Analysis of Gene Expression Data Spring Semester, 2002
Lecture 4: April 25, 2002

Lecturer: Ron Shamir Scribe: Dror Fidler and Shahar Harrusit

4.1 Introduction

4.1.1 Functional Genomics

Having (almost) reached the end of the Human Genome Project, the question that needs
to be asked is: “What‘s next?”. The complete sequencing of the Human Genome is an
immense task, which is now nearing completion. While much work remains to be done even
there, there are a number of areas this knowledge opens up to research, which have thus far
been nearly impossible to pursue. Among those is “functional genomics” - the search for
understanding the functionality of specific genes, their relations to diseases, their associated
proteins and their participation in biological processes. Functional annotation of genes is
still in its early stages. For example, in the plant Arabidopsis (whose sequencing has recently
been completed), there is no functional annotation for over 40% of the genes. Most of the
knowledge gained so far in this area is the result of painstaking research of specific genes and
proteins, based on complex biological experiments and homologies to known genes in other
species. This “Reductionist” approach to functional genomics is hypothesis driven (i.e., it
can be used to check an existing hypothesis, but not to suggest a new one). The advance-
ments in both biological and computational techniques are now beginning to make possible a
new approach: the “Holistic” research paradigm. This approach is based on high-throughput
methods: global gene expression profiling (“transcriptome analysis”) and wide-scale protein
profiling (“proteome analysis”). In the holistic approach, a researcher simultaneously mea-
sures a very large number of gene expression levels throughout a biological process, thereby
obtaining insight into the functions and correlations between genes on a global level. Unlike
the reductionist approach, these methods can generate hypotheses themselves.

4.1.2 Gene Expression

The holistic approach to functional genomics relies ,among others, on high-throughput meth-
ods for measuring gene expression. This is basically the amount of protein (coded for by
the gene) present in a cell at a specific moment. The existing methods for measuring gene
expression are based on two biological assumptions:

1Based in part on a scribe by Ronny Morad and Tal Moran, Algorithms in Molecular Biology, Fall 2001.
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1. Transcription level of genes indicates their requlation: Since protein is generated from
a gene in a number of stages (transcription, splicing, synthesis of protein from mRNA),
regulation of gene expression can occur at many points. This assumption means that
most regulation is done only during the transcription phase.

2. Only genes which contribute to organism fitness are expressed : This means that genes
which are irrelevant to the organism’s function are not expressed.

Relying on these assumptions, we can conclude that detecting changes in gene expression
level provides clues on the function of its product.

4.1.3 DNA Chips/Microarrays

As was explained in lecture 1 and lecture 2, there are two basic types of DNA chips, called
format I, and format 11, the difference being whether the target DNA is on the chip (format
I) or in the “air” (format II). There are several variants on these 2 basic types :

1. Oligonucleotide arrays :
format II. Short oligo sequences are on the chip.

2. ¢cDNA microarrays :
format II. Gene specific cDNA'‘s are on the chip.

3. Oligo-fingerprinting :
format I. The first type of chip that was used.

4.1.4 cDNA Clustering

As we have seen, genes affect the cell by being expressed, i.e., transcribed into mRNA and
translated into proteins that react with other molecules. It is therefore highly interesting to
analyze the expression profile of genes, i.e., in which tissues and at what stages of development
they are expressed. From this information we can sometimes guess what the functions of
these genes are. This is especially true if we discover that the expression profile of an
unknown gene is similar to that of a known gene. Usually, in such cases the functions of
these genes are related. Another important piece of information is the level of expression of
each gene. Different genes have different levels of expression,indicating their activity level in
the cell. It is therefore highly informative to find which genes are expressed in each tissue,
and in what level.

This is easier said than done. An average tissue contains more than 10,000 expressed
genes, and their expression levels can vary by a factor of 10,000. Therefore, in order to make
sure we detect all the genes in a tissue, we should extract more than 10° transcripts per
tissue.
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Figure 4.1: The raw data matrix maps conditions with gene expression. The Similarity
matriz is derived from the raw data matrix, according to a similarity, or distance function.

