Analysis of Gene Expression Data Spring Semester, 2002

Lecture 9: June 13, 2002
Lecturer: Benny Chor and Ron Shamir Secribe: Meital Levy and Giora Unger'

9.1 The Order-Preserving-Sub-Matrix (OPSM) Prob-
lem

9.1.1 Introduction

In previous lectures we studied various clustering methods and algorithms. We then moved
on, to talk about methodologies that can be termed "beyond clustering”, such as biclustering
and the Plaid model. We will complete this subject by presenting another approach to finding
meaningful patterns in gene expression matrices - the Order Preserving Sub-Matrix (OPSM)
method [4].

9.1.2 Motivation

Recall that standard clustering methods for pattern discovery in gene expression matrices
are based on clustering genes by comparing their expression levels in all experiments, or
clustering experiments by comparing their expression levels for all genes. OPSM goes beyond
such global approaches by looking for local patterns that manifest themselves when we focus
simultaneously on a subset GG of the genes and a subset 1" of the experiments. Specifically,
we are looking for order-preserving submatrices (OPSMs), in which the expression levels of
all genes induce the same linear ordering of the experiments. It will be shown below that
the OPSM search problem is NP-hard in the worst case. Such a pattern might arise, for
example, if the experiments in 7" represent distinct stages in the progress of a disease or in
a cellular process, and the expression levels of all genes in G vary across the stages in the
same way.

9.1.3 OPSM Problem Definition

As we already know, the readout of a DNA chip containing n genes consists of n real numbers
that represent the expression level of each gene, either as an absolute or as a relative quantity
(with respect to some reference). When combining the readouts for m experiments (tissues),

1Based in part on a scribe by Igor Bogudlov and Vladimir Koushnir, Algorithms in Molecular Biology,
Fall 2000.
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each gene yields a vector of m real numbers. To make the OPSM results independent of
the scaling of the data, we consider only the relative ordering of the expression levels for
each gene, as opposed to the exact values. This motivates us to consider the permutation
induced on the m numbers by sorting them. Thus we view the expressed data matrix, D, as
an n X m matrix, where each row corresponds to a gene and each column to an experiment.
The m entries in each row are a permutation of the numbers {1,...,m}. The (i,j) entry is
the rank of the readout of gene ¢ in tissue j, out of the m readouts of this gene (see figure
9.1). Typical values for n and m are in the ranges 500 < n < 15000 and 10 < m < 150.
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14 4 24 4
15 19 19 7
23 39 19 43

Figure 9.1: Ranks representation of a matrix.

We are seeking a biological progression that is represented as a "hidden” k X s submatrix
G x T inside the data matrix D. The k genes from G are co-expressed in the s tissues from
T. This means that the expression levels of all the genes in G move up and down together
within the set T (see Figure 9.2)
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Figure 9.2: The left matrix is the ranks matrix from Figure 9.1. The red cells in the right
matrix form a 3 x 3 OPSM. Please note that the 3 columns can be permutated such that in
every row the ranks would be strictly increasing.

The computational task we address is the identification of large order-preserving sub-
matrices (OPSMs) in an n x m matrix D. A submatrix is order-preserving if there is a
permutation of its columns under which the sequence of values in every row is strictly in-
creasing. In the case of expression data such a submatrix is determined by a set of genes G
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and a set of tissues T' such that within the set of tissues T, the expression levels of all the
genes in (G have the same linear ordering, as illustrated by Figure 9.3. Please note that these
constraints are quite strict - for any two tissues, the same order relation is required over all
the genes.

1 1

Figure 9.3: A graphical view illustrating the order-preserving constraints. The two graphs
represent expression levels of 2 genes for 6 various tissues. It should be emphasized, that for
every pair of tissues, the same order relation is required with respect to both genes.

9.1.4 OPSM Complexity

Problem 9.1 Let’s formalize the OPSM problem, as presented in the previous section:
Input: An n x m ranks matrix M.
Question: Does M contain a s x t order preserving submatrix (OPSM) ?

Theorem 9.1 The OPSM problem is NP-complete.

