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8.1 Introduction to Biclustering

As we have seen in previous lectures, a very central method in the analysis of gene expres-
sion data is clustering. Clustering algorithms are used to transform a very large matrix of
expression values to a more informative collection of gene or condition sets. The members of
each cluster are assumed to share function or form some biological module. Clustering is a
global technique and as such has several limitations. First, clustering partitions the elements
into groups, so each element may appear in at most one group. Second, when clustering gene
expression data, we group the genes according to their behavior over all experiments (simi-
larly for conditions). This may be problematic when working with large databases that may
include many different conditions, only few of which trigger some common gene behavior.

Suppose we are studying yeast cell biology. We may try to use gene expression data
in order to identify functional modules, i.e., large sets of genes sharing some important
cellular function or process. Clustering the genes may give good results as long as we are
targeting a very concrete subsystem. Indeed several works ([17, 7]) used clustering to vastly
expand our knowledge on cell cycle or stress response. However, many genes, even in our
particular example, are important to both stress response and cell cycle as the two systems
are intimately related, so clustering the joint data set would have to create some arbitrary
partition of the two systems, loosing information on their common parts.

A second example for the limitations of clustering comes from clinical studies of cancer.
We may cluster tissues of many patients suffering from several type of cancer in order to
try and identify clinically important subclasses. We may also try to compare our classes
with some additional information on the patients (age, sex, type of cancer, smoking years,
prognosis). When using global clustering of the tissues we can only find one (hopefully the
most significant) signal in the data, for example we may separate the different cancer types.
Other signals, which may be important, will be missed since we are associating tissues with
a single effect.

To try and address these shortcomings, the concept of biclustering was introduced
to gene expression analysis. Biclustering was first defined in the seventies [10] and was
applied to several domains before Cheng and Church [4] coined its usage in computational
biology. Given a gene expression matrix, we search for submatrices that are tightly co-
regulated according to some scoring criterion. We do not require the identified submatrices
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to be disjoint or to cover the entire matrix, instead we wish to build a diverse collection of
submatrices that will capture all the significant signals in our data.

In the following lecture we will describe three approaches to biclustering. We shall first
describe the work of Cheng and Church who used a simple uniformity criterion to score
submatrices and developed a greedy algorithm to identify high scoring ones. We will next
describe a more recent method, called SAMBA, developed for identifying biclusters of high
statistical quality using combinatorial algorithms [18]. SAMBA provides well defined statis-
tical model for the data and is guaranteed to find the optimum (under some assumption).
Finally we shall outline a third biclustering approach, called plaid models, which originates
from statistics and fits the expression matrix to a linear sum of submatrix signals.

Before going into details, we state again the basic reasoning of using biclustring and
the key differences between biclustering and standard clustering. Biclustering is a local
technique by nature, i.e., we try to find local, significant signals in the data. Clustering, on
the other hand, tries to model the whole dataset by reducing it to a collection of subsets.
A successful collection of biclusters will provide a more detailed model of the data and can
uncover more biological implications of it. However, biclustering results will be harder to
interpret.

8.2 Cheng and Church’s Algorithm

The first application of biclustering to gene expression data was the work of Cheng and
Church (2000). Stating its goal as the ability to find signals more delicate than clusters,
the methodology is based on a simple uniformity goal (the Mean Residue Score, defined
below) and uses a greedy algorithm to find one bicluster, combined iteratively to produce a
collection of biclusters.

8.2.1 The Algorithm

We denote the input matrix of expression data as A = (a;;) and the rows (columns) set by
R (C). A submatrix is denoted by A;;(I C R,J C () and we use the auxiliary notation
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We define the Residue Score of an element a;; in a submatrix A7y as RSr;(4,7) = a;; —
arj — aiy + ar; and the Mean Residue Score of the submatrix as H(I,J) = Yicsjes IR;I—T?\
A completely uniform matrix will score zero. A submatrix in which all entries are the sum
of a column parameter and a row parameter (a;; = b; + ¢;) would also score zero. On the
other hand a random submatrix (normally distributed with any parameter) would have the
variance of the distribution as its expected score. We define a  bicluster to be a submatrix
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(1, J) for which H(I,J) < 6. The biclustering algorithm will search for a d-bicluster assuming
that the parameter § was chosen appropriately to avoid random signal identification. For
example, we may choose ¢ as the minimal (i.e. best) score of the output of a clustering
algorithm.

The optimization problem of identifying the largest d-bicluster (the one for which |I| =
|J| is the largest) is NP hard as can be seen by a simple reduction from BALANCED
COMPLETE BIPARTITE SUBGRAPH. We are thus interested in heuristics for finding
a large 0 bicluster in reasonable time. We next present such heuristic which is a greedy
algorithm in essence, show how to speed it up and use it as a subroutine for finding many
biclusters.

A naive greedy algorithm for finding a d-bicluster may start with the entire matrix and
at each step try all single rows/columns addition/deletion, applying the best operation if it
improves the score and terminating when no such operation exists or when the bicluster score
is below §. However, simply recalculating all averages and mean residues for each operation
may be too expensive for large matrices. Cheng and Church’s algorithm uses the structure
of the mean residue score to enable faster greedy steps. The idea is based on the following
lemma:

Lemma 8.1 The set of rows that can be completely or partially removed with the net effect

of decreasing the mean residue score of a bicluster Ary is :

. 1 o

R:{ZEI;EZRSI,J(%]) > H(I,J)} (8.1)
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In words, it is safe to remove any row for which the average contribution to the total score
is greater then its relative share. The same argument is correct for columns and gives rise
to the following greedy algorithm that iteratively remove rows/columns with the maximal
average residue score (Figure 8.1).

