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6.1 Clustering Gene Expression Data

6.1.1 Overview and Motivation

In any living cell, that undergoes a biological process, different subsets of its genes are
expressed in different stages of the process. The particular genes expressed at a given stage
and their relative abundance are crucial to the cell’s proper function. Analysis of gene
expression patterns can provide an insight into gene/function relationships, effects of medical
treatment, biological processes and more.

Clustering techniques applied to gene expression data partition the genes into groups/clusters
based on their expression patterns. Genes in the same cluster should have similar expres-
sion patterns, while genes in different clusters should have distinct well-separated expression
patterns. We will see several examples of gene expression clustering in Section 6.1.4.

Gene expression data can be represented by a real-valued expression matriz I, where I; ;
is the measured expression level of gene 7 in experiment j (see Figure 6.1). Experiments can
be different time points, different body tissues or different strains of the organism. The i-th
row of the expression matrix is called the expression pattern or fingerprint of gene i.

The similarities between expression patterns of any two genes are represented by a sim-
ilarity matriz S, where S;; is the similarity value between the fingerprints of gene ¢ and
gene j. The similarity matrix can be derived from the expression matrix by applying some
similarity measure to the fingerprints of every pair of genes. Similarity measures can be
application-dependent. General similarity measures include Euclidean distance and Pearson
correlation.

The similarity matrix can be further transformed into a similarity graph, Gy, where the
vertices are genes, and there is an edge between two vertices if their similarity is above some
threshold 6, that is, (i,7) € E(Gy) iff S;; > 0.

6.1.2 The Corrupted Clique Graph Model

The clustering problem can be modeled by a corrupted clique graph. A clique graph is a
graph consisting of disjoint cliques. The true clustering is represented by a clique graph

1Based on scribes by Ronny Morad and Tal Moran, January 8, 2001, and by Shachar Ofek and Elena
Zotenko, January 15, 2001.
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Figure 6.1: Gene expression matrix.

H (vertices are genes and cliques are clusters). Contamination errors introduced into gene
expression data result in a similarity graph C'(H) which is not a clique graph. Under this
model the problem of clustering is as follows: given C'(H), restore the original clique graph
H and thus the true clustering.

Graph Theoretic Approach

A model for the clustering problem can be reduced to clique graph edge modification prob-
lems, stated as follows.

Problem 6.1 Clique graph editing problem

INPUT: G(V, E) a graph.

OUTPUT: Q(V, F) a clique graph which minimizes the size of the symmetrical difference
between the two edge sets: |FAF|.

Clique graph editing problem is NP-hard [14].

Problem 6.2 Clique graph completion problem
INPUT: G(V, E) a graph.
OUTPUT: Q(V, F) a clique graph with £ C F' which minimizes |F'\ E|.

The clique graph completion problem can be solved by finding all connected components
of the input graph and adding all missing edges in each component. Thus the clique graph
completion problem is polynomial.

Problem 6.3 Clique graph deletion problem
INPUT: G(V, E) a graph.
OUTPUT: Q(V, F) a clique graph with F' C E which minimizes |F \ F|.
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Figure 6.2: The randomly corrupted clique graph model. Left: The original Clustering H of
4 clusters, 18 elements. Middle: Random contamination (flip each edge with a probability

p < 0.5), red edges denote edges that will be removed, blue edges denote added edges. Right:
G = C(H), the input (contaminated) graph.

|

o‘\‘

The clique graph deletion problem is NP-hard [13]. Moreover, any constant factor ap-
proximation to the clique graph deletion problem is NP-hard as well [14].

Probabilistic Approach

Another approach is to build a probabilistic model of contamination errors and try to de-
vise an algorithm which, given C'(H), reconstructs the original clique graph H with high
probability.

One of the simplest probabilistic models for contamination errors is a random corrupted
clique graph. The contamination errors are represented by randomly removing each edge in
the original clique graph H, with probability p < 0.5, and adding each edge not in H with
the same probability, p (see Figure 6.2). We will denote by Q(H, p) the set of all corrupted
clique graphs derived from H with contamination error fraction p using this model.

6.1.3 Clustering Algorithm

In this section we present a clustering algorithm of Ben-Dor et. al. [2], called Parallel
Classification with Cores (PPC). In subsequent sections we will see the results of applying
CAST, a derived practical heuristic, to synthetic data and to real biological data.

We begin with a few definitions.

Definition A cluster structure is a vector (s, ...,Sq), where each s; > 0 and ) s; = 1.
An n-vertex clique graph has structure (si, ..., sq) if it consists of d disjoint cliques of sizes
nsi,...,NSq.
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Figure 6.3: Relative Density - the highest relative density of v is with cluster Cj (relative
density of v with clusters Cy, Cy, Cy, Cy is 1/2, 2/3, 3/4, 1/5, respectively).