Proof: A reduction from the Balanced Complete Bipartite Graph (BCBG) problem can
be shown (the full reduction can be found in [4]). The BCBG problem is known to be
NP-complete [9]. m

It should be mentioned, however, that the above reduction assumes a "relatively square”
matrix M, that is - k and s are close values. For the case k > s the above reduction might
not be sufficient.
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9.1.5 Outline of the Solution

Having completed the presentation of the problem, we can now describe the algorithmic
approach that was taken towards solving this problem. There are several stages we will go
through:

e Generating simulated data, i.e. - planting an OPSM in an otherwise random matrix
M. This is done using a specific probabilistic model, and is a means of evaluating the
performance of the algorithm.

e Designing an OPSM hunting algorithm.

e Testing the algorithm on the simulated data.

9.1.6 Probabilistic Model

We model gene expression data by a random data matrix D in which an unknown order
preserving submatrix GG x T" has been planted. The process of generating a data matrix with
a planted order preserving submatrix (OPSM) consists of three stochastic steps:

1. First we choose at random the indices for the planted rows and columns.
2. Second, we order the planted columns randomly:.

3. Finally, we assign ranks at random to the data matrix in a way which is consistent
with the planted submatrix.

More formally, the parameters of the stochastic process are:
e n (number of genes).

e m (number of experiments).

e s (size of T').

e p (probability that a row i is in the subset ). One may ask why not simply choose
k, as the size of G 7 The answer is, that this would create an undesired dependence
between the rows.

and the steps are:

1. Toss ii.d. coins X; for every i (i = 1, ..., n), with probability p of coming up heads
(X;=1). The set of genes G, is the set of indices i with X;=1, and the expected size
of G is pn. For the set of experiments, we choose a subset T C{1,...,m} of size s

uniformly at random.
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2. Pick uniformly at random a linear ordering ¢4, ts,..., t5 of the elements of T'. Denote
this linear ordering as .

3. For every row i assign the m entries in the i-th row of D independently by a random
permutation of 1,...,m.

4. For each row i with X;=1 (i € G), rearrange the ranks in the columns corresponding
to T
The entry in column ¢q, D[i, 1], will be assigned the lowest rank among these s entries,
the entry in column ¢, will be assigned the second rank among the entries corresponding
to T', and so on. The entry DJi, ts] will be assigned the highest rank among the entries
of T.

With the completion of these steps the data matrix D with the planted submatrix G x T
is determined. Note that in addition to the set of planted rows, GG, every non-planted row has
a probability of (1/s!) to satisfy the same ordering constraints as the planted rows. Given
D and T, those "spurious planted” rows are indistinguishable from the ”genuine planted”
rows. Thus, the algorithmic goal is, for a given D, to recover the set of planted columns 7',
and their planted linear order 7. The set of rows supporting this model (”genuine planted”
together with the ”spurious planted”) is then uniquely defined.

9.1.7 OPSM Hunting Algorithm
Complete Models vs. Partial Models

Definition Let 7" C {1,...,m} be a set of size s. Let m = (t1,...,ts) be a linear ordering
of T.'The pair (T, 7) is called a complete OPSM model or simply a complete model.

We say that a row i € {1,...,n} supports (7, 7) if the s corresponding entries, ordered
according to the permutation 7, are monotonically increasing, namely D[i,t1] < Dli, 5] <
... < DIi,tg|. Intuitively, for a given ¢, we would like to find a complete model of size t,
with a maximal number of supporting rows. Ideally, given t, one would like to find all the
possible complete models. However, such an exhaustive search would be too computationally
demanding.

Definition A partial model of order (a, b) specifies the indices of the a "smallest” elements
< t1,...,t, > and the indices of the b "largest” elements < ts_py1,...,ts > of a complete
model (7, 7). A partial model also specifies the size s of the complete model.

An alternative to the impractical exhaustive search mentioned above, would be to ” grow”
partial models iteratively, with the goal of ”converging” to the best complete model. After
every iteration, we will keep the | best partial models, 1 being a parameter chosen according
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to performance limitations. It should be noted, that retaining only the best partial model
instead of 1 models would decrease the chance for the algorithm to succeed.

