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10.1 Introduction

10.1.1 Motivation

A central goal of molecular biology is to understand the regulation of protein synthesis and
its reactions to external and internal signals. All the cells in an organism carry the same
genomic data, yet their protein makeup can be drastically different both temporally and
spatially, due to regulation. One of the main junctions at which regulation occurs is mRNA
transcription. A major role in this machinery is played by proteins themselves, that bind
to regulatory regions along the DNA, greatly affecting the transcription of the genes they
regulate. In order to get a ”snapshot” of transcription levels of the genes within the cell
we use DNA microarrays which measure the expression level for thousands of genes (the
data matrix). An analysis of this data will give us some understanding on the key biological
features of the cellular systems that produced it.

One analysis approach is using clustering algorithms which attempt to locate group of
genes that have similar expression patterns over a set of experiments (for more details see
lecture notes 4-6). This approach has proven to be useful in discovering genes that are co-
regulated. A more ambitious goal for analysis is revealing the structure of the transcriptional
regulation process. This is clearly a hard problem. The current data is extremely noisy.
Moreover, mRNA expression data alone only gives a partial picture that does not reflect key
events such as translation and protein (in)activation. Finally, the amount of samples, even
in the largest experiments in the foreseeable future, does not provide enough information to
construct a full detailed model with high statistical significance.

In this lecture, we describe another approach for analyzing gene expression patterns
(based on the work of Friedman et al. [12]), that uncovers properties of the transcriptional
program by examining statistical properties of dependence and conditional independence
in the data based on Bayesian networks [24]. These networks represent the dependence
structure between multiple interacting quantities by a graph-based model. Such models are
attractive for their ability to describe complex stochastic processes, and for providing clear
methodologies for learning from (noisy) observations.
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10.1.2 Advantages of Using Bayesian Networks

• Bayesian networks are particularly useful for describing processes composed of locally
interacting components, that is, the value of each component directly depends on the
values of a relatively small number of components.

• The statistical foundations for learning Bayesian networks from observations, and com-
putational algorithms to do so are well understood and have been used successfully in
many applications.

• Bayesian networks provide models of causal influence as will be discussed later.

10.2 Bayesian Networks

10.2.1 Representing Distributions with Bayesian Networks

Suppose we are given a set of assertions and a variety of ways in which they support each
other. Each assertion establishes a value for an attribute and is of the form (Xi = xi), that
is, ”Variable Xi has value xi”. The variables are X1, . . . , Xn. We would know everything we
need to know about the world described by these assertions if we had the joint probability
P (X1, . . . , Xn). From this probability function we could compute any other probability such
as P (X2) or P (X2|X3, X5). Unfortunately, assuming for simplicity that the variables are
binary, the representation complexity of P (X1, . . . , Xn) is 2

n, which is impractical even for
small value of n.

Bayesian Networks simplify this problem by taking advantage of existing causal connec-
tions between assertions, and of assumptions about conditional independence. A Bayesian
network is a representation of a joint probability distribution. This representation consists
of two components. The first component, G, is a directed acyclic graph (DAG) whose ver-
tices correspond to the random variables X1, . . . , Xn. The second component, describes a
conditional distribution for each variable, given its parents in G. Together, these two com-
ponents specify a unique distribution on X1, . . . , Xn. The graph G represents conditional
independence assumptions that allow the joint distribution to be decomposed, economizing
on the number of parameters. The graph G encodes the Markov Assumption: Each variable
Xi is independent of its non-descendants, given its parents in G.

Definition We say that x is conditional independent of y given z if P (x, y|z) = p(x|z)p(y|z)
or alternatively p(x|y, z) = p(x|z).
By applying the chain rule of probabilities and properties of conditional independencies,

any joint distribution that satisfies the markov assumption can be decomposed in the product
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form

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|Pa(Xi)), (10.1)

In Figure 10.1 we can see an example of a simple Bayesian network structure. This
network describes the connections between the following events:

• B - There is a burglary.

• A - The alarm goes off.

• E - There is an earthquake.