Note that since a 1 by 1 submatrix is always a d-bicluster we should hope that the deletion
algorithm will terminate with a large bicluster. It is natural to try and add rows/columns
in an analogous way, using the equivalent lemma and algorithm (Figure 8.2):

Lemma 8.2 The set of rows (columns) that can be completely or partially added with the
net effect of decreasing the score of a bicluster Ary is :

1

R:{i¢1;|J|

> RSiy(i.§) < H(I,J)} (8.2)

J€J

The exact details of the heuristic are not necessarily optimal for any situation. For
example, the algorithm presented here is tailored for cases where there are much more rows
than columns.
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Input: Expression matrix A on genes S, conditions C'
and a parameter 9.

Output: A;; a d-bicluster.

Init: I =5,J=C.

Iteration:

Calculate a;;,a;y and H(I,J). If H(I,J) < 6 output I, J.
For each row calculate d(i) = |—}| Y jes RS1(1, ).

For each column calculate e(j) = |—}| Yier RS1,y(1, 7).

Take the best row or column and remove it from [ or J.

Figure 8.1: Single node deletion algorithm.

Input : Expression matrix A, the parameter 6 and I, J specifying a § bicluster.
Output : Al',J - a d-bicluster with I C I',J C J'.

Iteration

Calculate agj, a;y and H(I, J).

Add the columns with |—}| Sier RS1.y(i,j) < H(I,J).

Calculate a;j, a;; and H(I, J).

Add the rows with ﬁ Yjes RS1 (1, 5) < H(I,J).

If nothing was added, halt.

Figure 8.2: Node addition algorithm.

The Cheng-Church algorithm suggests two additional improvements to the basic deletion-
addition algorithm. The first improvement suggests a multiple node deletion in cases
where the data set is large. This is done by removing at each deletion iteration all rows/columns
for which d(i) > aH(I,J) for some choice of a. The idea is to perform large steps until
the submatrix is relatively small and indeed it is shown that such steps can be done safely
(without increasing the score).

The second algorithmic improvement, involves the addition of inverse rows to the matrix,
allowing the identification of biclusters which contains co-regulation and inverse co-regulation
(i.e., cases where two genes always change in opposite directions). We shall return to this
theme later when discussing SAMBA’s models.

As mentioned in the introduction, the goal of a biclustering algorithm is to identify all
(or many of) the signals in the data set, so clearly, finding one bicluster is not enough. The
Cheng-Church solution to this requirement uses the d-bicluster algorithm as a subroutine
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and repeatedly applies it to the matrix. In order to avoid finding the same bicluster over and
over again, the discovered bicluster is masked away from the data, by replacing the values of
its submatrix by random values. The general biclustering scheme is outlined in Figure 8.3.

Input : Expression matrix A, the parameter 9§, the number of biclusters to report n
Output : n d-biclusters in A.

Iteration

Apply multiple node deletion on A giving I’, J'.

Apply node addition on I’, J" giving 1", J".

Store I”, J" and replace A _j» values by random numbers.

Figure 8.3: Cheng-Church biclustering algorithm.

8.2.2 Experiments

We next describe some of the experiments done by Cheng and Church to validate their
approach. Experiments were done using two datasets, one of human lymphoma ([3]) and the
other of yeast data ([19]). Working with the yeast data, the parameter ¢ was chosen to be a
bit more then the minimal score of the reported clusters. A large set of random submatrices
of varying sizes was then scored and compared to the selected threshold. The simulation
showed that small 0-biclusters have a considerable chance of being random (15% for 3 by
6 matrices, 0.06% for 10 by 6 matrices), but larger  — biclusters may be far from random
(although random here referees to random submatrices rather than random expression data).

Application of the algorithm to both datasets produced 100 biclusters on each, and
some effort was made to test their relation with global clustering and biological information.
For example, the hierarchical clustering of the lymphoma tissues was compared with the
biclusters by testing the condition sets of each bicluster and its partition among the two main
branches of the hierarchy. We shall return to the question of how to validate biclustering
when discussing the SAMBA algorithm.

8.3 SAMBA

We next describe SAMAB, the biclustering algorithm of [18]. SAMBA stands for Statistical
Algorithmic Method for Bicluster Analysis. The motivation underlying its development is
the need for a fast biclustering method that would produce statistically significant results as
part of its design. The key point in the understanding of SAMBA is the statistical model
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used by the bicluster scoring scheme. The hope is that a model which capture the essential
features of the data would guarantee high quality results.

8.3.1 Data Modeling

The intuitive notion of a bicluster is a subset of genes that exhibit similar expression patterns
over a subset of conditions. Following this intuition we define a bicluster as a subset of genes
that jointly respond across a subset of conditions, where a gene is termed responding in some
condition if its expression level changes significantly at that condition w.r.t. its normal level.

The expression data is modeled as a bipartite graph whose two parts correspond to
conditions and genes, respectively, with edges for significant expression changes. Later, we
shall assign weights to the vertex pairs of the bipartite graph according to a statistical
model, so that heavy subgraphs correspond to significant biclusters. We can tag each edge
to incorporate the direction of regulation (up or down) as we shall see later. For now assume
edges are not tagged.

Formally, given an input gene expression dataset we form a bipartite graph G = (U, V, F)
(see Figure 8.4 for an example). In this graph, U is the set of conditions, V' is the set of
genes, and (u,v) € FE iff v responds in condition u, that is, if the expression level of v
changes significantly in u. A bicluster corresponds to a subgraph H = (U, V', E’) of G, and
represents a subset V' of genes that are co-regulated under a subset of conditions U’ (see
Figure 8.4). The weight of a subgraph (bicluster) is the sum of the weights of gene-condition
pairs in it, including edges and non-edges.
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Figure 8.4: Source: [18]. SAMBA modeling : Gene expression data is modeled using a
bipartite graph whose two sides correspond to the set of conditions U and the set of genes
V. An edge (u,v) indicates the response of gene v in condition u. A statistical model assigns
weights to the edges and non-edges of the graph. A: Part of the graph showing the condition
“tupl deletion” and its effect on the genes “gal7” (response) and “ecm11” (no response). B:
A heavy subgraph (shaded) representing a significant bicluster.
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In order to assign statistical meaning to the weight of a subgraph, the authors develop
statistical models for the bipartite graph representation of expression data. Using these
models one can derive scoring schemes for assessing the significance of an observed subgraph
(corresponding to a bicluster). This is done so that the score can be expressed as a sum of
independent contributions from each of the node pairs (condition-genes) in the subgraph.
Using this model, we can reduce the biclustering problem to the problem of finding heavy
subgraphs in a bipartite graph.