Algorithmic Strategy
The outline of the algorithm is as follows:

e Initial stage - go over all partial models 6 of order (1,1), each specifying two extreme
columns and their order.

e Keep growing partial models iteratively.

At each stage retain the 1 best partial models.

Continue until complete models are reached.

Output the best complete model found.

The complexity of this algorithm is O(nm?sl). It should still be explained how the [ best
partial models are chosen in every iteration, that is, how do we score a partial model.

Scoring a Partial Model

Given a partial model 0 of order (a,b), we'd like to estimate its quality. Let us denote by
7 the underlying (hidden) complete model used to generate the data matrix D, and let p
denote the (unknown) probability for rows to be planted with respect to 7. To score the
partial model 0, we assume that 7 is an extension of 6, and estimate p. We use the estimated
p as the quality measure of 6 - the more rows seem to be planted with respect to 6, the more
confident we are in 6. Thus, all we have to do is performing the actual estimation of p.

Let Dy(i) denote the vector of ranks in the ¢-th row within the columns specified by the
partial model 6.

Let
A; = Prob[Dy(i)| X; = 1], (9.1)

and let
B; = Prob|Dy(i)|X; = 0]. (9.2)

That is, A; denotes the probability of observing the ranks Dy(i), given that i is a planted
row, and B; denotes the probability of observing Dy(7), given that row i is not planted.
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Note, that A; is an increasing function of (D[i,w(t — b+ 1)] — DJi, 7(a)]), i.e. , the gap
between the smallest among the "largest” elements and the largest among the “smallest” el-
ements. Intuitively, this gap indicates how many extension options exist for 6. Interestingly,
fact is, since the computation depends on only two values, it doesn’t become complicated
when the number of columns included in the current partial model increases. As was ex-
plained above, we are interested in the probability that a given row is planted (by a complete
model extending 6) after observing Dy(i). This probability can be computed using Bayes
Theorem:

Aip

Aip+ Bi(1 —p)

remove We denote this quantity by p;(6,p). Summing over all rows, we get that the
expected number of planted rows (by a complete model that extends 0) after observing Dy,
is X pi(0,p). Let X = >, X; be the random variable counting the number of planted
rows, and let Y be the random variable consisting of all the data for the partial model 6.
Then E[X]| = np and, as we have just seen, E[X|Y] = >, pi(6,p). Using the identity
E[X] = E[E[X|Y]] we find that E[}X",p;(0,p)] = np. Thus X", p;(0,p) is an unbiased
estimator of np. Moreover, application of a Chernoff bound shows that the random variable
> pi(0,p) is concentrated around its expectation, and therefore is a reliable estimator
of np. Thus we can estimate p by solving for p the implicit equation Y-, p;(0,p) = np .
Recalling the formula for p;(0, p) we get the implicit equation

Prob[X; = 1|Dy(1)]) = (9.3)

ZAp+B(1— p) P

Thus, the expected number of planted rows, given the data in 6 columns is

9.4
Z < Aip + B (1 —p) (94)
It can be shown that p can be estimated by solving the following equation:
9.5
Ko Z Aip + B (1 - p) (9:5)

This equation can be solved numerically, giving a single positive solution for p. For full
details about the estimation of p see [4]. This concludes the computation of p, and given a
partial model € we are able to compute its score.

9.1.8 Algorithm Results on Simulated Data

The algorithm was tested on simulated data. All the simulated datasets were 1000 x 50
matrices. The number of planted columns s varied over five values s = 3,4,5,7,10. The
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number of rows in G was determined by flipping a p biased coin per row, where p varied over
four values p = 0.025, 0.05, 0.075, 0.1. Table 9.1 reports the probabilities of the algorithm
correctly recovering the set of planted columns, and their correct internal order. Each entry
of the table is based on one hundred random datasets.

lp \ s[ 3 [ 4[5 [7]10]
0.025 | 0.0 [ 0.01[021]0.72]0.92
005 [ 0.17] 0.7 [0.94] 1.0 | 1.0
0.075 | 069 | 098 | 1.0 | 1.0 | 1.0
01 |[092] 1.0 | 10 | 1.0 | 1.0

Table 9.1: Probability of identifying the planted columns (in the correct order). For all
experiments n = 1000, m = 50 and ¢ = 100. Probabilities are based on 100 simulations per
entry.