Keeping in mind that there are about 100 different types of tissue in the body, and that
we are interested in comparing different growth stages (or disease stages), we can conclude
that we should analyze more than 10 transcripts. Therefore sequencing all the cDNAs is
expensive and wasteful. Obviously, we need cheap, efficient and large scale methods.

4.2 Representation of Gene Expression Data

Gene expression data can be represented as a real matrix, called the raw data matriz. Each
row in the matrix contains data regarding a specific gene, and each column represents a
condition, or a tissues profile. an Experiment is a set of conditions. Thus, R;; = is the
expression level for gene 7, at condition j. The expression data can represent ratios, absolute
values, or distributions.

In order to analyze the data, it is preprocessed to compute a similarity matrix, or a
distance matrix. Note that the similarity matrix is larger than the raw data matrix since
there are usually much more genes than conditions. Figure 4.1 shows the data and similarity
matrices.

4.3 Some DNA chip applications

e Deducing functions of unknown genes (similar expression pattern implies similar func-
tion).
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Identifying disease profiles.

Deciphering regulatory mechanisms (co-expression implies co-regulation).

(Classification of biological conditions.

Genotyping.

e Drug development.

A first step in most of these analysis is clustering genes or conditions based on their expression
levels.

4.4 Clustering

Clustering methods have been used in a vast number of fields. The goal in a clustering
problem is to group elements (genes) to clusters satisfying:

1. Homogeneity : Elements inside a cluster are highly similar to each other.
2. Separation : Elements from different clusters have low similarity to each other.
We can distinct between two types of clustering methods :

Agglomerative These methods build the clusters by looking at small groups of elements
and performing calculations on them in order to construct larger groups. The Hierar-
chal methods described here are of this sort.

Divisive A different approach which analyzes large groups of elements in order to divide
the data into smaller groups and eventually reach the desired clusters. We shall see
non hierarchal techniques which use this approach.

There are several encouraging facts resulting from clustering research :
e Distinct measurements of same genes cluster together.

e Genes of similar function cluster together.

e Many cluster-function specific insights are gained.
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4.4.1 Hierarchic Clustering

This alternative approach attempts to place the input elements in a tree hierarchy structure
in which the distance within the tree reflects element similarity. The elements are located at
the leaves of the tree. Thus, the closer the elements in the tree, the more similar they are.

Advantages of hierarchal methods :

1. A single coherent global picture.

2. Intuitive for biologists. (similar representation is used in Phylogeny).
Disadvantages of hierarchic methods :

1. There is no explicit partition into clusters.

2. A human biologist with extensive knowledge might find it impossible to make sense of
the data just by looking at the tree, due to the size of the data, and the number of
eITors.

4.4.2 Hierarchical Representations

As was explained, a hierarchic representation uses a tree structure, in which the actual data
is represented at the leaves. The tree can be rooted or not. A particular tree representation is
a dendrogram. The algorithms for hierarchic clustering merge similar clusters, and compute
the new distances for the merged cluster. Hence, if i is clustered with j, and both are
not similar to r, then D(i,r) = D(j,r) even though D(i,j) > 0. (D(n,m) is the distance
function) (See Figure 4.3).

4.4.3 Neighbor Joining Algorithm

A simple algorithm, based on neighbor merging, is due to Saitou and Nei [13]. The input
matrix is the distance matrix between elements. Initially each element is a cluster. At each
iteration we merge similar elements, and compute the new distances for the merged elements.
When the algorithm has finished we represent the results as a tree in which similar elements
are near.

The Neighbor Joining Algorithm :

1. Input : The Distance matrix D;;.

2. Find elements r,s such that D,; = min;;(D;;) .
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Figure 4.2: Hierarchal data can be represented as a rooted or un rooted tree
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Figure 4.3: In a dendrogram, distances are represented on the y-axis. Denote the leaves

a,b,c,d (from left to right). Then D(a,b) = 2.8 , D(a,c)

D(e,d) = 5.0

— D(b,c) = 4.5, D(b,d) =
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3. Merge clusters r,s.

