1F2<j 3F4)F5 = FlFQEEF5 h : FlFQEEFg, =
%
B (BE)EE = F(F)BRE = FEBEF,
At least [ + 1 initial vertices of X** and Y coincide, contradicting the choice of
X*.

This conclude the proof for theorem 2.1.m

Order exchatige

Figure 2.9: Source: [9]. Case 1: Edge es = (y;41,v) in the path X* is directed towards v.

2.5 Alternative Solutions in SBH

2.5.1 String Rearrangements

Quite often we can detect two DNA sequences that produce the same SBH spectrum, due to
some "branching”. For example, the spectrum: S = {ATG, TGG, GTC, GTG, GGC, GCA,
GCG, CGT} can be read in two ways (two different permutations of its 2-mers): either as
{AT, TG, GC, CG, GT, GG, GC, CA}, which gives the sequence: ATGCGTGGCA, or as
{AT, TG, GG, GC, CG, GT, GC, CA}, which is equivalent to: ATGGCGTGCA. We can
see that we have a "branching” vertex TG: we can not decide which 3-tuple (TGC or TGG)
follows ATG in the original sequence (there are two ambiguous solutions). Such ambiguity
may be resolved by performing an additional biochemical experiment, for example, by trying
to hybridize ATGC with a target DNA fragment (if the first reconstruction is correct, it will
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hybridize, otherwise not). In order to analyze additional biochemical experiments, one needs
to characterize all DNA sequences with the given spectrum.

In 1992, Ukkonen [12] conjectured that any two strings with the same k-mer compo-
sition can be transformed to one another by simple operations called transpositions and
rotations, defined as follows: Let T be a string, represented by its (k-1)-mers (mean-
ing that it is written as a sequence of its (k-1)-mers), for example: The sequence
{ACTGGGAATCTGATGAATCC} with k = 4 will be written as: T'= {ACT, CTG, TGG,
GGG, GGA, GAA, AAT, ATC, TCT, CTG, TGA, GAT, ATG, TGA, GAA, AAT, ATC,
TCC}.

Definition: If the string 7' (written in (k-1)-mers notation) contains interleaving pairs
of (k-1)-mers x and y, such that: T = ..Z..T...2... then the string T' = ..x..2.2..2..
(where ... and ... change places) is called a transposition of 7. If T' = ..x...x...x..., where z
is a (k-1)-mer, then ..z..xz...z... is also called a transposition of T. In the above example,
we have: ©z = CTG, z = GAA.

Definition: If a string 7" = z...z...x starts and ends with the same (k-1)-mer z, then
the string z...x...z is called a rotation of T'. For example: ACTGGGAATACT = {ACT,
CTG, TGG, GGG, GGA, GAA, AAT, ATA, TAC, ACT} = GGAATACTGGGA .Clearly,
transpositions and rotations do not change k-mers composition.

2.5.2 Ukkonen’s Theorem

Theorem 2.2 [12] Every two strings with the same k-mer composition can be transformed
into each other by transpositions and rotations.

Proof: (Pevzner, 1995 [8]) Consider the de-Bruijn graph G of the spectrum S. Strings
with a given spectrum correspond to Eulerian paths in the directed graph G (see Figure
2.11). Graph G is either Eulerian (i.e. contains an Eulerian cycle) or contains an Eulerian
path. If it is Eulerian, then there exists a set of rotations of the corresponding string. In this
case, each rotation corresponds simply to a choice of an initial vertex in each cycle of G and
the theorem holds (if the graph G is made of one cycle then the single rotation corresponds
to a choice of the initial vertex in the Eulerian cycle).

Otherwise, there is an Eulerian path. Create the 2-colored graph G* by substituting each
directed edge a = (v, w) in G with two undirected edges, (v, a) colored white (dashed line in
Figure 2.11), and (a,w) colored black (solid line in Figure 2.11). Obviously, each alternating
path in the new graph G* is a directed path in G and vice versa. According to Theorem 2.1,
order exchanges and reflections generate all Eulerian paths in G*, and therefore, all strings
with a given k-mer composition.