In cases where the algorithm fails to recover the planted submatrix, the statistical signifi-
cance of the recovered submatrix was compared to the significance of the planted submatrix.
For certain values of the parameters, the algorithm recovered a submatrix larger than the
planted one. Clearly, those cases should not be considered as failures of the algorithm, but
rather serve as indication that for those simulation parameters there is no hope to recover
the planted submatrix.

9.1.9 Algorithm Results on Real Data

In addition to simulation tests, the algorithm was also run on one breast tumor dataset [5].
This dataset contains 3226 genes and 22 tissues. Out of these 22 tissues there are 8 with
brcal mutations, 8 with brca2 mutations, and 6 sporadic breast tumors.

Several statistically significant OPSMs were found in the dataset. One such OPSM had
s = 4 tissues, supported by k = 347 genes. This pattern is statistically significant since we
would expect to find only (3226/4!) = 134 genes that support such a pattern at random,
and the overabundance of supporting genes might suggest biological relevance. Interestingly,
the first three tissues are all brca2 mutations, while the last one (largest expression levels) is
sporadic. These results are graphically depicted in Figure 9.4. The region marked by thick
lines indicates the 347 x 4 order preserving submatrix.
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2 4 6 8 10 12 14 16 18 20 22

Figure 9.4: An order preserving submatrix identified in breast cancer data, consisting of 347
genes and 4 tissues.

9.2 Genetic Networks

9.2.1 Preface

An ultimate goal of a molecular biologist is to use genetic data to reveal fundamental cellular
processes, and their impact on complex organisms. In order to achieve this goal one has to
study complex systems of several genes and proteins, that carry out a specific function,
rather than single genes. Such research can help identify proteins and genes associated with
human diseases, which has huge practical importance.

9.2.2 Biological Background [3]

The different cell types in a multicellular organism differ dramatically in both structure and
function. They become different from one another because they synthesize and accumulate
different sets of RNA and protein molecules.

Studies of the number of different mRNA sequences in a cell suggest that a typical higher
eucaryotic cell synthesizes 10,000 to 20,000 different proteins. Most of these are too rare to be
detected by two-dimensional gel electrophoresis of cell extracts. If these minor cell proteins
differ among cells to the same extent as do the more abundant proteins, as is commonly
assumed, a small number of protein differences (perhaps several hundred) is sufficient for
creating vast differences in cell morphology and behavior.
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Gene Expression Regulation

If differences between the various cell types of an organism depend on the particular genes
that the cells express, at what level is the control of gene expression exercised ? There are
many stages in the pathway leading from DNA to protein, and all of them can, in principle,
be regulated. Thus a cell can control the proteins it synthesizes in several ways (see also
Figure 9.5):

1. Controlling when and how often a given gene is transcribed (transcriptional control).

2. Controlling how the primary RNA transcript is spliced or otherwise processed (RNA
processing control).

3. Selecting which completed mRNAs in the cell nucleus are exported to the cytoplasm
(RNA transport control).

4. Selecting which mRNAs in the cytoplasm are translated by ribosomes (translational
control).

5. Selectively destabilizing certain mRNA molecules in the cytoplasm (mRNA degrada-
tion control).

6. Selectively activating, inactivating, or compartmentalizing specific protein molecules
after they have been made (protein activity control).

inactive mRNA
NUCLEUS CYTOS0L miRM A I
degradation &
primary control
RNA J
DMA ____ transcript mRNA : mRNA .
1 2 3
transcriptional LTS FRNA ) )
control processing transpaort translation a protein
contral control control Activity
control
r &
protain = inactive
protein

Figure 9.5: Six stages at which eucaryote gene expression can be controlled.