4. Delete elements r,s, and add a new element ¢ with :

Di'r + Dis - Drs
2

Dy = Dy =
5. Repeat, until one element is left.

4.4.4 Average linkage

Average linkage is a modification of the Neighbor Joining algorithm. The idea is the same
but when computing the new distances of created clusters, the sizes of the clusters that are
merged are taken into consideration. This algorithm was developed by Lance and Williams
18], and Sokal and Michener [14].

The Average linkage Algorithm :

1. Input : The Distance matrix D;;, initial cluster sizes n,.

2. ITteration k : The same as the Neighbor Joining algorithm with the exception that the
distance from a new element ¢ is defined by :

Ny Ng
- D;, + .
N,y + Ng N,y + Ng

Dip = Dy = D;,

4.4.5 A General Framework

Lance and Williams, [8] also designed a general framework for hierarchal cluster merging
algorithms. In their framework the distance calculating function is :

Dit - Dti - arDir + 04,9D7Zs + 7|D7T - D79|

In the Average Linkage algorithm :

=0
nr
Qp =
Ny + Ng
nS
Qg =
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4.4.6 Hierarchical clustering of gene expression data

A series of experiments were performed on real gene expression data, by Eisen et al. [3] The
goal was to check the growth response of starved human fibroblast cells, which were given
serum. 8600 gene levels were monitored over 13 time-points. The original data of test to
reference ratios was first log transformed, and then normalized, to have mean 0 and variance
1. Denote by N;; the normalized levels. The similarity matrix was constructed from N;; as
follows :

S — Z]' Nkj ) *]Vlj
M Ncond

Where Ncond is the number of conditions checked.

The Average Linkage method was applied on the similarity matrix, and the tree is presented
by ordering the leaves according to increasing subtree weight (see Figure 4.4 ). The weight
can be average expression level, time of maximal induction, or any other. Figure 4.5
demonstrates the different output given by hierarchical when clustering gene expression
data, and random data.

4.5 Non-Hierarchal Clustering

4.5.1 K-means clustering

This method was introduced by Macqueen [10]. The idea is to partition the elements to K
clusters. The heuristic moves elements between clusters if it improves the
solution cost, EP ,which is a function that measures the quality of the partition.

K-means clustering :

1. Initialize an arbitrary partition P into k clusters.

2. For cluster j, element i & j.
EP(i,j) = Cost of the solution if ¢ is moved to cluster j.

3. Pick EP?(r,s) that is minimum.
4. move s to cluster r, if it improves E”.

5. Repeat until no improvement possible.

Note that this method requires knowledge of k, the number of clusters, in advance.
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Figure 4.4: Source: [3]. The dendrogram resulting from the starved human fibroblast cells
experiment. five major clusters can be seen, and many non clustered genes. The genes in
the five groups serve similar functions : (A) cholesterol biosynthesis, (B) the cell cycle, (C)
the immediate-early response, (D) signaling and angiogenesis, and (E) wound healing and
tissue remodelling.
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Figure 4.5: Source: [3]. To demonstrate the biological origins of patterns seen in Figure 4.4,
data from Figure 4.4 was hierarchically clustered before and after random permutation within
rows (random 1), within columns (random 2), and both (random 3). Indeed, the data is
clustered visually, only when the "real” data was used (i.e. the ”clustered” column).

4.5.2 K-means variations

The k-means variations algorithm is based on the idea of moving elements between clusters,
based on their distances to the centers of the different clusters. Since K is fixed, it aims
at optimizing homogeneity, but not separation. i.e., elements in different clusters can still
remain similar. There are some variations for changing K. There is also a parallel version
in which we move each element to the cluster with the closest centroid simultaneously, but
then convergence is not guaranteed.

K-means variations :

1. Input: vector v; for each element 1.
2. Compute a centroid ¢, for each cluster p, e.g., gravity center = average vector.
3. Compute the solution cost:

EP = ZZD(UZ"CP)

1EP
Where D(v;, ¢,) is the distance of v; from ¢,.