• R - There is a radio report of an earthquake.

• C - Mr. Watson reports hearing the alarm.

where the list of independences is:

• I(E, B) - Given the parents of E(∅), E is conditionally independent of B.

• I(B, (E, R)) - Given the parents of B(∅), B is conditionally independent of E and R.

• I(R, (B, A, C)|E) - Given the parents of R(E), R is conditionally independent of B, A
and C.

• I(A, R|(B, E)) - Given the parents of A(B, E), A is conditionally independent of R.

• I(C, (R, B, E)|A) - Given the parents of C(A), C is conditionally independent of R, B
and E.

According to equation 10.1, given the graph the joint distribution of the five events is:

P (A, B, E, C, R) = P (E)P (B)P (R|E)P (A|B, E)P (C|A)

We get a representation complexity of O(n2k+1) where n is number of variables and k is
the maximum number of possible parents.
To fully specify a joint distribution, we also need to specify the conditional probabilities

in the product form. The second part of the Bayesian network describes these conditional
distributions, P (Xi|pa(Xi)) for each variable Xi. We denote the parameters that specify
these distribution by Θ. In general, we can choose the form of the conditional distribution:

• Discrete variables - In the case of finite valued variables, we can represent these con-
ditional distributions as tables (see Figure 10.2 for an example).
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Figure 10.1: A simple Bayesian network structure.
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• Continuous variables - Unlike the case of discrete variables, when the variable and its
parents are real valued, there is no representation of all possible densities. We can use
linear Gaussians conditional densities in order to represent multivariate continuous
distributions. That is, the variable is normally distributed around a mean that depends
linearly on the value of its parents. The variance of this normal distribution is inde-
pendent of the parents’ values. If all the variables in the network have linear Gaussian
conditional distributions, then the joint distribution is a multivariate Gaussian [22].

• Hybrid networks - When the networks contains continuous variables with discrete par-
ents we can use conditional gaussian distributions [22]. The case of a discrete value
with continuous parents is not allowed.

Figure 10.2: Source: [35]. An example for discrete variables. This table contains the values
of P (B|A), where A is Age, with values (Young, Middle, Old) and B is Income, with values
(Low, Medium, High).

Given a Bayesian network, we might want to answer many types of questions that involve
the joint probability (e.g., what is the probability of X = x given observation of some of
the other variables?) or independencies in the domain (e.g., are X and Y independent
once we observe Z?). The literature contains a suite of algorithms that can answer such
queries exploiting the explicit representation of structure in order to answer queries efficiently
(see [24, 21]).

Following are some examples for Bayesian networks usage:

• Linkage Analysis [31] - ”Linkage” refers to the tendency of certain genes to be inherited
together. Two genes are said to be ”linked” if they are often inherited together, due
to their close proximity on a chromosome. Linkage analysis is a tool that enables us
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to describe a family genotype tree and to find from which parent a specifics gene has
been inherited. We can learn about a child given information about its parents (no
information about the grandparent is required).

• Phylogenetic tree [30] - evolutionary hypotheses represented as a dendrogram or
branching diagram.

• Markov chain [32] - A collection of random variables having the property that, given
the present, the future is conditionally independent of the past.

10.2.2 Representing Equivalence Classes of Bayesian Networks

Let Ind(G) be a set of independence statements (of the form X is independent of Y given
Z). More than one graph can imply exactly the same set of independencies. For example,
consider graphs over two variables X and Y . The graphs X → Y and X ← Y both imply
the same set of independencies (i.e., Ind(G) = ∅). We say that two graphs G and G′ are
equivalent if Ind(G) = Ind(G′).

Definition A v-structure in a graph is a structure of two directed edges converging into the
same node, such as a→ b← c.

Theorem 10.1 [25] Two DAGs are equivalent if and only if they have the same underlying
undirected graph and the same v-structures.

Moreover, an equivalence class of network structures can be uniquely represented by a
partially directed graph (PDAG), where a directed edge X → Y denotes that all members of
the equivalence class contain the arc X → Y ; an undirected edge X—Y denotes that some
members of the class contain the arc X → Y , while others contain the arc Y → X. Given a
DAG G, the PDAG representation of its equivalence class can be constructed efficiently [3].

