
CG © Ron Shamir
1

Pairwise Alignment

http://www.tau.ac.il/

2

Main source

CG © Ron Shamir

http://www.tau.ac.il/

CG © Ron Shamir

3

Human hexosaminidase A vs Mouse hexosaminidase A

/b

io
_
ge

no
m
e
.h

tm
l

0
4

w
w
w
.m

a
th

w
or

k
s.

co
m
/.

..
/j

a
n

 3

Why compare
sequences?

http://www.tau.ac.il/
http://www.mathworks.com/.../jan04/bio_genome.html
http://www.mathworks.com/.../jan04/bio_genome.html
http://www.mathworks.com/.../jan04/bio_genome.html

• The problem: Comparing two sequences while
allowing certain mismatches between them.

• Main motivation:
– Comparing DNA seqs and proteins from databases,

• Comparing two or more sequences for similarity
• Searching databases for related sequences and

subsequences
• Finding informative elements in protein and DNA sequences

4

Sequence Alignment

CG © Ron Shamir,

 עימוד רצפים

http://www.tau.ac.il/

• Input: Two sequences of possibly different lengths

• Goal: Space the sequences so that they have the same
length and no two spaces are matched.

5

Alignment definition

d

d

-

b

- b d a c -

c b - - c a a c b c d b

c a d b d

a c b c d b a c d b b

c a d b d a d b b b

CG © Ron Shamir

http://www.tau.ac.il/

CG © Ron Shamir
6

Alignment scoring: Similarity vs. Difference

• Resemblance of DNA sequences of
different organisms explained by common
ancestral origin

• Differences are explained by mutation:
– Insertion
– Deletion
– Substitution

• Distance between two sequences is the
minimum (weighted) sum of mutations
transforming one into the other.

• Similarity of two sequences is the
maximum (weighted) sum of resemblances
between them.

“Indel”

http://www.tau.ac.il/

CG © Ron Shamir
7

Nomenclature

• Biology:
– Sequence
– Subsequence

.
– N/a
– N/a
– Alignment

• Computer Science:
– String, word
– Substring

(contiguous)
– Subsequence
– Exact matching
– inexact matching

We shall use the biology nomenclature

non
contiguous
segment of a
sequence

http://www.tau.ac.il/

space

CG © Ron Shamir
8

Simplest model: Edit
Distance

The edit distance between two sequences is the
min no. of edit operations (single letter
insertion, deletion and substitution) needed to
transform one sequence into the other.

 ACCTGA

AGCCTGA

AGCTTGA

AGCTTA

A_CCTGA

AGCTT_A

ACCTGA

AGCTTA

 3 operations 2 operations

dist=2

ACCTGA and AGCTTA

http://www.tau.ac.il/

CG © Ron Shamir
9

Alignment

SEQ 1 GTAGTACAGCT-CAGTTGGGATCACAGGCTTCT

 |||| || ||| |||||| |||||| |||

SEQ 2 GTAGAACGGCTTCAGTTG---TCACAGCGTTC–

substitution insertion deletion

•24 matches,

•Subs: TA, AG, GC, CG

•Indels -T, G-, G-, A-, T-

•Distance I : match 0, subs 1, indel 2  dist = 14

match

http://www.tau.ac.il/

CG © Ron Shamir
10

Alignment

SEQ 1 GTAGTACAGCT-CAGTTGGGATCACAGGCTTCT

 |||| || ||| |||||| |||||| |||

SEQ 2 GTAGAACGGCTTCAGTTG---TCACAGCGTTC–

•Distance II: match 0, d(A,T)=d(G,C)=1, d(A,G)=1.5 indel 2

  dist=14.5

•Similarity I: match 1, subs 0, indel –1.5

  similarity =16.5

•General setup: substitution matrix (i,j), indel (i,-)

 Usually symmetric, Alignment – to - not allowed.

•24 matches, Subs: TA, AG, GC, CG, Indels -T, G-, G-, A-, T-

http://www.tau.ac.il/

CG © Ron Shamir

13

Global alignment
Human hexosaminidase A vs Mouse hexosaminidase A

/b

io
_
ge

no
m
e
.h

tm
l

0
4

w
w
w
.m

a
th

w
or

k
s.

co
m
/.