Definition A clique graph H(V, E) is called ~y-clustering (has ~-cluster structure), if the
size of each clique in H is at least y|V.

Definition For a fixed 0 < 7 < 1 we say that algorithm A reconstructs v-cluster structures
w.h.p. (with high probability), if for each 0 < § < 1 there exists ng such that for each n > ng
and for any graph G € Q(H,p), where H is a clique graph with n vertices and 7-cluster
structure, Prob(A(G) # H) < 6. Formally stated, V§ > 0 3ng such that Vn > ng and for
any v-clustering over n vertices, H, we have Prob(A(C(H,p)) # H) < ¢, where C(H,p)
is the random contamination of H (with p probability of flipping), and A(C(H,p)) is the
output of algorithm A when run on input C(H, p).

Algorithm Idea

Assume that we have already clustered a subset S of vertices. Let us denote their clustering
by {C1, ..., C,,}. We will extend the clustering {C1, ..., C,,, } to include the elements of another
set S’, by putting each vertex v € S’ into the cluster C', to which it has the highest relative
density (affinity), that is, the highest ratio between the number of edges connecting v to

vertices in C, and the size of C' (see Figure 6.3). Formally put, we choose C to be the cluster
{u|uel;,(uv)EE}]

Cs] '
After the extension {C}, ..., C), } is the clustering of SUS’. Note that during the extension

procedure we do not add new clusters, thus the number m of clusters is unchanged.

C; which maximizes

Later in this section, we shall show that if the clustering of S is correct then with high
probability S’ is also clustered correctly.
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Algorithm Outline

Suppose we are given G(V, F), a corrupted clique graph, that is G € Q(H, p) for some clique
graph H with 7-cluster structure. Because H has ~y-cluster structure the maximum number
of cliques in H is m = [1/v].

The PPC algorithm will perform the following steps (see Figure 6.4):

1.

Uniformly draw Sy C V, such that |Sp| = O(loglog(n));
Uniformly draw 57 C V\Sp, such that |S;| = O(log(n));
For each clustering of Sy into m clusters {C?, ..., C%}, perform:

(a) Extend the clustering {CY,...,C%} of Sy into clustering {C}, ..., CL} of Sy U Si;
(b) Extend the clustering {C7,...,C!} into a clustering {C1, ..., C,, } of V;
Each clustering {C1,...,Cy,} of V from the previous step determines a clique graph

C(V, E(C)); from all such clusterings {C1,...,Cy,} of V', output the one which mini-
mizes |EAE(C)|;
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Running Time

Running time of the algorithm is dominated by the execution of steps 3 and 4:
e Number of possible partitions of Sy into m clusters is ml%l = mlogloe(®) = 1og(n);

e For each partition we perform O(log(n) loglog(n)) operations in step 3a and O(nlog(n))
operations in step 3b, thus the overall running time of step 3 is O(nlog™(n));

e For each partition we perform O(n?) operations in step 4, thus the overall running time
in step 4 is O(n?log®(n));

e The overall running time of the algorithm is O(n?log®(n));

Algorithm Correctness

Here we will give an outline of the proof. For the details of the proof please refer to [2].

Theorem 6.1 Chernoff 1952 [3]
Let X ~ Binomial(n,p). Let a < p < b, then:

P(X = bn) < exp(—nD(b||p))
P(X < an) < exp(—nD(allp))

Where D(al||p) is the relative entropy distance between (p, 1 —p) and (a,1—a), 0 < p,a <1,
and is defined by:
1-— p)

D(allp) = plog() + (1 = p)log( =,

Theorem 6.2 Let H be a clique graph with ~y-cluster structure. For the input graph G(V, E) €
Q(H,p) the output A(G) is H w.h.p.

Proof: (outline)
Consider the partition ' = {5(1), ...,621} induced by H on Sp:

e Using a simple sampling lemma it can be shown that w.h.p. each cluster of H has at
least 2150l 1ol
2 2

elements;

representatives in Sy, thus each non empty cluster of C" has at least

e Using the Chernoff bound it can be shown that w.h.p. we extend Cto O correctly,
that is O is induced by H on Sy U Si;
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e Using the sampling lemma it can be shown that w.h.p. each cluster of H has at least
@ representatives in Si, thus each non empty cluster of C" has at least @ elements
(assuming that extension from " to C' was done correctly);

e Using the Chernoff bound it can be shown that w.h.p. we extend C toC correctly,
that is C' is induced by H on V;

e Thus in step 4 of the algorithm we have w.h.p. a correct clustering. To complete the
proof we must show that w.h.p. for each other partition C' that we have in step 4,

|[EAE(C)| < |[EAE(C)];

Below we will show in some detail a result, which proves the last statement of the above
outline.