10.2.3 Learning Bayesian Networks

The problem of learning a Bayesian network can be stated as follows: Given a training
set D = {x1, . . . ,xN} of independent instances of X , find a network B = 〈G,Θ〉 that best
matches D. More precisely, we search for an equivalence class of networks that best matches
D. In the following we outline the learning method. For more information on the subject
see [17]. The common approach to this problem is to introduce a statistically motivated
scoring function that evaluates each network with respect to the training data, and to search
for the optimal network according to this score. One method for deriving a score is based
on Bayesian considerations (see [5, 19]). In this score, we evaluate the posterior probability
of a graph given the data:
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S(G : D) = logP (G | D)
= logP (D | G) + logP (G) + C

where C is a constant independent of G and

P (D | G) =
∫

P (D | G,Θ)P (Θ | G)dΘ

is the marginal likelihood which averages the probability of the data over all possible pa-
rameter assignments to G. The particular choice of priors P (G) and P (Θ | G) for each G
determines the exact Bayesian score. Under mild assumptions on the prior probabilities,
this scoring metric is asymptotically consistent: Given a sufficiently large number of sam-
ples, graph structures that exactly capture all dependencies in the distribution, will receive,
with high probability, a higher score than all other graphs [15]. This means, that given a
sufficiently large number of instances in large data sets, learning procedures can pinpoint the
exact network structure up to the correct equivalence class. We will use the priors described
by Heckerman and Geiger for hybrid networks of multinomial distributions and conditional
Gaussian distributions (see [17, 18]). Assuming that the data set is a complete data (a data
set in which each instance contains the value of all the variables in the network) several
properties are satisfied by these priors:

• The priors are structure equivalent , i.e., if G and G′ are equivalent structures they are
guaranteed to have the same score.

• The priors are decomposable. That is, the score can be rewritten as the sum

Score(G : D) =
∑

i

ScoreContribution(Xi,Pa(Xi) : D),

where the contribution of every variable Xi to the total network score depends only on
its own value and the values of its parents in G.

• The local contributions for each variable can be computed using a closed form equa-
tion [18].

Finding the structure G that maximizes the score is known to be NP-hard [4], thus we
resort to heuristic search. A local search procedure that changes one arc at each move can
efficiently evaluate the gains made by adding, removing or reversing a single arc. An example
of such a procedure is a greedy hill-climbing algorithm that at each step performs the local
change that results in the maximal gain, until it reaches a local maximum. Although this
procedure does not necessarily find a global maximum, it does perform well in practice.
Examples of other search methods that advance using one-arc changes include beam-search,
stochastic hill-climbing, and simulated annealing.
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10.2.4 Learning Causal Patterns

In order to analyze the mechanism that generated the dependencies we need to model the
flow of causality in the system of interest (e.g., gene transcription). A causal network is a
model of such causal processes. A causal network is similar to a Bayesian network (i.e., a
DAG where each node represents a random variable along with a local probability model for
each node). The difference is that this model views the parents of a variable as its immediate
causes. For example assume X is a transcription factor of Y, so there is an edge X → Y . If
we knockout gene X this will affect the expression of gene Y, but a knockout of gene Y has no
effect on the expression of gene X. We can relate causal networks and Bayesian networks, by
assuming the Causal Markov Assumption. When this assumption holds, the causal network
satisfies the Markov independencies of the corresponding Bayesian network, thus allowing
us to treat causal networks as Bayesian networks.

The central issue is: when can we learn a causal network from observation (a passive
measurement of our domain)? (see [20, 25, 28]). From observations alone, we cannot distin-
guish between causal networks that specify the same independence assumptions, i.e., belong
to the same equivalence class. Thus, if we are willing to accept the causal markov assumption
and we can learn a PDAG from the data, then we can recover some of the causal directions.
Moreover, by using Theorem 10.1, we can predict what aspects of the proposed model can
be recovered based on observations alone. The situation is more complex when we have a
combination of observations and results of different interventions. From such data we might
be able to distinguish between equivalent structures [6].