8.3.2 A Simple Model

The first statistical model we present is a simplistic one, and is presented as a motivation
for the more sophisticated model that will follow. Let H = (U’, V', E') be a subgraph of G.
Denote |U'| =m/,|V/| =n'. Let p= %, and let k" = |E’|. The model assumes that edges
occur independently and equiprobably with density p. Denote by BT(k,p,n) the binomial
tail, i.e., the probability of observing k or more successes in n trials, where each success occurs
independently with probability p. Then the probability of observing a graph at least as dense
as H according to this model is p(H) = BT(k',p,n'm’) = S (",;T/>pk"(1 — p)m R

Our goal is to find a subgraph H with lowest p(H ). By bounding the terms of the binomial
tail using the first term (which is the largest, assuming that p < 1/2), we obtain the following
upper bound for p(H): p*(H) < p¥'(1 — p)™ ' s, (') < 2vm'p (1 — p)»m' .
Seeking a subgraph H minimizing log p*(H) is equivalent to finding a maximum weight
subgraph of G where each edge has positive weight (—1 — logp) and each non-edge has
negative weight (—1 —log(1 — p)) since the weight of a subgraph are log(p*(H')) under these
weights.

8.3.3 A Refined Model

The simple model presented above is far from the reality. In fact, if we look at the degree
distribution of real gene expression datasets we can identify a very non uniform behavior,
where some of the conditions and genes have very high degrees and others very low degrees.
Assuming a simple random graph model would result in very high scores for the ”bicluster”
defined by all high degree nodes in the graph. We next describe a refined null model that
takes into account the variability of the degrees in G, i.e., it incorporates the characteristic
behavior of each specific condition and gene. This behavior may reflect some experiment
artifact (some genes are more likely to have noisy measurements) or some biological actual
meaning (some of the genes participate in many of the cellular pathways).

Let H = (U',V', E') be a subgraph of G and denote £/ = (U’' x V') \ E'. For a vertex
w € U'UV' let dS denote its degree in G. The refined null model assumes that the occurrence
of each edge (u, v) is an independent Bernoulli variable with parameter p,,,. The probability
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Du,v 18 the fraction of bipartite graphs with degree sequence identical to G' that contain the
edge (u,v), or
_ NG = UV E|dG = dg, (u,v) € E'}]
b= TG = UV, g = dg)

We can estimate p,, using a Monte-Carlo like process, starting from the original graph
and performing a sequence of random edge swaps that preserve the degrees (A formal proof of
a sampling lemma in the space of fixed degree graphs is however still an open problem). The
probability of observing H is thus p(H) = (IT(uw)er Puw) - (y0)em (1 — Puw)). However, we
cannot simply compare subgraphs according to this probability, since it improves (decreases)
as the size of H increases.

To overcome this problem, we use a likelihood ratio to capture the significance of biclus-
ters. The null model is as stated above. For the alternative model we assume that each edge
of a bicluster occurs with constant probability p. > max(, evxv Pu,s- This model reflects
our belief that biclusters represent approximately uniform relations between their elements.
The log likelihood ratio for H is therefore:

(8.3)

]-_pc

log L(H) = Z log Pe + Z log

(uw)EE’ Puw (u,0)EE" ~ Puw

Setting the weight of each edge (u,v) to log picv > (0 and the weight of each non-edge (u,v)

to log 11__% < 0, we conclude that the score of H is simply its weight.

8.3.4 Finding heavy subgraphs

Having assigned weights for edges in our model bipartite graph, such that the weight of a
subgraph encode some reasonable likelihood ratio, we now turn to the problem of identifying
the maximum likelihood bicluster, which is, under our formulation, the heaviest subgraph.

The computational problem of finding the largest node biclique (the one with the largest
number of vertices) in a bipartite graph has an elegant polynomial time algorithm (using
matching). Our problem, however, is more closely related to the problem of finding the
largest edge biclique (the biclique with the largest number of edges) which is NP-hard for
both unweighted [15] and weighted graphs [11]. In fact, the problem of finding the heaviest
bipartite subgraph when edges are assigned positive weights and non edges negative weights
is hard as well (by reduction from CLIQUE). We thus enforce additional limitation on our
graph, namely, restrict the in degree of the genes side, so that a gene that respond in more
then d conditions is ignored. This enables us to develop a polynomial algorithm which is
later used as the basis for a practical implementation that can avoid the degree restriction.
Note that according to the statistical model, genes with high indegree contribute less to
the significance of a bicluster, so running the algorithm without them may not be a very
restricting limitation.
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8.3.5 Maximum Bounded Biclique

We start by describing an O(|V]24)-time algorithm to find a maximum weight biclique in a
bipartite graph whose gene vertices have d-bounded degree. This algorithm will be a key
component in the more involved algorithms that follow.

Let G = (U, V, E) be a bipartite graph. We say that G has d-bounded gene side, if every
v € V has degree at most d. Let w : U x V — R be a weight function. For a pair of subsets
U CUV'CV we denote by w(U', V') the weight of the subgraph induced on U' U V", i.e.,
w(U", V') = Yuevrwev: w((u,v)). The neighborhood of a vertex v, denoted N(v), is the set
of vertices adjacent to v in G. We denote n = |V/| throughout.