Theorem 6.3 Let H be a clique graph with a ~y-cluster structure. Then w.h.p. for any
G € Q(H,p), H is the closest clique graph to G. That is, for any other clique graph C' with
a y-cluster structure, the following holds w.h.p.: |E(H)AE(G)| < |E(C)AE(G)|.

Proof: (outline)
First we will show that given some random clique graph C' with a ~-cluster structure we
have w.h.p. |EF(H)AE(G)| < |[E(C)AE(G)|:

e A key observation is that C'is closer to G iff more than half of the edges in E(H)AFE(C)
were flipped when generating graph G (please refer to Figure 6.5 for a schematic proof);
o P(|E(C)AE(G)| < |E(H)AE(G)|) = P(number of edges flipped > ZHSEC]),
e Using the Chernoff bound it can be shown that P(|E(C)AE(G)| < |[E(H)AE(G)|) <
exp(—|E(H)AE(C)|D(0.5]|p));
Now we have to show that for any clique graph C with a vy-cluster structure we have
w.h.p. |[E(H)AE(G)| < |E(C)AE(G)].

e Consider all clique graphs C' with a v-cluster structure, such that |E(C)AE(H)| >

n log(n . n . .
D(O.g5(||p))' The number of such graphs is m™ where m = [1/v]. Thus, using previous re-

sults, it can be easily shown that for any such C w.h.p. |E(H)AE(G)| < |E(C)AE(G)];

e Consider all clique graphs C' with a y-cluster structure, such that |E(C)AE(H)| <

g(lgi(”?), a similar but more complicated argument shows that w.h.p. for any such C

|[E(H)AE(G)| < |[E(C)AE(G)];
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Figure 6.5: Schematic proof of the key observation in Theorem 6.3. This figure depicts a
graph G (blank), an original clique graph H (green) and some other clique graph C' (green
with pattern). Consider F(H)AE(G) and E(C)AE(G). Each edge (u,v) which belongs to
neither C' nor to H, but belongs to G increments both £(H)AFE(G) and E(C)AE(G). Each
edge (u,v) which belongs to both C' and H, but does not belong to G also increments both
E(H)AFE(G) and E(C)AE(G). Thus, the difference between E(H)AE(G) and E(C)AE(G)
is due to patches that correspond to E(H)AE(C). Let us denote by A* the symmetric
difference constrained to edges in £(C)AE(H). Clearly |E(C)A*E(G)|+ |E(H)A*E(G)| =
|E(H)AE(C)|. Thus |E(C)A*E(G)| < |E(H)A*E(G)] iff |[E(H)A*E(G)| > EHSEC],
Hence, |E(C)AE(G)| < |E(H)AE(G)| iff |E(H)A*B(G)| > EHSEC]

Practical Heuristic - CAST

Although the theoretical ideas presented in the previous sections show asymptotic running
time complexity of O(n?log®n), their implementation is still impractical (the constants, for
instance, are very large, as in the computation of all possible partitions of S, into m clusters
in step 3). Therefore, based on ideas of the theoretical algorithm, CAST (Cluster Affinity
Search Technique), a simple and practical heuristic, was developed. All the tests described
in subsequent sections were performed using this practical implementation of the theoretical
algorithm.

Let C be a cluster. Let S;; be a similarity matrix and let v € V' be a gene. We define

the affinity of v to cluster C' by El‘%ﬁ”” Given an affinity threshold T we will say that v is
a close gene to cluster C' if its affinity to C' is above 7 and we will say that v is a weak gene
in C'if its affinity to C' is below 7.

Following are the steps of the practical implementation:

e Construct one cluster at a time and denote it by CC
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e At each step either:

— Add a close gene to CC
— Remove a weak gene from CC

— Close C'C' when no addition or removal is possible;
e Repeat until all genes are clustered,;

The main differences between the practical implementation and the theoretical algorithm
are:

e In the theoretical algorithm several partitions are formed and then the “best” partition
is chosen; in the practical implementation one partition is formed by building one
cluster at a time.

e The theoretical algorithm considers the similarity graph, while the practical implemen-
tation processes the similarity matrix (the similarity value between any two genes can
assume any real value).

e In the theoretical algorithm, the clusters in a partition are extended by adding new
elements to them; the practical implementation also allows to remove a weak element
from a cluster.