..
/j

a
n

Global Alignment Problem:
Input: Two sequences S=s1…sn, T=t1….tm (n~m)
Goal: Find an optimal (max. similarity) alignment

The scoring function is given.

13

http://www.tau.ac.il/
http://www.mathworks.com/.../jan04/bio_genome.html
http://www.mathworks.com/.../jan04/bio_genome.html
http://www.mathworks.com/.../jan04/bio_genome.html

CG © Ron Shamir

14

How many alignments are
possible?

• Each alignment matches 0  k  min(n,m) pairs.

• #alignments with k matched pairs is

n m

k k

  
  
  

min(,)

0 min(,)

n m

k

n m n m
N

k k n m

    
     

    


14

a c b c d b a c d b b

c a d b d a d b b b

 For n=m,
~4n/sqrt(n)

http://www.tau.ac.il/

CG © Ron Shamir

15

Global Alignment Algorithm

• First dynamic programming solution by Needleman &
Wunsch (70); improved later by Sankoff (72).

• (a,b) : the score (weight) of the alignment of

character a with character b.

15

http://www.tau.ac.il/

CG © Ron Shamir
16

Lemma: V(i,j) has the following
properties:

• Base conditions:
– V(i,0) = k=0..i(sk,-)
– V(0,j) = k=0..j(-,tk)

• Recurrence relation: V(i-1,j-1) + (si,tj)

1in, 1jm: V(i,j) = max V(i-1,j) + (si,-)
 V(i,j-1) + (-,tj)

Alignment with 0 elements  spaces

S’=s1...si-1 with T’=t1...tj-1

si with tj.

S’=s1...si with T’=t1...tj-1

and ‘-’ with tj.

V(i,j) := optimal score of the alignment
of S’=s1…si and T’=t1…tj (0  i  n, 0  j  m)

http://www.tau.ac.il/

CG © Ron Shamir
17

for i=1 to n do

begin

 For j=1 to m do

 begin

 Calculate V(i,j) using

 V(i-1,j-1), V(i,j-1), V(i-1,j)

 end

end

Optimal Alignment - Tabular
Computation

• Use dynamic programming to compute V(i,j) for all
possible i,j values:

Snapshot of computing the table

Costs: match 2, mismatch/indel -1

http://www.tau.ac.il/

CG © Ron Shamir
18

Optimal Alignment - Tabular
Computation

• Add back
pointer(s) from
cell (i,j) to
father cell(s)
realizing V(i,j).

• Trace back the
pointers from
(m,n) to (0,0)

Backtracking the alignment

http://www.tau.ac.il/

CS262 Lecture 2, Win06, Batzoglou

G

 -

`1` `` A G T A

0 -1 -2 -3 -4

A -1 1 0 -1 -2

T -2 0 0 1 0

A -3 -1 -1 0 2

F(i,j) i = 0 1 2 3 4

Example

x = AGTA m = 1

y = ATA s = -1

 d = -1

j = 0

1

2

3

V(1, 1) =

max{V(0,0) + s(A, A),

 V(0, 1) + d,

 V(1, 0) + d} =

max{0 + 1,

 -1 – 1,

 -1 – 1} = 1

A

A

T

T

A

A

20

λ C T C G C A G C

A

C

T

T

C

A

C

+10 for match, -2 for mismatch, -5 for space

 0 -5 -10 -15 -20 -25 -30 -35 -40

-5

-10

-15

-20

-25

-30

-35

10 5

λ

Fernandez-Baca & Dobbs http://www.cs.iastate.edu/~cs544/

CG © Ron Shamir

21

0 -5 -10 -15 -20 -25 -30 -35 -40

-5 10 5 0 -5 -10 -15 -20 -25

-10 5 8 3 -2 -7 0 -5 -10

-15 0 15 10 5 0 -5 -2 -7

-20 -5 10 13 8 3 -2 -7 -4

-25 -10 5 20 15 18 13 8 3

-30 -15 0 15 18 13 28 23 18

-35 -20 -5 10 13 28 23 26 33

 λ C T C G C A G C

A

C

T

T

C

A

C

λ

Traceback can yield both optimum alignments

*

*

Fernandez-Baca & Dobbs http://www.cs.iastate.edu/~cs544/

CG © Ron Shamir

CG © Ron Shamir
22

Alignment Graph

(0,0)