For most genes transcriptional controls are paramount. This makes sense because, of all
the possible control points illustrated in Figure 9.5, only transcriptional control ensures that
no superfluous intermediates are synthesized.
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DNA-binding Motifs in Gene Regulatory Proteins

How does a cell determine which of its thousands of genes to transcribe? The transcription
of each gene is controlled by a regulatory region of DNA near the site where transcription
begins. Some regulatory regions are simple and act as switches that are thrown by a single
signal. Other regulatory regions are complex and act as tiny microprocessors, responding to
a variety of signals that they interpret and integrate to switch the neighboring gene on or
off. Whether complex or simple, these switching devices consist of two fundamental types
of components:

e Short stretches of DNA.
e Gene regulatory proteins that recognize these sequences and bind to them.

These proteins are called transcription factors. A transcription factor can be an activator
(activating and accelerating the transcription) or a repressor (repressing the transcription).
Additionally, a group of genes can be regulated simultaneously (the precise mechanisms
differ between eucaryotes and procaryotes). There are several additional mechanisms for
controlling gene expression levels, e.g., the extent to which the DNA is folded (in eucaryotes).

9.2.3 Genetic Networks

Definition A genetic network is a set of molecular components such as genes, proteins and
other molecules, and interactions between them that collectively carry out some cellular
function.

Genetic Networks describe functional pathways in a given cell or tissue, representing
processes such as metabolism, gene regulation, transport and signal transduction. Let us
examine several examples:

1. Expression of the Gene proB

Figure 9.6 depicts the gene’s expression and its role in catalyzing a specific chemical
reaction in the cell. The proB gene is being expressed into the gamma-glutamyl-
kinase protein, which catalyzes a reaction involving glutamate and ATP, that produces
gamma-glutamyl-phosphate and ADP compounds.

2. A Simple Metabolic Pathway - Proline Biosynthesis

The next example is part of a simple metabolic pathway, involving a chain of gener-
ated proteins, which is shown on Figure 9.7. One of the final products of the chain,
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Figure 9.6: An example of the role of gene expression in catalyzing chemical reactions.

proline, inhibits the initial reaction that started the whole process. This ”feedback
inhibition” pattern is highly typical to genetic networks, and serves to regulate the
process execution rate.

3. Methionine Biosynthesis in E-coli.

The following two figures show a more complex genetic network, describing Methionine
biosynthesis in E-coli. The second figure is a schematic representation of the pathway,
with most nodes omitted, but it can give a better idea of the overall topology.

4. A Genetic Network that Performs Signal Transduction

This last example, depicted in Figure 9.10, is that of signal transduction - a complex
cellular process initiated by a signaling protein, arriving from outside of a cell. This
process eventually affects gene expression in both the cytoplasm and inside the nucleus.
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Figure 9.7: An example of a metabolic pathway: Proline biosynthesis.



14 Analysis of Gene Expression Data (¢)Tel Aviv Univ.

Laspartate
oe ]
aspart ate kinase lhomosenine dehypdrogenase I o aTe
Comd— (2758
[epresin}—eT ¢ .
mEt B L operan -
.z nm. L / asd aspart sbe sernisl debyde deshydogenase ) LAgpartate- 4P
o §— {7~ Comsia——> [T O WP e
5 ) [ i) HalPs; Pi
. 5 h s ¥ L -Bapaital & 2emialdebide
B S P (T By
et Comsed e [ 1013 AR
N =7} NAOP
d L- Homaserine
=5 e
homoserine O succinyttraret erse ] sonin becsyrt
Lzp=e) 5—-—'»1: e = & o SCa
{ (3 HiCod
|, L) T
T R
“‘tr.f__H'-k'rﬁrrﬁﬂrr cystakhionire -gum ma-syrthase ) apihe-guccnyl-L- Homosen re
/ NN o o [TamE 0 LCweine
o T (T Sucsinge
wystathiorine beta-lyase ] E:.En‘lgmne
- ———- T b
. ' e ] '5 = Pynrate; HHL
w r’?‘ Y rnetE Horrec st e
\."._ §‘ Eobala'r\.in-r!deperder: Fernoceire frarem ehylaze Shletol THE
Rt Tr—{emed e
| [ mpvme] [ gpeguiars