Problem 8.1 (Maximum Bounded Biclique) Given a weighted bipartite graph G with
d-bounded gene side, find a maximum weight complete subgraph of G.

Theorem 8.3 The maximum bounded biclique problem can be solved in O(n2%) time and
space.

Proof: Observe that a maximum bounded biclique H* = (U*,V*, E*) in G must have
|U*| < d. Figure 8.5 describes a hash-table based algorithm that for each vertex v € V' scans
all O(2%) subsets of its neighbors, thereby identifying the heaviest biclique. Each hash entry
corresponds to a subset of conditions and records the total weight of edges from adjacent
gene vertices. An iteration over subsets of N(v) can be done in O(2%) time. Hence, the
algorithm spends O(n2?) time on the hashing and finding Up.s;. Computing Vies can be
done in O(nd) time, so the total running time is O(n2¢). The space complexity is O(n2%)
due to the hash-table. m

MaxBoundBiClique(U, V, E, d):
Initialize a hash table weight; weightpes < 0
For all v € V do
For all S C N(v) do
weight[S] —weight[S]+
max{0, w(S,{v})}
If (weight[S] > weightyest)
Ubest — S
weightpes; «—— weight[S]
Compute Viest = Nuer,,., NV (v)
Output (Ubesta ‘/best)

Figure 8.5: Source: [18]. An algorithm for the maximum bounded biclique problem.
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Note that the algorithm can be adapted to give the k condition subsets that induce
solutions of highest weight in O(n2¢log k) time using a priority queue data structure.

8.3.6 Finding Heavy Subgraphs

We will now show how to extend the latter algorithm to find heavy subgraphs which are not
necessarily complete. For simplicity we shall describe the algorithm assuming that each edge
has weight +1 and each non-edge has weight —1. Extension to more general weights can be
done in a similar manner. Formally, given a bipartite graph G = (U, V, E) define a weight
function w : U x V' — {—1, 1} such that w((u,v)) = 1 for (u,v) € E, and w((u,v)) = —1
for (u,v) € (U x V) \ E. Consider the following problem:

Problem 8.2 (Maximum Bounded Bipartite Subgraph) Given a bipartite graph G with
d-bounded gene side, find a maximum weight subgraph of G.

Lemma 8.4 Let H* = (U*,V*, E*) be a maximum weight subgraph of G. Then every vertex
i H* 1s connected to at least half the vertices on the other side of H*.

Proof: Follows from the choice of weights, since if a vertex v € V* has less than [|U*|/2]
neighbors, then removing v from H* will result in a heavier subgraph. The proof for v € U*
is symmetric. ®

Corollary 8.5 A maximum weight subgraph of G has at most 2d vertices from U.

Lemma 8.6 Let H* = (U*,V* E*) be a marimum weight subgraph of G. For each set
X C U* there exists a subset Y C X with |Y| > [|X]/2] such that Y C N(v) for some
veVr,

Proof: Assume there exists X C U* such that all subsets X N N(v),v € V* are of size
smaller than [|X|/2]. Then the weight of the subgraph induced on (U* \ X, V*) exceeds
that of H*, a contradiction. m

The critical observation now is that we can cover the maximum subgraph using no more
the |log(2d)| subset of incoming neigbors. Formally we have the corrolary :

Corollary 8.7 Let H* = (U*,V*, E*) be a mazimum weight subgraph of G. Then U* can
be covered by at most |log(2d)| sets, each of which is contained in the neighborhood of some
verter i V*.

Proof: Denote |[U*| = t. By Lemma 8.6 there exists a subset Y C U* with |Y| > [t/2],
such that Y C N(v) for some v € V*. The same holds for the set U* \ Y, and we can
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continue in this manner until we cover U*. By construction we have at most [logt] sets in
the cover. Since t < 2d by Corollary 8.5, the result follows. m

Corollary 8.7 implies an algorithm to find a maximum weight subgraph. The algorithm
tests all collections of at most [log(2d)]| subsets of neighborhoods of vertices in V. Since
there are O(n29) such subsets we have:

Theorem 8.8 The mazimum bounded bipartite subgraph problem can be solved in O((n2%)'8(2d)
time.

8.3.7 Incorporating the Direction of Expression Changes

In our discussion so far, the underlying bipartite graph used for modeling the data contained
edges for significantly changed genes, but ignored the type of change (increase or decrease in
the expression level). We can integrate additional information into the model by associating
a sign of "up” or "down” with each edge. We now have three types of binary relations in
our bipartite graphs: An "up” edge, a "down” edge or no edge. It is reasonable to look for a
bicluster in which the conditions tend to affect genes in a consistent way, i.e., two clustered
conditions should either have always the same effect or always the opposite effect on each
of the genes. This leads to the definition of a consistent biclique: Given a bipartite graph
G = (U,V, E) with edge sign function ¢ : £ — {—1,1}, we say that an induced biclique
H = (U, V', E') is consistent if there exists an assignment 7 : U' UV’ — {—1,1} such that
for every v € V', u € U’ we have c¢((u,v)) = 7(u)7(v). The maximum consistent biclique
problem in degree-bounded graphs can be solved in polynomial time by reduction to the
standard maximum biclique problem:

Proposition 8.9 There is an O(n2?)-time algorithm for the maximum consistent bounded
biclique problem on graphs with d-bounded gene side.