(n,m)

(si+1,-)

(-, tj+1)

(si+1,tj+1)

http://www.tau.ac.il/

CG © Ron Shamir
23

Alignment Graph
Definition: The alignment graph of sequences S=s1…sn

and T=t1…tm, is a directed graph G=(V,E) on
(n+1)x(m+1) nodes, each labeled with a distinct pair
(i,j) (0in, 0jm), with the following weighted
edges:

• ((i,j), (i+1,j)) with weight (si+1,-)
• ((i,j), (i,j+1)) with weight (-, tj+1)
• ((i,j), (i+1,j+1)) with weight (si+1,tj+1)
Note: a path from node (0,0) to node (n,m)

corresponds to an alignment and its total weight is
the alignment score.

Goal: find an optimal path from node (0,0) to node
(n,m)

http://www.tau.ac.il/

CG © Ron Shamir
24

Complexity

• Time: O(mn) (proportional to |E|)
• Space to find opt alignment: O(mn)

(proportional to |V|)
• Space is often the bottleneck!
• Can we improve space complexity for

finding opt alignment?

http://www.tau.ac.il/

Warm-up questions

How can we find opt alignment value
only in O(m+n) space?

How do we efficiently compute the opt
alignment scores of S to each prefix
t1….tk of T?

How do we efficiently compute the opt
alignment score of the sequence
suffixes si+1…sn and tj+1….tm ?

CG © Ron Shamir

25

http://www.tau.ac.il/

CG © Ron Shamir

26

Reducing Space Complexity

Pf: V(n,m)≥max{...}

• Every option of k defines a legal alignment:

•  position k’ in T,  alignment of S and T
consisting of:
– an opt alignment of s1...sn/2 and t1...tk’ and

– a disjoint opt alignment of sn/2 + 1...sn and tk’+1...tm.

Lemma:












),
2

(*),
2

(max),(
0

km
n

Vk
n

VmnV
mk

V*(n-i,m-j) = opt alignment value of si+1…sn and tj+1….tm

http://www.tau.ac.il/

CG © Ron Shamir
27

Proof (contd)

• V(n,m)  max{...} :
• Opt alignment corresponds to some k:
• For an opt. alignment of S and T, let k’ be

the rightmost position in T that is aligned
with a character at or before position n/2
in S. Then the optimal alignment of S and T
consists of:
– an alignment of s1...sn/2 and t1...tk’ and
– a disjoint alignment of sn/2 +1...sn and

tk’+1...tm.

http://www.tau.ac.il/

CG © Ron Shamir
28

‘Divide & Conquer’ Alg (Hirschberg ’75)

• Compute opt cost of all
paths from start, to
any point at centerline

• Compute opt cost of
back paths from end to
any pt at centerline

• Compute for every k
V(n/2,k)+V*(n/2,m-k)

• Pick midpoint: k* with
opt sum

• Continue recursively on
the subproblems

3n/4

n/4

n/2

http://www.tau.ac.il/

29

0 -5 -10 -15 -20 -25 -30 -35

-5 10 5 0 -5 -10 -15 -20

-10 5 8 3 -2 -7 0 -5

-15 0 15 10 5 0 -5 -2

-20 -5 10 13 8 3 -2 -7

-25 -10 5 20 15 18 13 8

-30 -15 0 15 18 13 28 23

 λ C T C G C A G

A

C

T

T

C

A

λ

*

*

Fernandez-Baca & Dobbs http://www.cs.iastate.edu/~cs544/
CG © Ron Shamir

30

0 -5 -10 -15 -20 -25 -30 -35

-5 10 5 0 -5 -10 -15 -20

-10 5 8 3 -2 -7 0 -5

-15 0 15 10 5 0 -5 -2

-20 -5 10 13 8 3 -2 -7

-5 0 5 10 15 0 -7 -10

-20 -15 -10 -5 0 5 -2 -5

-35 -30 -25 -20 -15 -10 -5 0

 λ C T C G C A G

A

C

T

T

C

A

λ

CG © Ron Shamir

+10 for match, -2 for mismatch, -5 for space

Hirschberg Alg in more detail

k* - position k maximizing
V(n/2,k)+V*(n/2,m-k)