O

5, THF
et v _L I o e e
_§,' matH Cobalamin.dependent homaooysters trnsmathdase h T
et R med R activator ] L !.'ﬂh&lnm e
E e T
T o TR

[P B T P

Figure 9.8: Methionine biosynthesis network in E-coli.
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Figure 9.10: A genetic network that performs signal transduction from outside the cell into
the nucleus.

9.2.4 Functional Analysis

Using a known structure of such networks it is sometimes possible to describe the behavior of
cellular processes, reveal their function and determine the role of specific genes and proteins in
them. That is why one of the most important and challenging problems today in molecular
biology is that of functional analysis - discovering and modelling Genetic Network from
experimental data.

Biological Tools

Addressing this problem has been made possible by recent advances in genetic sequencing
and development of a whole new generation of sophisticated biological tools.

The most promising technique to date is based on the view of gene systems as a logical
network of nodes that influence each other’s expression levels. Consequently, one may obtain
some information about gene interactions in the network by measuring gene expression levels.

A variety of experimental tools have been developed recently with the ability to observe
the expression of many genes simultaneously. At the forefront of these technologies lies
the DNA microarray, commonly used to monitor gene expression at the level of mRNA.
Similarly, the rapid identification of proteins and their abundances is becoming possible
through methods such as 2D polyacrylamide gel electrophoresis [1], 2-hybrid systems [2],
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protein chips [14], etc. The main contribution of all of these technologies is that numerous
genes can be monitored simultaneously, making it possible to perform a global expression
analysis of the entire cell.

Additional information about a genetic network may be gleaned experimentally by ap-
plying a directed perturbation to the network, and observing expression levels of every gene
in the network, in the presence of the perturbation. Perturbations may be genetic, in which
the expression levels of one or more genes are fixed by knockout (removal of the gene) or
overezpression (higher than usual level of gene expression), or biological, in which one or
more non-genetic factors are altered, such as a change in environment, nutrition, or temper-
ature. Such biological experiments are very costly and very few such perturbations may be
performed at one time. Thus, reducing the number and cost of experiments is crucial.

The methods presented above supply biological data in terms of expression levels of many
genes at different time points and under various conditions. The functional analysis of the
data can be defined as a computational problem, aiming to infer some plausible model of the
network from the observations, while keeping the number or cost of biological experiments at
a minimum. The model should describe how the expression level of each gene in the network
depends on external stimuli and expression levels of other genes. Additional goals include
construction of a knowledge-base of gene regulatory networks, and verification of pathways
or genetic network hypotheses.

9.2.5 Genetic Network Models

Several models have been proposed in the literature to capture the notion of genetic net-
works and allow mathematical solutions of the computational problem of modelling biological
processes:

e Linear Model:
This model, proposed by D’haeseleer et al [7, 6], assumes that the expression level of
a node in a network depends on a linear combination of the expression levels of its
neighbors.

e Boolean Model:
Proposed by Liang, Fuhrman and Somogoyi [12]. It assumes only two distinct levels
of expression - 0 and 1. According to this model, the value of a node at time t 4+ 1 is
a boolean function of the values of its neighbors at time ¢.

e Bayesian Model:
Proposed by Friedman et. al [8]. It attempts to give a more accurate model of network
behavior, based on Bayesian probabilities for expression levels.

Therefore, we concentrate on the Boolean model. The Bayesian Model will be discussed
in detail in the next Lecture.
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9.2.6 Boolean Network Model

According to the boolean model, a network is represented by a directed graph G = (V, F),
where:

e V represents nodes (elements) of the network.

e [ ia a set of boolean functions (see below), that defines a topology of edges between
the nodes.