Although little can be proved about the running time and performance of the practi-
cal implementation, the test results described in the next sections show that it performs
remarkably well, both on simulated data and on real biological data.

6.1.4 Clustering Using BioClust

BioClust is an implementation package of the CAST heuristic. The following section presents
results of applying BioClust on both synthetic data and real gene expression data.

Synthetic Data

The simulation procedure is as follows (please refer to Figure 6.6 for visualization of the
simulation procedure):

e Let H be the original clique graph.

e Generate GG from H by independently removing each edge in H with probability p and
adding each edge not in H with probability p.
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A B

The actual input to the algorithm “The output of the algorithm

Figure 6.6: Source: [2]. A visualization of the simulation procedure. A: The adjacency
matrix of the original clique graph H before introduction of errors. Position (i, j) is white
if (i,7) € E(H), that is, if ¢ and j belong to the same cluster. B: The same matrix after
introduction of errors. Note that the cluster structure is still visible for all but the smallest
clusters. C: The same as B but vertex order is randomly permuted. This is the actual
input to the algorithm. D: Matrix C reordered according to solution produced by the
algorithm. With the exception of perhaps the smallest clusters, the essential cluster structure
is reconstructed.

e Randomly permute the order of vertices in G and run BioClust with affinity threshold
7 =0.5.

e Compare BioClust’s output to the original graph H.

There are several comparison criteria, which can be used to compare the algorithm’s
output to the original clique graph. Given two adjacency matrices A and B of two graphs
of the same size, let NNV;; be the number of entries on which A and B have values 7 and j,
respectively. The matching coefficient is defined by Nog +%g?i%ié v that is total number
of matching entries divided by total number of entries. The Jaccard coefficient is defined

y m, which is similar to the matching coefficient, only with Ny, the number of
entries which are zero in both matrices, removed. In sparse graphs Ny, will be a dominant
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cluster structure n p | matching coeff. | Jaccard coeff.
{0.4,0.2,0.L x4} | 500 | 0.2 1.0 1.0
{0.4,0.2,0.1 x 4} | 500 | 0.3 0.999 0.995
{0.4,0.2,0.1 x 4} | 500 | 04 0.939 0.775
{0.1 x 10} 1000 | 0.3 1.0 1.0

{0.1 x 10} 1000 | 0.35 0.994 0.943

Table 6.1: Performance of BioClust for different values of p and n. Mean values of matching
coefficient and Jaccard coefficient are given.

factor, thus Jaccard coefficient is more sensitive when dealing with sparse graphs. With
both coefficients, the higher the value, the closer the result is to the real clustering. Both
coefficients have maximum value of 1, which implies perfect clustering.

Table 6.1 presents results of simulation for different values of contamination error p
and/or number of cluster entities n. The values of the matching coeflicient and the Jaccard
coefficient are presented. It can be seen that the Jaccard coefficient is more sensitive. One
can also observe the effect of p and n on the performance of the algorithm.

Figure 6.7 presents results of simulations for different values of n and p. It can be seen
that the properties of the theoretical algorithm are preserved in its practical implementation.
We get better performance when the number of clustered entities (vertices in H) increases.

Temporal Gene Expression Data

The gene expression data used in this experiment is from [6]. In this paper the authors study
the relationship among expression patterns of genes involved in the rat Central Nervous
System (CNS).

Gene expression patterns were measured for 112 genes along 9 different development
time points. The gene expression data for each gene was augmented with derivative values
to enhance the similarity for closely parallel but offset expression patterns, resulting in a
112 x 17 expression matrix. The similarity matrix was obtained using Fuclidean distance.
The execution of BioClust resulted in eight clusters. Since partitioning to clusters is known
from [6] this experiment was done mainly for validation of the algorithm.

Figures 6.8 and 6.9 present the clustering results. Note that all clusters, perhaps with
the exception of cluster #1, manifest clear and distinct expression patterns. Moreover, the
agreement with the prior biological classification is quite good.
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Jaccard coefficient, output vs underlying clique graph
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Figure 6.7: Source: [2]. Simulation results for H with cluster structure of {2, 4 1 L 1

The z-axis is n, the number of vertices in H (clustered entities), and y-axis is the mean
value of the Jaccard coefficient. Each curve corresponds to a specific probability p = a of
contamination error.

C. Elegans Gene Expression Data

The gene expression data used in this analysis is from [11]. Kim et al. studied gene regulation
mechanisms in the nematode C. Elegans. Gene expression patterns were measured for 1246
genes in 146 experiments, resulting in a 1246 x 146 expression matrix. The similarity matrix
was obtained using Pearson correlation.