Proved:  opt path L through (n/2,k*)

Def: Ln/2 – subpath of L that

• starts with the last node in L in row
n/2-1 and

• ends with the first node in L in row
n/2+1

CG © Ron Shamir

32

http://www.tau.ac.il/

Ln/2

n/2
n/2 -1

k*

n/2 +1

k1

k2

n

m

CG © Ron Shamir 33

Lemma: k* can be found in O(mn) time and O(m)
space. Ln/2 can be found and stored in same

bounds

Run DP up to row n/2, getting values V(n/2, i) for
all i and back pointers for row n/2

Run DP backwards up to row n/2, getting values
V*(n/2, i) for all i and forward pointers for row
n/2

Compute V(n/2,i)+V*(n/2,m-i) for each i, get
maximizing index k*

Use back pointers to compute subpath from
(n/2,k*) to last node in row n/2-1

Use forward pointers to compute subpath from
(n/2,k*) to first node in row n/2+1

 O(mn)
time,
O(m)
space

 O(m)

time,
space

 O(m)

time,
space
incl

storage

CG © Ron Shamir
34

http://www.tau.ac.il/

Full Alg and Analysis

• Assume time to fill a p by q DP matrix : cpq
•  time to compute rows V(n/2,.), V*(n/2,.): cmn
•  time cmn, space O(m) to find k*, k1 , k2, Ln/2

• Recursively solve top subproblem of size  nk*/2,
bottom subproblem of size  n(m-k*)/2

• Time for top level cmn, 2nd level cmn/2
• Time for all i-th level computations cmn/2i-1 (each

subproblem has n/2i rows, the cols of all subprobs are
disjoint)

• Total time: ∑i=1 to log n cmn/2i-1  2cmn

• Total space: O(m+n)

CG © Ron Shamir
35

http://www.tau.ac.il/

CG © Ron Shamir
36

Dan Hirschberg

Daniel S. Hirschberg is a full
professor in Computer
Science at University of
California, Irvine. His
research interests are in the
theory of design and analysis
of algorithms.

Hirschberg, D. S. (1975). "A linear space

algorithm for computing maximal common

subsequences". Communications of the

ACM 18 (6): 341–343

http://www.tau.ac.il/

CG © Ron Shamir
37

End-Space Free Alignment
aka semi-global alignment

• Motivation:
– “shotgun sequence assembly” – match overlapping

subsequences of an unknown target sequence.

– Given a gene of one species, locate it in the reference
sequence of another species

S = - - c a c - d b d v l

T = l t c a b d d b - - -

No

weight

No

weight

Input: Two sequences S, T
Goal: Find an optimal alignment between subsequences of
S and T where at least one of these subsequences is a
prefix of the original sequence and one (not necessarily
the other) is a suffix.

http://www.tau.ac.il/

CG © Ron Shamir
38

End-Space Free Alignment
DP algorithm

• Base conditions:

 V(i,0) = 0

 V(0,j) = 0

• Recurrence relation:

 V(i-1,j-1) + (si,tj)

 V(i,j) = max V(i-1,j) + (si,-)

 V(i,j-1) + (-,tj)

• Search for i* and j* such that

 V(n, i*) = maxi{V(n, i)}

 V(j*, m) = maxj{V(j, m)}

• V(S, T) = max{ V(n, i*), V(j*, m) }

• Time complexity: O(nm)

– computing the matrix: O(nm),

– finding i* and j*: O(n+m).