Proof: Given G and ¢, we construct the graph G’ = (UU U,V UV, E’), where U and
V are copies of U and V, respectively, and E' = {(u,v), (u,?)|(u,v) € E,c((u,v)) = 1} U
{(u,v), (@,v)|(u,v) € E,c((u,v)) = —1}. Suppose that (U’, V') induce a consistent biclique
in G of size k with a sign assignment 7. Then {v € U'UV'|T(v) = 1} U{vlv € U'UV', 7(v) =
—1} induce a biclique of size k in G'. Conversely, if (U’, V') induce a biclique in G, then no
pair u, ¥ is contained in it, so {v €e UUV]v € U'U V" or 7 € U’ U V'} induce a consistent
biclique in G of the same size, where 7(v) = 1if v e U UV  and 7(v) = -1 if v € U'UV".
The claim thus follows from Theorem 8.3. m

We can use simialr ideas to handle consitent subgraphs. All we need is to ensure that
the sum of weights of edges from a node to two opposite sign neighbors is negative. Given
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this condition, the algorithms from previous sections can be applied directly and generate
consistent subgraphs.

8.3.8 Significance Evaluation

In this section we develop a method for computing the statistical significance of a bicluster.
The method computes a “p-value” for a given bicluster B, i.e., the probability of finding
at random a bicluster with at least the weight of B. Let H = (U',V’, E’) be a subgraph.
Suppose at first that U’ is fixed, and we wish to compute the probability of observing H,
given that its weight is maximum among all subgraphs over the same set of conditions U’.
To this end, we note that H is obtained by taking into V' all vertices v € V whose weight
w({v}, U’) is positive. Let fy: : V' — R be a function defined as fy:(v) = max{0,w({v},U’)}.
For each v € V we can view fy(v) as a random variable. The weight of H is just w(H) =
> vev fur(v), a sum of independent random variables. These variables can be shown to
satisfy the requirements of Liapunov’s generalization of the Central Limit Theorem (cf. [5]),
implying that when |V| is sufficiently large, the weight of H is approximately normally
distributed. Hence, we can compute the expectation and variance of w(H) and derive a
p-value p(H) for observing a subgraph with such weight.

Finally, we have to accommodate for the fact that the subset U’ is optimized by the
algorithm. For that, we apply Bonferroni’s rule and compute an upper bound on the p-
value: p*(H) = 2% (H), We call log p*(H) the significance value of H.

8.3.9 The SAMBA Algorithm

The scoring scheme and combinatorial algorithms developed above can be combined to create
the practical SAMBA algorithm. We cannot apply the theoretical algorithm directly on large
datasets since for reasonable degree bounds (e.g. 60), 27 is too large. The suggested solution
avoids hashing all subsets of incoming neighbors per gene and exhaust only subset of small
size (typically 4 — 6 conditions). The heaviest condition sets are then used as kernels that
are extended by a local search procedure.

SAMBA thus works as follows: We first form the bipartite graph and calculate vertex
pair weights using one of the weighting methods described above. We consider a gene to be
up (down) regulated in a condition if its standardized level with mean 0 and variance 1 is
above 1 (below -1). Depending on the data, we may choose to work with signed or unsigned
graphs.

In the second phase of the algorithm we apply the hashing technique of the algorithm in
Figure 8.5 to find the heaviest bicliques in the graph. In fact, SAMBA looks for the k best
bicliques intersecting every given condition or gene. We ignore genes with degree exceeding
some threshold d, and hash for each gene only subsets of its neighbors of size ranging from
N; to Ns.
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The third phase of the algorithm performs a local improvement procedure on the biclus-
ters in each heap. The procedure iteratively applies the best modification to the bicluster
(addition or deletion of a single vertex) until no score improvement is possible. To avoid
similar biclusters whose vertex sets differ only slightly, a greedy algorithm is applied. We
iterate over all generated biclusters, ordered by their score, and filter out biclusters whose
intersection with a previous solution (number of shared conditions times number of shared
genes) is above L%.

An implementation of SAMBA can handle large data sets in a few minutes (15,000 genes,
500 conditions d = 40, Ny = 4, Ny = 6, K = 20, L = 30).

SAMBA((U, V, E, w, d, N1, Ny, k):
U : conditions. V' : genes.
E : graph edges. w : edge/non-edge weights.
Ny, Ny : hashed set size limits. &k : max biclusters per gene/condition.
Initialize a hash table weight.
For all v € V with |[N(v)| < d do
For all S C N(v) with N; <|S| < N, do
weight[S] — weight[S] + w(S, {v}).
For each v € V set best[v|[1...k] to the k heaviest S such that v € S.
For each v € V' and each of the k sets S = best|v|[i]
V' — ﬂuegN(u).
B~ SuUV'.
Do {
a = argmazeyuy(w(B U x))
b= argmaz,cp(w(B — 1))
ifw(BUa) > w(B —b)thenB = BUa

else B=B—-0»
} While improving
Store B.

Post process to filter overlapping biclusters.

Figure 8.6: The practical biclustering algorithm.

8.3.10 Validating Biclustering Quality

As the reader may have noted, for many applications in computational biology, it is hard to
compare different algorithms and methodologies and state clearly which one is "better”. It is
however, very important for any scientific discipline to have means for evaluating the quality
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of a given result and to make sure the field is indeed making progress. We present examples
of two general methodologies for assessing algorithms performance : comparative analysis,
matching algorithmic results with some external knowledge, and intrinsic validation, which
uses randomization to evaluate the significance of the signals discovered.

8.3.11 Comparative analysis

One way for evaluating biclustering algorithms is by using prior biological knowledge as some
form of a gold standard that we can compare to our set of biclusters. A correspondence plot
depicts the distribution of p-values of the produced biclusters, using for evaluation a known
(putatively correct) classification of conditions (e.g., to various cancer types) or a given gene
annotation. We describe the plot when a classification is given. For each value of p on a
logarithmic scale, the plot presents the fraction of biclusters whose p-value is at most p out
of the (say) 100 best biclusters.

p-values are calculated according to the known classification as follows: Suppose prior
knowledge partitions the m conditions into k classes, C1,...,C). Let B be a bicluster with b
conditions, out of which b; belong to class C;. The p-value of B, assuming its most abundant

class is C;, is calculated as p(B) = zg:bi (‘Ck”) (mbﬂfll) / (?) Hence, the p-value measures
the probability of obtaining at least b; elements from the class in a random set of size b. One
should note, that high quality biclusters can also identify phenomena that are not covered by
the given classification. Nevertheless, we expect a large fraction of the biclusters to conform
to the known classification.