Notice that the transposition operation corresponds to order exchange in G*. On the
other hand, every cycle in G* is even (due to the way the graph was built). Therefore there
are no order reflections in G*. Therefore, transpositions and rotations generate all strings
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with a given k-mer composition. m

2.5.3 Ukkonen’s Theorem and Unique Reconstruction

Given the above theorem, we can define the necessary and sufficient conditions for the unique
reconstruction of a sequence, given its k-spectrum. To achieve a unique reconstruction we
should prevent the two situations that enable the transpositions and rotations described
above, i.e.:

e No interleaving (k-1)-mer.
e The first and last (k-1)-mers should not be identical.

Given a spectrum of all k-mers, achieved from an n-long target, we want to find the
probability of unique reconstruction, based on Ukkonen’s theorem. We again assume that
the nucleotides are independent and identically distributed with probability p = % for each
of A, C, G and T. As we claimed above:

Pr(non-unique reconstruction) = Pr(rotation) 4+ Pr(interleaved repeats) (2.2)

We continue, by claiming:
Pr(rotation) o~ 4~ *+1) (2.3)

3

Pr(interleaved repeats) ~ (number of interleaved repeats) x 4=2*~1) x <Z)2 (2.4)

Where the last factor (%)2 results from the requirement to have the paths F, and F} different
from each other.
The number of interleaved repeats can be estimated by:

1
number of interleaved repeats =~ <Z> + <g) ~ (ni— ) (2.5)

Since we are interested in unique reconstruction probability, we get f% ~ 1 and thus

n ~ v4*. We conclude that the length of a uniquely reconstructible target is approximately
v/chip size. It can be shown that this bound is a lower as well as an upper bound.

2.6 Positional SBH

2.6.1 Introduction

As we saw in previous sections, the resolving power of DNA arrays is rather low. With 64-Kb
arrays, only DNA fragments of up to 200 bp can be reconstructed in a single SBH experiment.
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To improve the resolving power of SBH, several authors ([1]) have suggested enhancements
of SBH based on adding location information to the spectrum. With additional experimental
work, the measurement of approximate positions of every k-mer in the target sequence is
registered. This additional information makes the reconstruction less ambiguous. Thus, in
addition to the previously obtained k-mer composition, we can now know, for each k-mer
in the spectrum, its allowed positions along the target sequence. This method is called
positional sequencing by hybridization (PSBH).

The reduction of PSBH to Eulerian path problem still applies, but for each edge in
Pevzner’s graph we now have constraints restricting its position in the Eulerian path. Math-
ematically, this gives rise to the positional Eulerian path problem (PEP): Given a directed
graph with a list of allowed positions on each edge, decide if there exists an Eulerian path,
in which each edge appears in one of its allowed positions. In other words, not only do we
demand an existence of an Eulerian path in Pevzner’s graph, we also add constrains for each
edge about its order in the path. Hannenhalli et al. [6] showed that PEP is NP-complete,
even if all the lists of allowed positions are intervals of equal length. Note that this leaves
open the complexity of PSBH. They also gave a polynomial algorithm for the problem when
the range of the allowed position for any edge is bounded by a constant.

Ben-Dor, Pe’er, Shamir and Sharan [3] addressed the problem of positional sequencing by
hybridization in the case that the number of allowed positions per k-mer is bounded, and the
positions need not be consecutive. A linear time algorithm was suggested for solving PEP,
hence, PSBH problem, in the case that each edge is allowed at most two positions (2-PEP
problem). On the negative side, it was shown that PSBH is NP-complete, even if each k-mer
has at most three allowed positions and multiplicity one. This was done by proving that the
3-positional Eulerian path problem (3-PEP) is NP-complete and showing a reduction from
3-PEP to 3-PSBH.

2.6.2 Preliminaries

Let D = (V, E) be a directed, simple and finite graph. We denote m = |E| throughout. For
a vertex v € V, we define its in-neighbors to be the set of all vertices from which there is
an edge directed into v. We denote this by N, (v) = {u : (u,v) € E}. The out-neighbors
Nowt(v) and out-degree are similarly defined.