10.3 Applying Bayesian Networks to Expression Data

This section describes an approach for analyzing gene expression data using Bayesian network
learning techniques. We model the expression level of each gene as a random variable. In
addition, other attributes that affect the system can be modeled as random variables. These
can include a variety of attributes of the sample, such as experimental conditions, temporal
indicators (i.e., the time/stage that the sample was taken from), background variables (e.g.,
which clinical procedure was used to get a biopsy sample), and exogenous cellular conditions.

By learning a Bayesian network based on the statistical dependencies between these
variables, we can answer a wide range of queries about the system. For example, does
the expression level of a particular gene depend on the experimental condition? Is this
dependence direct, or indirect? If it is indirect, which genes mediate the dependency?

We now describe how one can learn such a model from expression data. Many important
issues arise when learning in this domain. These involve statistical aspects of interpreting
the results, algorithmic complexity issues in learning from the data, and preprocessing the
data.



Applying Bayesian Networks to Expression Data 9

Most of the difficulties in learning from expression data revolve around the following
central point: Contrary to previous applications of learning Bayesian networks, expression
data involves transcript levels of thousands of genes while current datasets contain at most
a few dozen samples. This raises problems in computational complexity and the statistical
significance of the resulting networks. On the positive side, genetic regulation networks are
sparse, i.e., given a gene, it is assumed that no more than a few dozen genes directly affect its
transcription. Bayesian networks are especially suited for learning in such sparse domains.

10.3.1 Network Features

When learning models with many variables, small datasets are not sufficiently informative
to significantly determine that a single model is the “right” one. Instead, many different
networks should be considered as reasonable explanation of the given the data. From a
Bayesian perspective, we say that the posterior probability over models is not dominated
by a single model (or equivalence class of models). We would like to analyze this set of
plausible (i.e., high-scoring) networks. Although this set can be very large, we might attempt
to characterize features that are common to most of these networks, and focus on learning
them.

Before we examine the issue of inferring such features, we briefly discuss two classes of
features involving pairs of variables:

Markov Relations

A relation of this type specifies if Y is in the Markov blanket of X, where the Markov
blanket of X is the minimal set of variables that shield X from the rest of the variables in
the model (see Figure 10.3 for an example). More precisely, X given its Markov blanket
is independent from the remaining variables in the network. It is easy to check that this
relation is symmetric: Y is in X’s Markov blanket if and only if there is either an edge
between them, or both are parents of another variable [24]. In the context of gene expression
analysis, a Markov relation indicates that the two genes are related in some joint biological
interaction or process. Note, that two variables in a Markov relation are directly linked in
the sense that no variable in the model mediates the dependence between them. It remains
possible that an unobserved variable (e.g., protein activation) is an intermediate in their
interaction.

Order Relations

An order relation specifies if X is an ancestor of Y in all the networks of a given equivalence
class. That is, if the given PDAG contains a directed path from X to Y . This type of
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relation does not involve only a close neighborhood, but rather captures a global property.
Recall that under the assumptions of Section 10.2.4,
learning that X is an ancestor of Y would imply that X is a cause of Y . However, these

assumptions do not necessarily hold in the context of expression data. Thus, we view such
a relation as an indication, rather than evidence, that X might be a causal ancestor of Y .
While at this point we handle only pairwise features, it is clear that this analysis is not

restricted to them, and we should examine also features that are more complex (see [26]).

10.3.2 Estimating Statistical Confidence in Features

We now face the following problem: To what extent do the data support a given feature?
More precisely, we want to estimate a measure of confidence in the features of the learned
networks, where “confidence” approximates the likelihood that a given feature is actually
true (i.e., is based on a genuine correlation and causation) (see Figure 10.5).
An effective, and relatively simple, approach for estimating confidence is the bootstrap

method [9]. The main idea behind the bootstrap is simple. We generate “perturbed” versions
of the original dataset, and learn from them. In this way we collect many networks, all of
which are fairly reasonable models of the data. These networks show how small perturbations
to the data can effect many of the features.
In our context, we use the bootstrap as follows:

• For i = 1 . . .m (in the experiments, we set m = 200):

– Resample with replacement N instances from D. Denote by Di the resulting
dataset.