As an example for the usage of correspondence plots, we present the analysis of outputs
from the two algorithms we have described so far. Running on the same dataset (the lym-
phoma data of [3]), a collection of biclusters from both algorithm were analyzed using the
known classification of conditions to different clinical types (DLBCL, CLL, FL and more).
The results (Figure 8.7) clearly indicate that SAMBA’s biclusters are much more aligned
with the biological information.

8.3.12 Intrinsic validation

A second, important method for validating the quality of biclusters is by analyzing the re-
sults on random data sets. We should make sure that the results we consider as statistically
significant are not obtained from random data. The details of randomization may be critical
to the integrity of such test. Assume we are using a uniformly random graph model (the
simple model described above) and we randomize the data according to it. Then the arti-
fact we have mentioned before, causing the identification of high degree nodes as biclusters
would not be discovered since the random graph model will follow our originally restricting
assumption.
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Figure 8.7: Source: [18]. A: Performance of different weighting schemes and algorithms.
Correspondence plots for SAMBA, the algorithm of Cheng and Church [4], and random
biclusters. Likelihood weights use p. = 0.9. B: Scatter plots of significance values on
synthetic and real data. x-axis: significance value, y-axis: bicluster weight.

Figure 8.7(B) describes the results of a randomization test done on SAMBA using a
degree preserving random graph model. The analysis was done on two datasets, first the
real data was biclustered and the significance of each bicluster was calculated. Then the
same procedure was done with a random graph preserving all vertex degrees. The scatter
plot not only demonstrate that heavy biclusters are non random but also provides empirical
evidence to the relation of the SAMBA likelihood score and the more formal significance
measure.

8.3.13 Functional Annotation using biclusters

The output of a biclustering algorithm is a collection of significant local signals in the data.
Such signals may be used in diverse application. One example for an application of biclusters
is for automatic annotation of genes. The budding yeast, which is one of the most charac-
terized eukaryotes up to date, contains about 6200 genes, only half of which have a known
function. We can use a large database of gene expression and a set of derived biclusters to try
and associate unknown genes with some function. The idea is simple, whenever a majority
of the characterized genes in a bicluster share a common functional class, it is likely that the
other genes in the bicluster are also related to this class.

A compiled dataset of yeast gene expression, including 515 conditions for the 6,200 yeast
ORF's was used to test this idea. The data was collected from five different experiments [12,
7,8, 17, 13]. Analysis by SAMBA generated 2,406 biclusters ranging over 4,961 genes and
515 conditions. The source for the known functional annotationaswas the SGD database [2],
which includes 3000 annotations using the Gene Ontology [9] vocabulary.

The bicluster set was filtered to include only those biclusters in which more than 60% of
their annotated members had the same class. Out of those, only biclusters that were func-
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Mating Ene Abiot CH Met  AA Met Mating Ene Abiot CH Met AA Met SGD GO Unkown Annots
Lipid Biotic Cyto cC Pro Met Lipid Biotic Cyto cC Pro Met Known Annots
Mating 1 1 3 Mating 2 18 2 4 Mating 87 14 4
Lipid 1| 4 15 Lipid 4 | 2 4 Lipid 923 9 6
Ene 35 6 11 | 46 Ene 61 7 1 5 Ene 71 6 7
Biotic 5 25 8 11 | 22 | 27 Biotic 4 - 4 1 1 1 Biotic 55 4 1
Abiot | 14 4 41 4 10 | 12 | 18 Abiot | 2 9 69 5 3 2 2 Abiot 91 10 1
Cyto | 13 1 38 | 10 4 31 Cyto 2 2 70 | 14 1 4 Cyto 397 10 15
CH Met 30 20 | 49 CH Met 47 4 8 CH Met 93 10 8
CccC 2 1 14 1 cc 11 4 - 9 cc 207 15 18
AA Met 1 15 AA Met 10 4 69 | 10 AA Met 85 36 70
Pro Met 2 2 6 Pro Met 20 20 5 1 6 61 Pro Met 670 31 70
A B C

Figure 8.8: Source: [18]. Yeast functional annotation. A: Annotation specificity. The ta-
ble depicts the annotation accuracy measured using 70:30 cross-validation. Rows represent
classes assigned using our method and columns represent SGD GO classes. Cell (z,y) con-
tains the percentage of genes annotated x that belong to GO class y. Higher percentages are
darker. B: Annotation sensitivity calculated w.r.t. annotated genes only. Cell (z,y) contains
the percentage of SAMBA annotated genes that belong to GO class y and were annotated
x. C: Annotation of unknown genes. The table shows for each functional class its size in
the SGD GO annotation, the number of genes that belong to this class and were annotated
by SAMBA, and the number of unknown genes assigned to this class by SAMBA. Abbre-
viations for functional classes: Mating - mating (sensu Saccharomyces, Fungi); Lipid - lipid
metabolism; Ene - energy pathway; Biotic - response to biotic stimulus; Abiot - response
to abiotic stimulus; Cyb - cytoplasm organization and biogenesis; CH Met - carbohydrate
metabolism; CC - mitotic cell cycle; AA Met - amino acid and derivative metabolism; Pro
Met - protein metabolism and modification.

tionally enriched (p-value below 10~*) were used. The unannotated genes in those biclusters
were now assigned to the most abundant class. Note that each gene may be annotated more
than once, as is the case for the curated GO annotations. For cross validation, 100 runs were
performed and in each one 30% of the annotations were hidden. The overall average success
rate in annotating the hidden genes was calculated.