4. Compute FP(i,j) = change in solution cost if i is moved to cluster j.
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5. Perform the best improvement to the solution cost.

6. Repeat until no improvement possible.

4.5.3 Self organizing maps

Kohonen 1997 [7] introduced this method. Tamayo et al [16], applied it to gene expression
data. Self organizing maps are constructed as follows. One chooses a grid of nodes, and
a Distance function between nodes, D(Ny, N2). The nodes are mapped into k-dimensional
space, initially at random, and then iteratively adjusted (See Figure 4.6). Each iteration
involves randomly selecting a data point P and moving the nodes in the direction of P. The
closest node np is moved the most, whereas other nodes are moved by smaller amounts
depending on their distance from np in the initial geometry. In this fashion, neighboring
points in the initial geometry tend to be mapped to nearby points in k-dimensional space.
The process continues iteratively.

Self organizing maps :
1. Input: n-dim vector for each element (data point) p.

2. Start with a grid of k = [ x m nodes, and a random n-dim associated vector fy(v) for
each grid node v.

3. Iteration 7 :
Pick a data point p. Find a node n, such that f;(n,) is the closest to p.

Update all node vectors v as follows :

fira(v) = fi(v) + H(D(ny, v),9)[p = fi(v)]

Where H is a learning function which decreases with i, and decreases with D(n,,v) .
i.e. nodes that are not near n, are less affected.

4. Repeat until no improvement possible.

4.5.4 GENECLUSTER

GENECLUSTER is a software that implements self organizing maps (SOM) for gene ex-
pression analysis, developed by Tamayo et al, [16]. Some results can be seen in figure 4.7.
GENECLUSTER accepts an input file of expression levels from any gene-profiling method
(e.g., oligonucleotide arrays or spotted ¢cDNA arrays), together with a geometry for the
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Figure 4.6: Self organizing maps : Initial geometry of nodes in a 3 X 2 rectangular grid is
indicated by solid lines connecting the nodes. Hypothetical trajectories of nodes as they
migrate to fit data during successive iterations of the self organizing maps algorithm are
shown. Data points are represented by black dots, six nodes of the Self organizing map by
large circles, and trajectories by arrows.

nodes. The program begins with two preprocessing steps that greatly improve the ability
to detect meaningful patterns. First, the data is passed through a variation filter to elim-
inate those genes with no significant change across the samples. This prevents nodes from
being attracted to large sets of invariant genes. Second, the expression level of each gene is
normalized across experiments. This focuses attention on the shape of expression patterns
rather than on absolute levels of expression. An SOM is then computed. Each cluster is
represented by its average expression pattern (see Figure 4.7), making it easy to discern sim-
ilarities and differences among the patterns. The following learning function H(n,r,i) is used :

0.027  jf D(n,r) < p(i)
N _— ) Tri00i ! )= p
H(n, 1) { 0 otherwise

where radius p(i) decreases linearly with i (p(0) = 3, p(T") = 0). T is the maximum number
of iterations, and D(n,r) denotes the distance within the grid.
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Figure 4.7: Macrophage Differentiation in HL-60 cells. The Self organizing map algorithm
was applied to models of human hematopoietic differentiation. This process is largely con-
trolled at the transcriptional level, and is related to the pathogenesis of leukemia. 567 genes
were divided in to clusters using a 4x3 self organizing map. In each graph the normalized,
and averaged expression levels for each cluster are shown.
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4.6 Clustering cDNA oligo-fingerprints

4.6.1 Oligo-fingerprinting

This technique was developed by several researchers: Drmanac-Crkvenjakov [2], Bains-
Smith [1], Southern [15] and Macevics [9].