The algorithm found 40 clusters. Only very few genes out of the 1246 were classified into
families by prior biological studies. The algorithm clustered these families quite well into
few homogeneous clusters (see Figure 6.10).

One example of the potential use of clustering for analyzing gene expression patterns is
shown in Figure 6.10. A six-gene cluster (cluster #24) contained two growth-related genes
and four anonymous genes. This suggests the possibility that the other four genes are also
growth-related, paving the way for future biological research.

Tissue Clustering

The gene expression data used in this experiment is from [1]. The authors describe an
analysis of gene expression data obtained from 62 samples of colon tissue, 40 tumor and 22
normal tissues. Gene expression patterns were measured for 2000 genes in the 62 samples,
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Family to cluster comparison
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Figure 6.8: Source: [2]. Applying the algorithm to temporal gene expression data [6]. The
solution generated by the algorithm is compared to the prior classification. For each cluster
(z-axis), bars composition in terms of biologically defined families. The height of each bar
(y-axis) represents the number of genes of a specific cluster family. Most clusters contain
predominantly genes from one or two families.
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Cluster #1: Cluster #2:

Cluster #6:

Cluster #7: Cluster #8:

0.5

Figure 6.9: Source: [2]. Applying CAST to temporal gene expression data [6]. Each graph
presents expression patterns of genes in a specific cluster. The x-axis represents time, while
the y-axis represents normalized expression level.
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Figure 6.10: Source: [2].

Some results of the CAST algorithm applied to the nematode

gene expression data of Kim et. al. Top: expression patterns for clusters #21 to #40. x
axis: conditions (matrix columns) in arbitrary order. y axis: intensity level. Most of the
genes’ functions are unknown, so only few genes are color coded. Blue: sperm genes; red:

yeast genes (control) ; gray: unknown.

Note the homogeneity of cluster #30. Bottom

Left: expression patterns of the genes in cluster #1, consisting of 31 genes. Bottom Right:
Expression patterns of the six genes in cluster #24. This cluster contains two growth related
genes, linl5 and E2F. This suggests the hypothesis that the other four members of this

cluster have related functions.
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Figure 6.11: Source: [2]. Distribution of tumor and normal tissues in the six clusters pro-
duced by the CAST algorithm.

using an Affymetrix chip. The similarity between each two samples was measured using
Pearson correlation. Note that here, the similarity is measured between tissues, not genes.
BioClust formed 6 clusters of the data. Figure 6.11 shows the distribution of tumor and
normal tissues in the six clusters produced.
The main goal of clustering here is to achieve a separation of tumor and normal tissues.
This experiment demonstrates the usefulness of clustering techniques in learning more about
the relationship of expression profiles to tissue types.

Improved Theoretical Results

In research soon to be published [15], Tsur & Shamir have introduced a generalized ran-
dom clique graph model with improved theoretical results, including reduction of the Q(n)
restriction on cluster sizes, and stronger results when cluster sizes are almost equal.
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6.1.5 The CLICK Algorithm

Introduction

CLICK (CLuster Identification via Connectivity Kernels) is a new algorithm for cluster-
ing [16]. The input for CLICK is the gene expression matrix. Each row of this matrix is an
“expression fingerprint” for a single gene. The columns are specific conditions under which
gene expression is measured.

The CLICK algorithm attempts to find a partitioning of the set of elements into clusters,
so that two criteria are satisfied: Homogeneity - fingerprints of elements from the same clus-
ter, called mates, are highly similar to each other; and Separation - fingerprints of elements
from different clusters, called non-mates, have low similarity to each other.

Probabilistic Assumptions

The CLICK algorithm makes the following assumptions:
1. Similarity values between mates are normally distributed with parameters pr, or.
2. Similarity values between non-mates are normally distributed with parameters ppg, op.

3. pr > lp.

These assumptions are justified empirically, and in some cases theoretically (by the Cen-
tral Limit Theorem).

The Basic CLICK Algorithm

The CLICK algorithm represents the input data as a weighted similarity graph G = (V, E).
In this graph vertices correspond to elements and edge weights are derived from the similarity
values. The weight w;; of an edge (7, j) reflects the probability that i and j are mates, and

is set to be: N
Pmates.f (Si;]4,J are mates)

(1 — Pates) f(Si5]7,7 are non-mates)

Wi; = In

where f(S;;]i,j are mates) = f(S;;|pur,or) is the value of the probability density function

for mates at S;;:
1 _ (Sij—up)®

e 20,
\V2mor
Similarly, f(S;;]i,j are non-mates) is the value of the probability density function for non-
mates.
The basic CLICK algorithm is described in Figure 6.12 and exemplified in Figure 6.13.
The idea behind the algorithm is the following: given a connected graph G, we would like

f(Si;]3,j are mates) = z
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Basic-CLICK(G(V, E))
if (V(G)={v}) then
move v to the singleton set R
elseif (G is a kernel) then
Output V(G)
else
(H,H, cut) + MinWeightCut(Q)
Basic-CLICK(H)
Basic-CLICK(H)
end if
end