Let E = {ey,...e,n} and let P be a function mapping each edge of D to a non-empty
set of integer labels in the range [1...m] (its allowed positions). We call such a pair (D, P)
a positional graph. If for all e, |P(e)| < k, then (D, P) is called a k-positional graph. An
Eulerian path 7 in D is said to be compliant with the positional graph (D, P), if 7=!(e) €
P(e) for each e € F, that is, each edge in 7 occupies an allowed position. The positional
SBH problem is defined as follows:

Problem 2.4 Positional SBH:
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INPUT: A multi-set S of p-long strings, where for each s € S, a set P(s) C {0,...|S| — 1}.
QUESTION: Is S the p-spectrum of some string X, such that for each s € S its positions
along X is in P(s)?

If the set of allowed positions for each string is of size of at most k, then the corresponding
problem is called k-positional SBH, or k-PSBH. k-PSBH is reducible to k-PEP in an obvious
manner.

2.6.3 A Linear Algorithm for 2-PEP

The authors [3] gave a linear algorithm for 2-PEP, by proving the linear reduction:

2 — PEP Xjjnear 2 — SAT

Let (D = (V, E), P) be the input 2-positional graph. For every 1 < ¢t < m define A(t)
to be the set of edges allowed at position ¢. For every vertex v € V| define In(v,t) as the
set of t-labelled edges entering v. Thus, In(v,t) = {(u,v) : (u,v) € A(t)} and similarly,
Out(v,t) = {(v,u) : (v,u) € A(t)}.

The following preprocessing step is done initially:
while 3t such that A(t) = {e} is a singleton, do: Set P(e) < {t}.

Lemma 2.3 The preprocessing step does not change the set of Eulerian paths compliant
with (D, P).

If at any stage it is discovered that some set A(t) is empty, then the algorithm outputs False
and halts, since no edge can be labelled t. The preprocessing phase can be implemented in
linear time. In the following we denote by (D, P) the positional graph obtained after the
preprocessing step.

Lemma 2.4 In (D, P) each position is allowed by at most two edges.

Proof: The preprocessing step ensures that if for some position ¢, |A(t)] = 1, then e € A(t)
satisfies |P(e)| = 1. Let R be the set of positions ¢ with |A(¢)| = 1, and let » = |R|. Then
there are m — r positions which |A(t)| > 2, and " > r edges with |P(e)| = 1. Thus,

2(m—7“)§Z|A(t)|:§t:|A(t)|—r:Z|P(e)|—r:2m—7"—7’§2(m—r)

t¢R

Hence, r = 7’ and each label ¢ ¢ R occurs exactly twice, implying that |A(t)| € {1,2} for all
t. |

We say that vertex v is fized to position t in (D, P) if In(v,t) = A(t) or Out(v,t + 1) =
A(t+1). That is, any Eulerian path compliant with (D, P) must visit v at position ¢. Define
boolean variables X! for all t € P(e). Further define the following boolean clauses:
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(1 Xt for every e € E where P(e) = {t}

2 XL oX, for every t ¢ R where A(t) = {eq, es}

3) XheoXb: for every e € E where P(e) = {t1,t2}

(4) X(a b € X(tlfcl) for every t € P(a,b), (t + 1) € P(b,c) and b is not fixed to ¢
(5) X(u v) for every t € P(u,v),t <m, s.t. Out(v,t+1) =10

(6) X(u ) for every t € P(u,v),t > 1, s.t. In(u,t —1)=10

Lemma 2.5 There is an Eulerian path compliant with (D, P) iff the set of clauses (1)-(6)
is satisfiable.

Proof: Suppose that satisfying truth assignment ¢ exists. We shall assign an edge e to
position ¢ iff ®(X’) = True. Clauses (1) and (2) guarantee that exactly one edge is assign
to each position. Clauses (1) and (3) guarantee that each edge is assigned to exactly one
position, and that this position is allowed to the edge.

It remains to show that the above assignment of edges to positions yields a path in D.
Suppose the contrary that both X (ap) and X(b, o) are assigned true, with b # V. Then
clauses (5) guarantee the existence of an edge (b, c) € A(t + 1), while clauses (6) guarantee
the existence of an edge (a/,b") € A(t). Hence, b is not fixed to ¢ and a contradiction follows
from clauses (4). Thus, ® defines an Eulerian path compliant with (D, P).