In this technique the targets (fragments of ¢cDNA) are placed at high density on an
array /membrane. We pick a set of short oligos, and hybridize each oligo to the membrane.
Thus we obtain a binary fingerprint vector f for each target: f; = 1 iff oligo ¢ hybridized to
the target. Many cDNA’s extracted from a tissue belong to the same gene. (About 100,000
fragments of cDNA are extracted, each one between 500 - 2500 long). If 2 fragments of
cDNA belong to the same gene then they have a common 3‘ end. (Each fragment of DNA
is chemically oriented, one side is called 5 prime (5°), and the other 3 prime (3‘) ). Hence,
¢DNAs of the same gene have similar fingerprints. (Since they have a common 3¢ end). This
type of data motivates the following approach to detecting the identity and level of cDNA‘s
in a given tissue :

1. Cluster cDNAs according to their fingerprints.

2. Sequence representatives from each cluster, to obtain a sequence that identifies the
gene.

4.6.2 The HCS Algorithm

The algorithm we will describe here is due to Hartuv et al. [5]. Let us define a graph
G = (V, E), where the vertices represent the spotted cDNAs, and an edge e = (vy, v7) exists
if v; and v, have similar fingerprints, that is, their similarity is above a certain threshold.
Recall the following definitions:

1. The connectivity k(G) of a graph G is the minimum number of edges whose removal
results in a disconnected graph. If £(G) = [ then G is said to be I-(edge)-connected.

2. A cutin G is a set of edges who removal disconnects the graph. A minimum cut is a
cut with minimum number of edges. If C' is a minimum cut set of a non-trivial graph
G, then |C| = k(G). Hence, a k-connected graph is a nontrivial graph in which the
size of a minimum cut is k.

Had the similarity graph perfectly represented the cluster structure, each cluster would
have formed a clique, as all members of a cluster are highly similar, and no two clusters would
have been connected by an edge. In practice, searching for cliques in the graph would fail
on two accounts: First, finding maximum cliques is computationally intractable [4]. Second,
and more important, real data matrices (and ¢cDNA hybridization matrices in particular)
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Procedure HCS(G(V, E))
(H,H, cut) « min-cut(G)
if (|cut| > U
return V
else

HOS(H)
HCS(H)
end if

end

Figure 4.8: The basic HCS algorithm.

contain many errors. In terms of the similarity graph, false negatives correspond to missing
edges between vertices in the same cluster, while false positive errors correspond to extra
edges between vertices of different clusters.

In ¢cDNA fingerprinting, errors in the hybridization data generate inexact fingerprinting,
leading in turn to errors in the similarity graph. That error rate is very high: The false
negative rate in the similarity graph is above 50% and the false positive rate is smaller but
still significant (especially since the true graph has much more non-edges than edges).

A key definition for our approach is the following: A graph G with n > 1 vertices is called
highly connected it k(G) > 5. A highly connected subgraph (HCS) is an induced subgraph
H C G such that H is highly connected. The HCS algorithm identifies highly connected
components of a given input graph. The algorithm is given in figure 4.8. It is assumed
that the procedure min-cut(G) returns H, H and C, where C' is a minimum cut set which
separates G into the subgraphs H and H.

It works as follows: In each iteration, it finds the minimum cut in the graph, and separates
the graph into two subgraphs. If the current graph is highly connected, the algorithm stops
(as it has found a cluster). Otherwise, it recursively continues processing each of the two

subgraphs.

Running Time

The algorithm runs in O(N x f(n,m)), where N is the number of clusters and f(n,m) is
the time to find the minimum cut in an unweighted, undirected graph with n vertices and
m edges. The fastest min-cut algorithms known today (for undirected, unweighted graphs)
are:

e Deterministic: O(mn) [11], [12].

e Randomized: O(mlog®n) [6].



16 Analysis of Gene Expression Data (¢)Tel Aviv Univ.

The deterministic worst case running time for the algorithm is therefore O(mn?) (since the
number of clusters is at most n). However, we usually expect N << n.

4.6.3 Properties of the HCS clustering

Theorem 4.1 The diameter of each cluster at worst 2. That is, the distance between two
vertices belonging to the same cluster is at most 2.