Figure 6.12: The Basic-CLICK algorithm

Figure 6.13: Basic scheme of the CLICK algorithm. Split subsets of GG, that contain elements
from two kernels.
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to decide whether V(G) is a subset of some true cluster, or V(G) contains elements from at
least two true clusters. In the first case we say that G is pure. In order to make this decision,
we test the following two hypotheses for each cut C in G:

e H{': C contains only edges between non-mates.

e HY: C contains only edges between mates.

G is declared a kernel if H; is more probable for all cuts. The decision of whether G is a
kernel relies on the following lemma:

Lemma 6.4 G is a kernel iff MinWeightCut(G) > 0.

Proof: Using Bayes’ Theorem, it can be shown that for any cut C'in GG

Pr(H|C)

Pr(AS|C)

Obviously, W(C) > 0 iff Pr(HE|C) > Pr(HS|C). Tf the minimum cut is positive, then

obviously so are all the cuts. Conversely, if the minimum cut is non-positive, then for that
cut Pr(HE|C) < Pr(HE|C), therefore G is not a kernel. m

W(C) = log

Removing Negative Weight Edges The MIN-CUT problem for a weighted graph with
both positive and negative edges is NP-Complete?. In order to use the efficient MIN-
CUT algorithms we must remove the negative edges. By modifying the algorithm
slightly, we can still use the new graph to find kernels in the original graph.

Refinements

The Basic-CLICK algorithm divides the graph into kernels and singletons. These kernels
are expanded to the full clustering, using several refinements:

Adoption Step In practice, “true” clusters are usually larger than just the kernel. To
accommodate this, in the refined algorithm, kernels “adopt” singletons to create larger
clusters. This is done by searching for a singleton v and a kernel K, whose pairwise
fingerprint similarity is maximum among all pairs of singletons and kernels. The refined
algorithm iteratively applies the adoption step and then the Basic-CLICK algorithm
on the remaining singletons, stopping when there are no more changes.

Merge Step In this step we merge clusters whose fingerprints are similar (the justification
for this is that, in practice, clusters can contain multiple kernels). The merging is done
iteratively, each time merging two clusters whose fingerprint similarity is the highest
(provided that the similarity exceeds a predefined threshold).

2MIN-CUT can be proved to be NP-Complete by reduction from MAX-CUT [7, page 210].
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Quality Assessment

When the ”correct” solution for the clustering problem is known, we can evaluate the algo-
rithm’s performance using comparison criteria as we have done with BioClust. The criteria
used here are the Jaccard coefficient (as defined in the previous sections) and the Minkowski

coefficient. The latter is defined by , /%. Note that unlike the Jaccard and Matching

coefficients, the Minkowski coefficient improves as it decreases, with optimal value at 0.

Unfortunately, in most cases the "correct” solution for the clustering problems is un-
known. In these cases we evaluate the quality of the solution by computing two figures of
merit to measure the homogeneity and separation of the produced clusters. For fingerprint
data, homogeneity is evaluated by the average and minimum correlation coefficient between
the fingerprint of an element and the fingerprint of its corresponding cluster. Separation is
evaluated by the weighted average and the maximum correlation coefficient between cluster
fingerprints. Formally:

Definition Homogeneity and Separation measures are defined as follows:

We define the fingerprint of a set of elements to be the mean vector of the fingerprints of the
members of the set. Let X, ..., X; be clusters, C'(u) be the cluster of vertex u, F'(X) and
F(u) be the fingerprints of a cluster X and of element u respectively, and let S(z,y) denote
the similarity between fingerprints z and y, then:

Average Homogeneity

Minimum Homogeneity

Average Separation

1
Sve:— XzXSFXz,FX

Maximum Separation

SJMaw - IIll??;X S<F(XZ)’ F(XJ))
Logically, a clustering improves when H 4,. and H,;;, increase, and when S, and Sya.
decrease.

Another method of quality assessment is setting a certain similarity threshold and mea-
suring the fraction of mates and non-mates above that threshold. Good clustering is expected
to yield higher values of similarity between mates (indicating homogeneity) and lower values
between non-mates (indicating separation).
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Program (algorithm) | # Clusters | Homogeneity | Separation
HA?)e ‘ HJ\/Iin SA'Ue ‘ SIW(I,:E
CLICK 30 0.8 | -0.19 | -0.07 | 0.65
GENECLUSTER 30 0.74 | -0.88 |-0.02 | 0.97

Table 6.2: A comparison between CLICK and GENECLUSTER [18] on the yeast cell-cycle
dataset [4]. Expression levels of 6,218 S. cerevisiae genes, measured at 17 time points over
two cell cycles.