A node may represent either a gene or a biological stimulus, where a stimulus is any
relevant physical or chemical factor which influences the network and is itself not a gene or a
gene product. Each node is associated with a steady-state expression level x,, representing
the amount of gene product (in the case of a gene) or the amount of stimulus present in the
cell. This level is approximated as high or low and is represented by the binary value 1 or
0, respectively.

Network behavior over time is modelled as a sequence of discrete synchronous steps. The
set [' = {f,|v € V'} of boolean functions assigned to the nodes defines the value of a node in
the next step, depending on values of other nodes, which influence it. The functions f, are
uniquely defined using truth tables. An edge directed from one node to another represents
the influence of the first gene or stimulus on that of the second. Thus, the expression level
of a node v is a boolean function f, of the levels of the nodes in the network which connect
(have a directed edge) to v.

Definition A trajectory is a sequence of consecutive states of the network. It can be viewed
as a list of N-dimensional vectors (N being the number of nodes in the network), each
representing a state.

9.2.7 A Complementary Approach

We can view an organism as a very large genetic network. If we knew all the interactions
of such a network, we could perfectly understand every single detail in the organism. That
is, we could understand which genes, proteins and other molecules are involved in every
biological process, how exactly the process takes place, etc.

This might be the ultimate goal of biological science, but obviously we are light years
away from it.We therefore make several simplifying assumptions.We model the organism as
many distinct genetic networks, which loosely interact among themselves. We further assume
that every gene depends on no more than 5 other genes.

Indeed, these are heavy assumptions, but they are necessary in order for genetic networks
to be useful in modelling biological processes.

Given such a group of genetic networks, we can explore their properties (global structural
features, types of possible dynamic behaviors etc.).
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Definition An ensemble of genetic networks is composed of similar networks that share
some features. The non constrained features vary at random between networks in the en-
semble.

Properties of an Ensemble of Networks:

e Every network consists of N nodes (genes).
e Fach gene is influenced directly by exactly k& other input genes.
e For each node, the £ input genes are chosen at random.

e For each node, its boolean function is chosen at random from the 22 possible functions.

9.2.8 Simplified Description

Following are a few assumptions taken in order to simplify the model:
e The activation of genes depends on proteins and chemicals.

e The synthesis of proteins participating in a regulatory process is very fast compared
to the regulatory process itself.

e Regulatory proteins decay much faster than the duration of the regulatory processes.
e The concentrations of the regulatory chemicals are constant.

e We can express the activation level (mRNA level or protein level) in time ¢ + 0t as a
function of the activation at time ¢. We will later use 6t = 1.

e Loss of memory occurs within dt time, that is, knowledge of steps before time T is not
needed.

9.2.9 Kauffman’s Model

Kauffman’s Model [10, 11Juses boolean gene levels, 1 for active and 0 for inactive. It also
assumes that time ¢ 4+ 1 is determined by a boolean function of the levels of a fixed set of
input genes at time ¢. This means it can use only 1-step memory. All updates are executed
in a deterministic way and are synchronized. External chemicals are not explicitly taken
into account.

Kauffman’s Model is dynamic:

e At time 0, a level is given to every gene.
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e At each time step t = 1, 2... every gene has a level z;(t), which is determined according
to the boolean functions.

e The global state of the system is X = [z1,29,....x;,] and we say that X(t) alone
determines X (¢ + 1). As time passes, the system moves from state X (t) to X (¢t + 1),
X(t + 2) and so on, following a trajectory.

The states can be thought of as corners in the unit hypercube and a step from one global
state to another can be thought of as shifting from one corner to another. Note, that a legal
move does not have to be between two adjacent corners, since adjacent corners differ only
by one bit.

Examples

Figure 9.11 gives an example of a simple boolean network and associated truth tables. This
example shows a network of three nodes - a, b and c¢. As one can see, the expression of ¢
directly depends on the expression of b, which in turn directly depends on a. Note that b
influences more than one node, a and ¢ (” pleiotropic regulation”), and that a is influenced
by more than one node (”multigenic regulated”).

a |b
EII:II:'C‘J
Tl (L]0

1[0 1
5] i o
0% o o
Al

Figure 9.11: source: [13].A sample boolean network.