The converse can be shown in a similar way. m

Theorem 2.6 2-PEP is solvable in linear time.

Proof: The preprocessing step is linear. The number of clauses (1)-(6) is O(m). Each
XOR cluase in (2)-(3) and each equivalence clause in (4) can be written as two OR clauses.
Moreover, one can generate all clauses in linear time. By Lemma 2.3 the problem is reduced
to an instance of 2-SAT, which is solvable in linear time [2]. ®

2.6.4 3-PEP is NP-Complete

It can be shown that 3-PEP is NP-complete. The proof shows reduction to 3-SAT and is
not given here. The full proof details can be found in [3].

2.6.5 3-Positional SBH is NP-Complete

It can be shown that the problem of sequencing by hybridization with at most 3 positions
per spectrum element is NP-Complete, even if each element in the spectrum is unique. The
proof is by reduction from (3,4)-PEP and is not given here. The reader is referred to [3].



16 Analysis of Gene Expression Data (©)Tel Aviv Univ.

F,

Cit ey Colors of thick edges
Fewersal COINCIDE

Order reversal

Figure 2.10: Source: [9]. Case 2: depending on the colors of the thick edges, there exists
either an order exchange or two order reflections transforming X* into a cycle with a longer
common prefix with Y.
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k-mer composition: {ATG, AGC, ACT, TGA, TGG, GAG, GGG, GGC, GCC, CAC, CTGY

AT

Eulerian direcied CT Ca

graph
ﬁ@T % .TTG é éﬁ@c E :'CC

GACij, A

Eulerian hicolored : ®\~. s
N

G ,_eﬁG o Do @: A

ATGGGCACTGAGCC ATGAGCACTGGGCC

Figure 2.11: Source: [9].Ukkonen’s conjecture. The sequence (Eulerian path) on the right is
obtained from the sequence on the left by a transposition defined by the interleaving pairs
of dinucleotides TG and GC. k-mer composition: {ATG, AGC, ACT, TGA, TGG, GAG,

GGG, GGC, GCC, CAC, CTG}.



18

Analysis of Gene Expression Data (©)Tel Aviv Univ.



Bibliography

1]

[10]

[11]

L.M. Adleman. Location sensitive seuquencing of dna. Technical report, University of
Southern California, 1998.

B. Apsvall, M.F. Plass, and R.E. Tarjan. A linear time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters, 8(3), 1979.

A. Ben-Dor, 1. Pe‘er, R. Shamir, and R. Sharan. On the complexity of positional
sequencing by hybridization. Proceedings of the 10 Annual Symposium on Combinatorial
Pattern Matching, 1645, 1999.

R. Dramanac, .. Hood, and R. Crkvenjakov. Dna sequence determination ny hybridiza-
tion: a strategy for effiecient large - scale sequenceing. Science, 260, 1993.

R. Dramanac, I. Labat, I. Brunker, and R. Crkvenjakov. Sequencing of megabase plus
dna by hybridization: Theory of the method. Genomics, 4, 1989.

S. Hannenhalli, P. Pevzner, H. Lewis, and S. Skiena. Positional sequencing by hibridiza-
tion. Computer Applications in the Biosciences, 12, 1996.

P.A. Pevzner. l-tuple dna sequencing: Computer analysis. Journal of Biomolecular
Structure and Dynamics, 7, 19809.

P.A. Pevzner. Dna physical mapping and alternating eulerian cycles in colored graphs.
Algorithmica, 13, 1995.

P.A. Pevzner. Computational Molecular Biology - An Algorithmic Approach. The MIT
Press, 2000.

P.A. Pevzner and R. Lipshutz. Towards dna sequencing chips. in Proceedings of the
19 International Conference on Mathematical Foundations of Computer Science, 841,
1994.

S.K. Stein. The mathematician as an explorer. Scientific American, May 1961.

19



20 BIBLIOGRAPHY

[12] E. Ukkonen. Approximate string matching with g-grams and maximal matches. Theo-
retical Computer Science, 92, 1992.