6.1.6 Algorithm Performance Comparisons

This section contains examples of comparisons between CLICK and other clustering algo-
rithms, in various problems, including expression data, oligo-fingerprinting data and protein
similarity data (Tables 6.2, 6.3, 6.4, 6.5, 6.6 and Figures 6.14, 6.15, 6.16). Analysis of the
results (see Table 6.7) shows that CLICK outperforms all the compared algorithms in terms
of quality. In addition, CLICK is very fast, allowing clustering of thousands of elements in
minutes, and over 100,000 elements in a couple of hours on a regular workstation. Figure
6.17 shows the result of a comparison in which the authors of each clustering algorithm were
allowed to run the test on their own. The graph shows a tradeoff between the homogeneity
and separation scores; The further the algorithm is from the origin the “better” its overall
performance.

In addition, CLICK was tested in simulations which included varying cluster structures
and different distribution parameters. Similarity values for mates and non-mates were dis-
tributed normally: for each cluster structure, standard deviation o was set at 5 for both
mates and non-mates, while the difference between the means of mates py and non-mates
pr was set at t x o for t = 2,1,0.8,0.6. Results are shown in Table 6.8, evaluated using the
Jaccard coefficient. As expected, the larger the distance between the means of mates and
non-mates, the better the performance of the algorithm. It also seems that better results
are obtained when cluster sizes are larger.
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Figure 6.14: Source: [16]. CLICK’s clustering of the yeast cell-cycle data [4]. x-axis: time
points 0-80, 100-160 at 10-minute intervals. y-axis: normalized expression levels. The solid
line in each sub-figure plots the average pattern for that cluster. Error bars display the
measured standard deviation. The cluster size is printed above each plot.

Figure 6.15: Yeast Cell Cycle: late G1 Cluster (cluster 3 from Figure 6.14). The cluster
found by CLICK contains 91% of the late G1l-peaking genes. In contrast, in GeneCluster
87% are contained in 3 clusters.
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‘ Program ‘ #Clusters ‘ #Singletons ‘ Minkowski ‘ Jaccard ‘ Time(min) ‘
CLICK 31 46 0.57 0.7 0.8
HCS 16 206 0.71 0.55 43

A comparison between CLICK and HCS on the blood monocytes ¢cDNA
dataset [8]. 2,329 ¢cDNAs purified from peripheral blood monocytes, fingerprinted with 139
oligos. Correct clustering is known from back hybridization with long oligos.

Table 6.3:

‘ Program ‘ #Clusters ‘ #Singletons ‘ Minkowski ‘ Jaccard ‘ Time(min) ‘
CLICK 2,952 1,295 0.59 0.69 32.5
K-Means 3,486 2,473 0.79 0.4 -

Table 6.4: A comparison between CLICK and K-Means [9] on the sea urchin ¢cDNA dataset.

20,275 cDNAs purified from sea urchin eggs, and fingerprinted with 217 oligos. Correct
clustering of 1,811 ¢cDNAs is known from back hybridizations.

Program | #Clusters | Homogeneity | Separation

HAve ‘ H]Win SAve ‘ S]\/[ax
CLICK 10 0.88 | 0.13 |-0.34| 0.65
Hierarchical 10 0.87 | -0.75 | -0.13 | 0.9

Table 6.5: A comparison between CLICK and Hierarchical [5] clustering on the dataset of

response of human fibroblasts to serum [10]. Human fibroblast cells starved for 48 hours,
then stimulated by serum. Expression levels of 8,613 genes measured at 13 time points.
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Figure 6.16: Source: [16]. CLICK’s clustering of the fibroblasts serum response data [10].
x-axis: 1-12: synchronized time-points. 13: unsynchronized point. y-axis: normalized
expression levels. The solid line in each sub-figure plots the average pattern for that cluster.
Error bars display the measured standard deviation. The cluster size is printed above each
plot.



Clustering Gene Expression Data

25

‘ Program ‘ #Clusters ‘ #Singletons ‘ Homogeneity ‘ Separation ‘ Time(min) ‘

CLICK
SYSTERS

9,429
10,891

17,119
28,300

0.24
0.14

0.03
0.03

126.3

Table 6.6: A comparison between CLICK and SYSTERS on a dataset of 117,835 pro-
teins [12]. Measures based on similarity when no correct solution is known: For a fixed
threshold ¢, homogeneity is the fraction of mates with similarity above ¢, and separation is
the fraction of non-mates with similarity above t.