Proof: Consider the graph G(V, E) in the HCS iteration that found the cluster V. Let
k(G) be the size of the minimum cut, let d(v) denote the degree of v and 6(G) = min, d(v).
Observe that k(G) < 6(G): suppose on the other hand, that d(v) < k(G) for some v, then
the cut ({v}, V'\ {v}) contradicts minimality of k£(G). Furthermore, if G is a cluster reported
by the HCS algorithm, then according to the “if” statement in the algorithm % < k(@)
(otherwise G would have been divided in two by HCS). Therefore, §(G) > %

Consider two vertices v; and vy in GG. If they are neighbors, then surely the theorem
holds for them. Let us therefore assume that they are not neighbors. From the previous
inequality, each one of these vertices has more than |—‘2/| neighbors in GG. Therefore, they must
have a common neighbor, since the total number of vertices in the graph is [V|. m

While we have proven that each highly connected cluster has a small diameter, the
converse does not necessarily hold. That is, G may have a subgraph with diameter 2 that is
not a highly connected component.

Lemma 4.2 Let S be a set of edges forming a minimum cut in the graph G = (V,E). Let
H and H be the induced subgraphs obtained by removing S from G, where |V (H)| < |V (H)]|.
If |V(H)| > 1 then |S| < |V(H)|, with equality only if H is a clique.

Proof: Let degs(x) denote the degree of vertex z in subgraph s. Therefore :
degs(z) + degg(z) > |9

Otherwise we can find a smaller cut with = as one side of the cut.
Summarize over all vertices in H :

> degy(x) + 3 degp(z) > |S||V(H)|

xeH xeH

> e degs(x) > |S| ,because we do not count any edge in S more than once. (since vertices
in H are not connected to each other in S).
Seeq degn(z) > 2|E(H)| , because we cannot count any edge in H more than twice (once
for each vertex appearing in the edge). So :

S|+ 2| E(H)| = |S||V(H)|
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Hence,

2|E(H)| > |S||V(H) — 1]
If H is a clique,

Therefore, ~ ~ ~
20E(H)|  _ |V(H) —1||V(H)] .
18] < VoS v 1 - [V (H)]
|

Theorem 4.3 Let S be a min cut in G = (V, E), where |S| < % Let H , H be the induced
subgraphs obtained by removing S, where |V (H)| < |V(H)|. If diam(G) < 2 then:

e Fuvery vertex in H is incident on S

e H is a clique and if |V (H)| > 1 then |V (H)| = |5].
(Note : This is highly unlikely in clusters with random noise).
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Proof:

e case 1: |S| = ‘—‘;'
If |V(H)| =1, it is trivial.
If [V(H)| > 1, by Lemma 4.2, H, H are cliques with % vertices. If there is z € H
that is not incident on S then deg(z) < |—‘2/| and (z, V\z) is a smaller cut than S which
is the min cut, a contradiction.

e case 2: |S| < ‘—g' .
Claim: |V(H)| < |V(H)|.
Suppose |V (H)| = |V(H)| = % Since |S| < |[V(H)| = |V(H)| , then there is a path
in G of length at least 3. Simply take two vertices ,one in H, and the other in H,
which are not in S.
Therefore, |V(H)| > % > |S|. So dv € H which is not incident on S. Hence, every
vertex in A must be incident on S (otherwise, like before, there is a path in G of length
at least 3.).
So |S| > |[V(H)|. By Lemma 4.2, if [V(H)| > 1, |V(H)| > |S|. From the 2 inequalities
we conclude |S| = |V(H)|, so by Lemma 4.2, H is a clique.

It can be shown, using this theorem, that the union of two vertex sets split by any step
of HCS is unlikely to induce a graph with diameter < 2 if noise is random, and the vertex
sets are not too small. Another property of the solution is given by:

Theorem 4.4 1. The number of edges in a highly connected subgraph is quadratic.
2. The number of edges removed by each iteration of the HCS algorithm is at most linear.
(but no guarantee that the overall number is small).