– Apply the learning procedure on Di to deduce a network structure Ĝi.

• For each feature f of interest calculate

conf(f) =
1

m

m∑
i=1

f(Ĝi)

where f(G) is 1 if f is a feature in G, and 0 otherwise.

10.3.3 Efficient Learning Algorithms

In section 10.2.3 we formulated learning Bayesian network structure as an optimization
problem in the space of directed acyclic graphs. The number of such graphs is super-
exponential in the number of variables. As we consider hundreds and thousands of variables,
we must deal with an extremely large search space. Therefore, we need to use (and develop)
efficient search algorithms.
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Figure 10.3: Sorce [34]. An example for a Markov blanket. This Markov blanket of X
contains all paths from X to other nodes. There are three kinds of such paths as shown in
the figure: (1) Upward paths the parents of X. (2) Sideway paths the spouses of X. (3)
Downward paths the children of X.
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Figure 10.4: An example of high scoring networks that have a common feature.

To facilitate efficient learning, we need to be able to focus the attention of the search
procedure on relevant regions of the search space, giving rise to the sparse candidate algo-
rithm [14]. The main idea of this technique is that we can identify a relatively small number
of candidate parents for each gene based on simple local statistics (such as correlation). We
then restrict our search to networks in which only the candidate parents of a variable can
be its parents, resulting in a much smaller search space in which we can hope to find a good
structure quickly.

10.4 Experimental Results

The Byesian Networks approach was applied by Freidman et al. [12] to two datasets: the
data of Spellman et al. [10] and the data of Hughes et al. [11]. From this point and on, we
will refer only to the data of Spellman et al. We refer the reader to [26] for details about the
results from the data of Hughes et al.

The data contains 79 gene expression measurements of the mRNA levels of 6177 S. cere-
visiae ORFs. These experiments measure expression in fixed time intervals under different
cell cycle synchronization methods. Spellman et al. identified 800 genes whose expression
varied over the different cell-cycle stages. They clustered these 800 genes, based on the sim-
ilarity of expression profiles, resulting 8 major clusters, which contained 250 genes in total.
The variables of the learned networks were the expression level of each of these 800 genes.
Some of the robustness analysis was performed only on the set of 250 genes that appear in
the 8 major clusters.
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Freidman et al. [12] used the Sparse Candidate algorithm with a 200-fold bootstrap in the
learning process. The learned features show that intricate structure can be recovered even
from such small data sets. It is important to note that this learning algorithm uses no prior
biological knowledge nor constraints. All learned networks and relations are based solely
on the information conveyed in the measurements themselves. These results are available
in [33]. Figure 10.5 illustrates the graphical display of results of this analysis.

10.4.1 Robustness Analysis

Freidman et al. performed a number of tests to analyze the statistical significance and
robustness of their procedure. They carried most of these tests on the smaller 250 gene data
set for computational reasons.
To test the credibility of their confidence assessment, they created a random data set

by randomly permuting the order of the experiments independently for each gene. Thus for
each gene the order was random, but the composition of the series remained unchanged. In
such a data
set, genes are independent of each other, and thus we do not expect to find “real” features.

As expected, both order and Markov relations in the random data set have significantly lower
confidence. Clearly, the distribution of confidence estimates in the original data set have a
longer and heavier tail in the high confidence region. The runs on the random data sets do
not learn almost anything with a confidence level above 0.8, which can lead us to believe that
most features that are learned in the original data set with such confidence levels originate in
true signals in the data. Also, the confidence distribution for the real dataset is concentrated
closer to zero than the random distribution. This suggests that the networks learned from
the real data are sparser.
Since the analysis was not performed on the whole S. cerevisiae genome, Freidman et al.

also tested the robustness of their analysis to the addition of more genes, comparing the
confidence of the learned features between the 250 and 800 gene datasets.