‘ Elements ‘ Problem ‘ Compared to ‘ Improvement ‘ Time(min) ‘
517 Gene Expression Fibroblasts Cluster [5] Yes 0.5
826 Gene Expression Yeast cell cycle | GeneCluster [18] Yes 0.2
2,329 cDNA OFP Blood Monocytes HCS [8] Yes 0.8
20,275 cDNA OFP Sea urchin eggs K-Means [9] Yes 32.5
72,623 Protein similarity ProtoMap [19] Minor 53
117,835 Protein similarity SYSTERS [12] Yes 126.3

Table 6.7: A Summary of the time performance of CLICK on the above mentioned datasets.
CLICK was executed on an SGI ORIGIN200 machine utilizing one IP27 processor. The
time does not include preprocessing time. The “Improvement” column describes whether
the solution of the CLICK algorithm was better than the compared algorithm.

Ataxia Telangiectasia

The following experiment shows how clustering methods can aid our understanding of bio-
logical processes. Its aim was to study the expression patterns of a genetic disease, Ataxia
Telangiectasia (A-T).

A-T is a rare autosomal recessive disorder, characterized by cerebellar and thymic de-
generation and predisposition to cancer. The gene found to be responsible for A-T is ATM
- an important mediator of cell responses to DNA damage, in particular those that control

‘Structure ‘ 2‘ 1 ‘ 0.8 ‘ 0.6 ‘

6x60 (1] 1 |0.98]0.85
10x30 | 1]096|0.71 | 0.1
10,...,80 | 1| 1 ]0.970.83

Table 6.8: CLICK simulation results (mean Jaccard score over 20 runs). The test included
various cluster structures (rows) and distances between pp and pp (in each column, the
distance appearing in the title was used as a factor of the standard deviation o. The first
column denotes a distance of 20, etc.).
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Figure 6.17: Comparison of clustering algorithms using homogeneity and separation criteria.
The data consisted of 698 genes, 72 conditions [17]. Each algorithm was run by its authors
in a “blind” test.
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Figure 6.18: Clusters generated by the CLICK algorithm for the A-T experiment. y-axis:
normalized expression levels. x-axis: 1-3: normal mice at times 0, 30, 120 (minutes); 4-
6: ATM-deficient mice at times 0, 30, 120. Note that in cluster #1 we see constitutive
expression of the genes in ATM-deficient mice at all three time-points, whereas in normal
mice expression rises to about that level only after irradiation.

progression through the cell cycle. The study of A-T is facilitated by the existence of a
mouse homologue of ATM.

In this experiment, DNA damage was induced both in normal mice and in ATM-deficient
mice via irradiation. Tissues were then obtained in 3 time-points - 0, 30 and 120 minutes after
irradiation - in order to check for differences in the cellular response. ¢cDNA’s from thymus,
cerebellum and brain were hybridized to microarrays representing 8,000 transcripts. Each
gene was sampled at 18 combinations of tissue, genotype and time-point. The resulting data
was then processed by the CLICK algorithm.

The results are shown in Figure 6.18. Interestingly, some of the clusters showed differences
between the normal and ATM-deficient samples. These differences included constitutive
expression of genes in ATM-deficient mice: whereas in normal mice a rise in the expression
level of these genes was noted in the time-points after 0, in ATM-deficient mice the level
was high already at 0 time, and did not change significantly afterwards. These results may
suggest that these genes are involved in the response to the induced DNA damage, which is
hampered in ATM-deficient mice.
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6.1.7 Clustering - Future Research

Clustering pops up in many questions and problems in various fields of interest, not only gene
clustering. In many practical situations, the complexity of the clustering is the dominant
part of the complexity of the whole solution. In many cases, though, clustering heuristics
may not perform well and produce poor clustering results.

Therefore there is still room for improvement, both in theoretical clustering algorithms
(and proofs), and in practical algorithms and heuristics. Some of the possible avenues for
progress are indicated below.

Theoretical Clustering

e Reducing the restrictions on cluster sizes.
e Novel approaches and better algorithms, improving on both quality of results and

time-complexity.

Practical Clustering

e Determining which algorithms and heuristics are best suited for particular clustering
jobs.

e Improving on the optimization criteria.

e Better control over the tradeoff of accuracy versus speed, for instance using plausible
assumptions about the clustered entities in each specific implementation.

e Devising new clustering/viewing tools, which would allow interactive setting of param-
eters and modifying algorithm behavior, while viewing the results.
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