The results of these runs are summarized in Figure 8.8(A,B). Overall, 81.5% of the test
set annotations matched those known from SGD, demonstrating tha we can extrapolate
functional annotation using biclusters.
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8.4 Plaid Models

We shall next describe a different methodology for gene expression analysis which in some
aspects can be thought of as biclustering. The idea originates from statistics. We are
introducing a linear model for the data, namely we assume that the matrix is a sum of
"plaids” - signals which dominate some submatrix - and we are interested in finding a small
set of such plaids such that the difference between their sum and the observed signal is
only noise. Plaid models are general statistical tools for analysing of multivariate data. In
this section, we will introduce these models, and then describe Lazzaroni and Owen'’s [14]
algorithm for fitting an expression matrix to a plaid model. Finally, we will present some
applications of plaid models to yeast expression data.

8.4.1 The Plaid Model

We already denote the input matrix of expression data as A = (A4;;). AS we already defined,
i =1,...,nis the set of genes and j = 1, ..., p is the set of conditions. A;; describes the level of
expression of gene 7 in sample 7. The number np of data points is very large, and meaningfull
visualization of such a volume of data is very important. A natural starting point is to form
a color image of the data on a n by p grid, with each cell colored according to the value of
A, ;. Figure 1 in [1] shows one such image for yeast data. The ordering of the rows and the
columns in such images is usually arbitrary. It is natural then to consider ways of reordering
the rows and columns in order to group together similar rows and similar columns, thus
forming an image with blocks of similar color, which creates the 'plaid’ pattern (for example,
see figure 2 in [14]). A set of genes behaving similarly in a set of samples, define what is
called a “layer”, which is a synonym to “bicluster”, but in the plaid model context.

An ideal reordering of the array would produce an image with some number K of rect-
angular blocks on the diagonal. Each block would be uniformly colored, and the part of the
image outside of these diagonal blocks would be of a neutral background color. This ideal
corresponds to the existence of K mutually exclusive clusters of genes and a corresponding
of K-partition of the samples. Every gene in tht k’th gene-block is expressed within, and
only within, its sample block k. Mathematically, the corresponding representation is

K
Aij = o+ > [pirkjn (8.4)
k=1
where 11 is a background color, p; describes the color in block k, p;; is a gene-block member-
ship indicator variable, i.e., p;, is 1 iff gene i belongs to the k’th gene-block and x;y, similarly,
is a sample-block membership indicator variable. If overlapping layers are not allowed, we
must add a constraint >_, x;; = 1 for all j, >°; pir = 1 for all . The general model represents
the data as a sum of possibly overlapping layers that do not have to cover the whole array
and assigns several layes to cover the same gene.
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The model in (8.4) describes a response iy, that is shared by all genes in it for all samples
in it. It would also be biologically interesting to identify a set of genes that had an identical,
though not constant, response to a set of samples. Conversely a set of samples with a
common expression pattern for a set of genes would be interesting. The following models
support these notions:

K

Aij = o+ D (e + ci) pinkiji (8.5)
k=1

= fo + Z Wi + Bjk) pikkik (8.6)

Aij = o + Z (e + Qi + Bjk) pirkijn (8.7)

k=1
where each p;; € {0,1} and each rj;, € {0,1}. If ay, or B is used, then >, pirair = 0,
> kikBix = 0 to avoid over parameterization. Here we can get a deeper understanding of
the plaid model image pattern, which is a plot of p, + aur + G-

Each of the models ( 8.4) to ( 8.7) approximates the image by a sum of layers. We may
use the notation 0;;, to represent either pux, p + aug, or py + aug + Bk, as needed. We will
get a little more generality by mixing layer types, so that a;, or G;, might appear in some
but not all 0,jz. The model then may be written as a sum of layers:

K
Aij = o+ > Oijrpickin (8.8)
k=1

Note that the resulting model is a superposition of the two-way analysis of variance models
(see [16]), each defined over a subset of genes and samples.

8.4.2 Estimating Parameters

In the plaid model regression problem, we seek a plaid model with a small value of

1
) D> (A =00 — Z Oijrpijhije)? (8.9)
i=175=1
For each layer k, there are (2" — 1)(2? — 1) ways to select the participating genes and
conditions, and the problem in general is NP-hard (Lazzaroni and Owen do not prove it)
so we revert to numerical heuristics. The heuristic solution of Lazzaroni and Owen is the
following: New layers will be added to the model one at a time. Suppose we have fixed the
first K —1 layers and we are seeking for the K’th layer to minimize the sum of squared error.
Let 0
Z Z(Zi(jK_l) — 9inPiKi€jK)2 (8.10)

i=1j5=1

l\'>|'—‘
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where
K-1

Zi(f{il) = Aij — ;0 — Z Oijkpijhijn (8.11)
k=1

is the residual from the first K — 1 layers.

The regression algorithm uses an iterative approach in which each step optimize 6 values,
p values or k values while fixing the two other parameter families. It is also instrumental to
consider p and k values in a continuous range, only forcing them to take values 0 and 1 in
the last one or several iterations. At intermediate stages, the values of 0;;;, describe a “fuzzy
analysis of variance” in which p;x and k;x are not necessarily 0 and 1. Let 0®) denote all
of the 0;;x values at iteration s. Similarly, let pt (5) and k() represent all of the pir and Kjx
values at iteration s. The starting values for s=0 are randomly generated near 0.5 (more
detailes about initialization can be found in [14]).

Two questions are to be answered:

e How to perform the 6, p or k optimization at each iteration?
e What is the desired total number of layers?

We will answer these questions in the next subsections.