10.4.2 Biological Analysis

Freidman et al. believe that the results of this analysis can be indicative of biological
phenomena in the data. This is confirmed by their ability to predict sensible relations
between genes of known function. We now examine several consequences from this analysis.
We consider, in turn, the order relations and Markov relations found.

Order Relations

The most striking feature of the high confidence order relations, is the existence of dominant
genes. Out of all 800 genes only few seem to dominate the order (i.e., appear before many
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Figure 10.5: Source: [12]. An example of the graphical display of Markov features. This
graph shows a ”local map” for the gene SVS1. The width (and color) of edges corresponds
to the computed confidence level. An edge is directed if there is a sufficiently high confidence
in the order between the pair genes connected by the edge. This local map shows that CLN2
separates SVS1 from several other genes. Although there is a strong connection between
CLN2 to all these genes, there are no other edges connecting them. This indicates that,
with high confidence, these genes are conditionally independent given the expression level of
CLN2.
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genes). The intuition is that these genes are indicative of potential causal sources of the
cell-cycle process. A list of the highest scoring dominating genes appears in Table 10.1.
Inspection of the list of dominant genes reveals quite a few interesting features. Among

the dominant genes are those directly involved in cell-cycle control and initiation. For exam-
ple, CLN1, CLN2 and CDC5, whose functional relation has been established [7, 8]. Other
genes, like MCD1 and RFA2, were found to be essential [16]. These are clearly key genes
in basic cell functions, involved in chromosome dynamics and stability (MCD1) and in nu-
cleotide excision repair (RFA2). Most of the dominant genes encode nuclear proteins, and
some of the unknown genes are also potentially nuclear: (e.g., YLR183C contains a forkhead-
associated domain which is found almost entirely among nuclear proteins). Some of them
are components of pre-replication complexes. Others (like RFA2,POL30 and MSH6) are
involved in DNA repair. It is known that DNA repair is a prerequisite for transcription, and
DNA areas which are more active in transcription, are also repaired more frequently [23, 29].
A few non nuclear dominant genes are localized in the cytoplasm membrane (SRO4 and

RSR1). These are involved in the budding and sporulation process which have an important
role in the cell-cycle. RSR1 belongs to the ras family of proteins, which are known as
initiators of signal transduction cascades in the cell.

Markov Relations

Inspection of the top Markov relations reveals that most are functionally related. A list of
the top scoring relations can be found in Table 10.2. Among these, all involving two known
genes make sense biologically. When one of the ORFs is unknown careful searches using Psi-
Blast [1], Pfam [27] and Protomap [36] can reveal firm homologies to proteins functionally
related to the other gene in the pair (e.g. YHR143W, which is paired to the endochitinase
CTS1, is related to EGT2 - a cell wall maintenance protein). Several of the unknown pairs
are physically adjacent on the chromosome and, thus, are presumably regulated by the same
mechanism (see [2]), although special care should be taken for pairs whose chromosomal
location overlap on complementary strands, since in these cases we might see an artifact
resulting from cross-hybridization.
There are some interesting Markov relations found that are not discovered using clus-

tering techniques. One such regulatory link is FAR1-ASH1: both proteins are known to
participate in a mating type switch. The correlation of their expression patterns is low
and [10] cluster them into different clusters. Among the high confidence markov relations,
one can also find examples of conditional independence, i.e., a group of highly correlated
genes whose correlation can be explained within the resulted network structure. One such
example involves the genes: CLN2, RNR3, SVS1, SRO4 and RAD41. Their expression is
correlated and in [10] all appear in the same cluster. In the resulting network CLN2 is with
high confidence a parent of each of the other 4 genes, while no links are found between them.
This suits biological knowledge: CLN2 is a central and early cell cycle control, while there
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is no clear biological relationship between the others.

10.5 Improving The Framework

The framework we described here can be expanded in a number of promising directions:

• Developing the theory for learning local probability models that are capable of dealing
with the continuous nature of the data.