Proof: Let n (m) be the number of vertices (edges) in the graph. Then:
1. As we have seen before, § < k(G) < 6(G). Since the rank of each vertex is > %, the
total number of edges is

1 l&n n
N=3200>525=7

2. The algorithm removes the edges forming the minimal cut S, only if |S| < §. There-
fore, obviously the number of removed edges is linear. m

4.6.4 Refinements of HCS clustering

The algorithm as was introduced can be refined using the following heuristic methods:
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Procedure HCS-LOOP(G(V, E))
for (i =1top)do
H—G
repeatedly remove all vertices of degree < d; from H
Repeat
HCS(H)
perform orphan adoption
remove clustered vertices from H
Until (no new cluster is found)
remove clustered vertices from G
end

Figure 4.9: Refinements of the HCS algorithm. d;,ds,...,d, is a decreasing sequence of
integers given as external input to the algorithm.

Singleton Adoption

The basic HCS algorithm may leave certain vertices as unclustered singletons. For that
reason, each singleton is checked whether it fits in to one of the clusters. For each singleton
x we compute the number of neighbors it has in each cluster and in the singleton set S. If
the maximum number of neighbors is sufficiently large, and is obtained by a cluster (and
not by S), then x is added to that cluster. The process is repeated a fixed number of times
in order to accommodate the changes in clusters as a result of previous adoptions. This
improvement is called singleton adoption or orphans adoption.

The low degree heuristic

When the input graph contains low degree vertices, one iteration of a minimum cut algorithm
may simply separate a low degree vertex from the rest of the graph. This is computationally
very expensive, not informative in terms of clustering, and may happen many times if the
graph is large and sparse. Removing low degree vertices from the original graph before
running the HCS algorithm eliminates such iterations and significantly reduces the running
time. The complete algorithm, after refinements, is shown in Figure 4.9.

Cluster Merging

An additional refinement involves merging clusters that are similar enough into a single clus-
ter. The rationale is that the algorithm tends to be too severe in its criteria for determining
a cluster, and may split “true” clusters. Figure 4.10 shows the results of running the HCS
algorithm with all the mentioned heuristics.
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Tl TZ -TS T4 TS T6 T7 TS T9 TlO T-ll T12 T13 T14 T15 T16 T17 T18 Total

S 7 6 2 9 19 24 9 1 7 5 43 14 9 10 2 23 206
I PR 6 2 |5 13 18 5 2 176 16 7 (25 9 51 8 269
o 162 162
s 62 62
s 15 4 1 1 563 587
s 1 4 2 2 199 2 217
co 83 2 85
o 1 1 1 2 224 2 1 232
co 97 o7
co 42 1 43
1o 170 170
on 61 1 62
o 1 2 4 4 2 7 4 7 4 10 3 81
C13 6
s 26 27
s 4 5 4 3 16
C16 6 6

Totf 1 2 12 14 10 32 39 43 6/ 86 Ol 108 146 187 213| 284 285 708| 2329

al

Figure 4.10: Results of HCS with Cluster merging: T: True clusters; C: HCS+merge. (i, j):
number of common elements in C'(i) and 7'(j). 13 out of 16 clusters are almost pure, 6 are
completely pure.
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4.6.5 Assessing Clustering Quality

We now describe measures for the quality of a solution given a true clustering. Let T" be the
“true” solution and S the solution we wish to measure. Denote by n;; the number of pairs
of elements that are in the same cluster in both S and T'. Denote by ng; the number of pairs
that are in the same cluster only in S, and by n;y the number of pairs that are in the same
cluster only in 7. We define the Minkowski Score to be:

[To1 + Mo
Djw(T, S) - -
N1 + Nio
In this case the optimum score is 0, with lower scores corresponding to better solutions.

An alternative is the Jaccard Score:

nn
n11 + N1 + No1

D'](T, S) -

Here the optimum score is 1, with larger scores corresponding to better solutions.