The assignment of values to nodes fully describes the state of the model at any given
time. The change of model state over time is fully defined by the functions in F. Initial
assignment of values uniquely defines the model state at the next step and consequently, on
all the future steps. Thus, the network evolution is represented by its trajectory.

Figure 9.12 shows two such trajectories for the sample network. Since the number of
possible states is finite, all trajectories eventually end up in single steady state, or a cycle of
steady states.

Definition An attractor of a trajectory is a single steady state, or a cycle at the end of the
trajectory. The basin of attraction for a specific attractor is the set of all trajectories leading
to it.
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Figure 9.12: source: [13].States trajectories.

One or more attractors are possible. The network in our example has two attractors -
one is the steady state (0,0,0), and the other is a cycle (0,1,0) <= (1,0,1). The attractors
are reached when ¢ — oo. In a finite boolean network, one of the attractors is reached in a
finite time.

States in genetic networks are often characterized by stability - "slight” changes in value
of a few nodes do not change the attractor. Biological systems are often redundant to ensure
that the system stays stable and retains its function even in the presence of local anomalies.
For example, there may be two proteins, or even two different networks with the same
function, to backup each other.

9.2.10 Ensembles of Networks

We defined above what an “ensemble of networks” is, and which properties it possesses.
However, each network has its own dynamics. The main features of the model, attractors
and basins, are determined by the degree of connectivity in each network. A degree of
connectivity £ means that the in-degree of each node is exactly k.



Genetic Networks 21

vl VA
Sl ool

Figure 9.13: An ensemble of random networks with (k = 2). Note that every node in every
network has degree 2.
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High In-Degree
In the case that £ is as high as N — 1:

e X(t+1) is completely uncorrelated to X (t), the output associated to each input set is
random. There is no correlation between outputs corresponding to two inputs which
differ even by a single bit. The system is chaotic and the homeostatic stability is very
low, nearby initial states go to different attractors, and changing one input function
completely destroys the basin structure.

e The number of attractors, about N/e, is very small compared to the 2" possible states.
e The cycles are huge, period size is around 2%°V.

For example, for N = 100,000 we get 10399 states, only 37,000 attractors and cycles
are as long as 10109,

= constant genes
Il oscillating genes

Figure 9.14: A 2-dimensional lattice view of a generic network, i.e., every cell in the lattice
represents a gene. It can be seen, that when the in-degree is high, most of the genes are
oscillating, that is, their state changes very frequently, and only few genes reach a constant
state. Furthermore, the oscillating genes form a giant component, instead of being scattered
all over the lattice.
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Low In-Degree

In the case of k = 2:

e Basins are regular: nearby initial states usually reach the same attractor, high home-
ostatic stability, spontaneous order, even though inputs and functions are completely
random.

e The number of attractors is relatively high - about N'/2.

e Average cycle length is N'/2.

=] constant genes (“frozen core”)
Il oscillating genes

Figure 9.15: A 2-dimensional lattice view of a generic network with low in-degree. One can
see that the effect is opposite to that observed in Figure 9.14 - most of the genes are constant,
forming a giant component, while only few genes oscillate.
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9.2.11 Concluding Remarks about Kauffman’s Model

Kauffman’s model is a highly idealized representation of real genetic networks, due to the
following reasons:

e Chemicals are not taken into account.

e Regulatory proteins are assumed to be synthesized very fast with respect to the regu-
lation process itself.

e Synchronous activation may introduce ”spurious cycles” in boolean dynamical systems.
e Fixed in-degree k is assumed for all genes.

However, Kauffman’s model allows us to address issues which would otherwise be ne-
glected, and to develop an appropriate language in which we can formulate key questions,
such as:

e The importance of attractors in determining the properties of genetic networks.
e Robustness and basins of attraction.
e The importance of the average degree of connectivity.

Kauffman’s model also allows us to examine in a new way the interplay between selection
and self-organization. Moreover, it demonstrates the importance of studying ensembles of
networks to gain insight about their generic properties.
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