• Improving the theory and algorithms for estimating confidence levels.
• Incorporating biological knowledge (such as possible regulatory regions) as prior knowl-
edge to the analysis.

• Improving the search heuristics.
• Applying Dynamic Bayesian Networks ( [13]) to temporal expression data.

Finally, one of the most exciting longer term prospects of this line of research is discov-
ering causal patterns from gene expression data. We can build on and extend the theory for
learning causal relations from data and apply it to gene expression. The theory of causal
networks allows learning both from observational data and interventional data, where the
experiment intervenes with some causal mechanisms of the observed system. In gene expres-
sion context, we can model knockout/overexpressed mutants as such interventions. Thus,
we can design methods that deal with mixed forms of data in a principled manner (See [5]
for a recent work in this direction). In addition, this theory can provide tools for experi-
mental design, that is, understanding which interventions are deemed most informative to
determining the causal structure in the underlying system. Friedman et al. have extended
their framework in this direction (see [26]).
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Gene/ORF Dominance # of descendent genes
Score > .8 > .7 Notes

YLR183C 551 609 708 Contains forkheaded associated domain, thus
possibly nuclear

MCD1 550 599 710 Mitotic Chromosome Determinant, null mu-
tant is inviable

CLN2 497 495 654 Role in cell cycle START, null mutant exhibits
G1 arrest

SRO4 463 405 639 Involved in cellular polarization during bud-
ding

RFA2 456 429 617 Involved in nucleotide excision repair, null
mutant is inviable

YOL007C 444 367 624
YOX1 400 243 556 Homeodomain protein
GAT3 398 309 531 Putative GATA zinc finger transcription fac-

tor related to polII transcription
POL30 376 173 520 Required for DNA replication and repair, null

mutant is inviable
RSR1 352 140 461 GTP-binding protein of the ras family in-

volved in bud site selection
CLN1 324 74 404 Role in cell cycle START, null mutant exhibits

G1 arrest
YBR089W 298 29 333
MSH6 284 7 325 Required for mismatch repair in mitosis and

meiosis

Table 10.1: Source [12]. List of dominant genes in the ordering relations (top 14 out of 30).
The first column specifies the name of the gene/ORF, the second column specifies the level of
dominance score of the gene/ORF as appeared in the experiments results, the next column
contains the number of descendent genes with a level of confidence higher than 0.8, the next
column contains the number of descendent genes with a level of confidence higher than 0.7
and the last column supplies additional biological information about the gene/ORF.
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Confidence Gene 1 Gene 2 Notes
1.0 YKL163W-PIR3 YKL164C-PIR1 Close locality on chromosome
0.985 PRY2 YKR012C Close locality on chromosome
0.985 MCD1 MSH6 Both bind to DNA during mitosis
0.98 PHO11 PHO12 Both nearly identical acid phosphatases
0.975 HHT1 HTB1 Both are Histones
0.97 HTB2 HTA1 Both are Histones
0.94 YNL057W YNL058C Close locality on chromosome
0.94 YHR143W CTS1 Homolog to EGT2 cell wall control, both in-

volved in Cytokinesis
0.92 YOR263C YOR264W Close locality on chromosome
0.91 YGR086 SIC1 Homolog to mammalian nuclear ran protein,

both involved in nuclear function
0.9 FAR1 ASH1 Both part of a mating type switch, expres-

sion uncorrelated
0.89 CLN2 SVS1 Function of SVS1 unknown
0.88 YDR033W NCE2 Homolog to transmembrame proteins suggest

both involved in protein secretion
0.86 STE2 MFA2 A mating factor and receptor
0.85 HHF1 HHF2 Both are Histones
0.85 MET10 ECM17 Both are sulfite reductases
0.85 CDC9 RAD27 Both participate in Okazaki fragment process-

ing

Table 10.2: Source [12]. List of top Markov relations. The first column describes the level of
confidence of the relation, the next two columns contain the names of the two genes of the
relation and the last column supplies additional biological information referring the relation.
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