4.6.6 Simulation Results

Intensive tests of the HCS algorithm on simulated data were performed. The simulation
process computes artifical gene fingerprints (hybridized oligos) for each participating gene.
For each gene and a given probe, the precise locations along the gene are generated in a
realistic manner. Then, truncated clones of each gene are generated. Each clone inherits
the probe fingerprints and their locations from its original gene (just the fingerprints with
locations within the clone boundaries are inherited). Finally, each copy is incorporated with
false positive and false negative errors, again, realistically. If we denote the total number
of oligos by p and the total number of clones by N, then the result of the simulation is an
N x p hybridization matrix H, where H;; = 1 if clone 7 hybridized with oligo j, and H;; =0
otherwise.

The simulation results are summarized in Figure 4.11. A comparison to the Greedy
algorithm is given in Figure 4.12.

4.6.7 Clustering Real cDNA Data

In addition, a test of clustering real cDNA data was performed. (see [5]). The input
contained 2329 cDNAs, originating from 18 genes. The true clustering, obtained by hy-
bridization with long, unique sequences, is given in Table 4.1.

The high variability in abundance of genes can be easily seen. The results of the test are
summarized in Figure 4.13.
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Cluster | Cluster size | Gene name

T18 709 Efl alpha

Ti7 285 clone 190B1

T 284 Cytochr ¢ oxi

15 213 tubulin beta

T4 187 40SRibo protS6

T3 146 40SRibo protS3

Tio 108 40SRibo protS4

Th 91 GAPDH

Tho 86 60SRibo protL4

Ty 67 Efl beta

T3 43 Human calmodulin
I 39 heat shock cogKD71
T 32 heat shock cogKD90
T 14 Human TNF recep
Ty 12 Human AEBP1

T 10 clone 244D14

T 2 clone 241F17

Ti 1 Human anion ch

Table 4.1: True clusters in a ¢cDNA fingerprinting experiment. Results are shown in Fig-
ure 4.13.

In 14 out of the 17 clusters generated by the algorithm, over 92% of the entities belong
to the same gene (true cluster). Those clusters are called almost pure.

As the correct clusters are not known (in real experiments), and the main goal of cDNA
clustering is to avoid repeated sequencing of cDNAs originating from the same gene, the
following strategy can be used: From each cluster, up to 10 cDNAs are randomly chosen
to be sequenced. If, for example, 9 out of 10 give the same sequence, the cluster is with
high certainty almost pure, and no more sequencing of its members is needed. Otherwise,
all the members of the cluster are sequenced. This strategy could have saved about 75% of
the sequencing cost in this dataset.
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Figure 4.11: Examples of results of HCS and Greedy clustering algorithms in high noise
simulation. The fingerprint data consisted of 780 ¢cDNAs from 12 genes, in clusters of sizes
10,20,...,120. The number of oligos is 200. The expected rate of false positive hybridizations
is 25%. The expected false negative hybridization rate is 40%. A: The hybridization finger-
prints matrix H. Each of the 780 rows is a fingerprint vector of one cDNA. White denotes
positive hybridization. B: The binary similarity matrix. Position 4, j is black iff S;; > 50.
Matrix coordinates are scrambled, as in realistic scenarios. C: Clustering solution generated
by the greedy algorithm. Minkowski score is 1.32. ¢cDNAs from the same true cluster appear
consecutively, and the black lines are the borders between the different clusters. Position
1, 7 is black if the solution places cDNAs 7 and j in the same cluster. D: Clustering solution
generated by the HCS algorithm. Minkowski score is 0.209.
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performance of HCS vs Greedy
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Figure 4.12: Performance comparison of HCS (squares) and Greedy (diamonds) algorithms
on simulated data (using Minkowski score).
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Figure 4.13: Clustering results on real cDNA data (true clusters are listed in Table 4.1).
A: The binary similarity matrix. A block point appears at position (i,7j) iff S;; > 110.
B: Reordering of A according to the true clustering. ¢DNAs from the same true cluster
appear consecutively, and the black lines are the borders between the different clusters. C:
Reordering of A according to the clustering produced by the HCS algorithm. Clusters appear
in the order of detection. D: Comparison of the algorithmic solution and the true solution.
Rows and columns are ordered as in B. Position (i, j) is black iff the algorithm places ¢ and
J in the same cluster.
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