Updating 0, Kjx, pir
To update the 0;;x for each K, we have to minimize:

n

p
> Z Z(K D (LK + aik + Bix)pikkik)? (8.12)

i=1j

wl»—‘

subject to the conditions: Y7, piraix = Yj_; Kix Bk = 0. Straightforward Langrange

multiplier arguments show that

¥ X pikckix 2
(> IO?K)(Z]' K?K)

UK = (813)

Zj(Zi(jK_l) — UEPiKRiK) KK
Qi — (814)
3
PiK 2K KK

Zi(Zz'(jK_l) — UK PiKkKjK)PiK
KiK D ik P?K

Bix = (8.15)

So, in iteration s, we use these equations to update %) from pG~Y and x¢~—V. Note
that the update for pg is the same whether or not the K’th layer include a;x or G;x. The
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updated o,k and B;x are the same whether or not the other is included in the layer. The
values for p;x and kjx that minimize Q are:

K-1
ik kik Zi;
PiKk =
2192 Ii2
i Vijk KK
K-1
P i Uiir pir 27
JK — 2 2
> Hin:OiK

(8.16)

(8.17)

At iteration s, we use these equations to update p®) from ) and k=", and update £ from
6 and p¢~1. Note that genes and conditions are treated symmetrically in this iteration,
and the updates will be the same if they were done in the opposite order.

After we update the parameters for the K’th layer in iterations s = 1,...,.S, (S is the
number of iterations, and according to Lazzaroni and Owen, the algorithm does not appear
to be very seunsitive to the choice of S), we start evaluating the parameters of the (K +1)’th
layer iteratively in the same way. For each K, we check whether a stopping criterion holds
for the layer or not, as detailed below.

Stopping rule

A greedy algorithm that adds one layer at a time requires a stopping rule. We suppose
that in higher K values, the residual becomes more and more similar to a noise. In order to
avoid adding layers that contain unstructured noise, Lazzaroni and Owen (2000) used the
following stopping criterion:

First they define the importance of layer k by of = 37, 320 pirkijrb;;. The algorithm
accepts a layer if it has significantly larger importance than in noise. The distribution of o7
on noise is unknown. In order to evaluate o7 on noise, they randomly permute the data:

e Let Z;; be the residual matrix in which we search for layer k.

e Foreach r=1,..., R, let ZZ(JT ) be a matrix obtained by randomly permuting every row
and column of Z;;. All permutation are independent and uniformly distributed.

e Let 07" denote the importance of layer k found on the randomized data ZZ(; ),

o If 0,3 < maxi<,<p az’r and k < K,,,; add the new layer k to the model.

8.4.3 Experiments

Web Figure 1 shows yeast gene expression data used by Eisen et al. (1998) [6]. The data
are available at [1]. The columns represent timepoints within each of ten experimental
series. FEach of the 2467 rows represents a single probe on the microarray designed to detect
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the expression level of particular gene. After 34 layers, the stopping criterion was met,
and the algorithm was unable to find another meaningful layer. Overall, the 34 layers and
background contained 5568 parameters, fewer than 3% of the number of observations. Web
Figure 2 shows the complete fitted model. There was a little overlapping among the layers,
with fewer the 1% of the data falling into more then one layer. As expected, the plaid model
consistently put columns from the same experimental series together within the same layer.
Moreover, certain gene classes concentrate in a single layer (for example, genes involve in
cell cycle, glycolysis and ribosomal genes).



22

Analysis of Gene Expression Data (¢)Tel Aviv Univ.



Bibliography

1]
2]

3]

[4]

[10]

[11]

[12]

http://www-stat.stanford.edu/ owen/reports/.
http://genome-www.stanford.edu/saccharomyces/.

A.A. Alizadeh et al. Distinct types of diffuse large B-cell lymphoma identified by gene
expression profiling. Nature, 403(6769):503-511, 2000.

Y. Cheng and G.M. Church. Biclustering of expression data. In Proc. ISMB’00, pages
93-103. AAAT Press, 2000.

M.H. DeGroot. Probability and Statistics. Addison-Wesley, 1989.

M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. Proceedings of the national academy of science,

95(25):14863-14868, 1998.

A. P. Gasch et al. Genomic expression programs in the response of yeast cells to
environmental changes. Mol Biol Cell, 11:4241-57, 2000.

A.P. Gasch et al. Genomic expression responses to DNA-damaging agents and the
regulatory role of the yeast ATR homolog meclp. Mol. Biol. Cell, 12(10):2987-3003,
2001.

Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nature
Genetics, 25:25-29, 2000.

J.A. Hartigan. Clustering Algorithms. John Wiley and Sons, 1975.

D.S. Hochbaum. Approximating clique and biclique problems. Journal of Algorithms,
29(1):174-200, 1998.

TR. Hughes et al. Functional discovery via a compendium of expression profiles. Cell,
102:109 26, 2000.

23



24

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

T. Ideker et al. Integrated genomic and proteomic analyses of a systematically perturbed
metabolic network. Science, 291:929-34, 2001.

L. Lazzaroni and A. Owen. Plaid models for gene expression data. Statistica Sinica,
12(1):61-86, 2002.

R. Peeters. The maximum edge biclique problem is NP-complete. cite-
seer.nj.nec.com/peeters00maximum.html.

R.R. Sokal and F.J. Rohlf. Biometry. W. H. Freeman and company, New-York, third
edition, 1995.

P. T. Spellman, G. Sherlock, et al. Comprehensive identification of cell cycle-regulated

genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol.
Cell, 9:3273-3297, 1998.

A. Tanay, R. Sharan, and R. Shamir. Biclustering gene expresion data. Submitted for
publication, 2002.

S. Tavazoie, JD. Hughes, MJ. Campbell, RJ. Cho, and GM. Church. Systematic deter-
mination of genetic network architecture. Nature Genetics, 22:281-285, 1999.