• Space complexity: for opt value: O(n+m)

– computing the matrix: O(n+m),

– computing i* and j* requires the

last row and column to be saved:

O(n+m)

http://www.tau.ac.il/

CG © Ron Shamir
39

Why compare sequences?
(II)

http://www.tau.ac.il/

CG © Ron Shamir
40

Local Alignment
Input: Sequences S, T
Goal: Find subsequences of S and  of T, with

highest global alignment score between them.
i.e. find

Motivation:
• Coding DNA segments matching the same gene
• Protein domains (functional subunits)
Example:
• S=abcxdex, T=xxxcded,
• Similarity score: 2 per match,

 -1 for subs/indel,
• =cxde and =c-de have optimal

 alignment score.

a b c x d e x

x x x c - d e d

(ax{ ,) | , }Argm GA S T   

http://www.tau.ac.il/

Local alignments in the
alignment graph

CG © Ron Shamir
41

http://www.tau.ac.il/

CG © Ron Shamir
42

Computing Local Alignment
The local suffix alignment problem for S’, T’: find a

(possibly empty) suffix  of S’=s1…si and a
(possibly empty) suffix  of T’=t1…tj such that the
value of their alignment is maximum over all values
of alignments of suffixes of S’ and T’.

• V(i,j) : the value of optimal local suffix alignment
for the pair i, j of indices.

• How are the V(i,j) related to opt local alignment
value?

http://www.tau.ac.il/

CG © Ron Shamir
43

Computing Local Alignment (2)

A scheme of the algorithm:

• Assumption: match  0,
mismatch/indel  0

• Solve local suffix alignment
for S’=s1...si and T’=t1...tj by
discarding prefixes whose
similarity is  0

• Find the indices i*, j* after
which the similarity only
decreases.

Algorithm - Recursive Definition

Base Condition:

 i,j V(i,0) = 0, V(0,j) = 0

Recursion Step:  i>0, j>0

 0,

 V(i,j) = max V(i-1, j-1) + (si, tj),

 V(i, j-1) + (-, tj),

 V(i-1, j) + (si, -)

Compute i*, j*

s.t. V(i*, j*) = max1i n, 1 j mV(i,j)

http://www.tau.ac.il/

44

0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 1

0 0 0 0 0 0 2 0 0

0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 1 0 2 0 1 0 0 1

0 0 0 0 1 0 2 0 0

0 1 0 1 0 2 0 1 1

 λ C T C G C A G C

A

C

T

T

C

A

C

λ

+1 for a match, -1 for a mismatch, -5 for a space

Fernandez-Baca & Dobbs http://www.cs.iastate.edu/~cs544/

CG © Ron Shamir

CG © Ron Shamir
45

Computing Local Alignment (3)

• Time O(nm)
• Space O(n+m)
 The optimum value and the ends of subsequences 

and  can be found in linear space
• Finding the starting point of the two subsequences

can be done in linear space (ex.)
• The actual alignment can be computed using

Hirschberg’s algorithm

• Smith-Waterman 81

http://www.tau.ac.il/

CG © Ron Shamir
46

http://www.tau.ac.il/

CG © Ron Shamir
47

Gap Penalties
• Observation: spaces tend to occur in batches.
• Idea: when scoring an alignment, score

contiguous spaces differently than
independent spaces

• Definitions:
– A gap is any maximal run of consecutive spaces in

a single sequence of a given alignment.
– The length of a gap is the number of spaces in it.
– #gaps: No. of gaps in the alignment

• Example:

– 4 gaps, 8 spaces, 7 matches, 0 mismatches.

S= attc--ga-tggacc

T= a--cgtgatt---cc

http://www.tau.ac.il/

CG © Ron Shamir
48

Gap Penalty Models

Constant Gap Penalty Model:
• Each individual space is free,
• Constant weight Wg for each gap, independent of

its length (gap opening cost)
Goal: maximize (s’

i, t’
i) + Wg  #gaps

Affine Gap Penalty Model:
• Additionally to Wg, each space has cost Ws . (gap

extension cost)

Goal: max. (s’
i, t’

i) + Wg  #gaps + Ws  #spaces

http://www.tau.ac.il/

CG © Ron Shamir
49

Alignment with Affine Gap Penalty

Three types of
alignments:

S.....i

T.....j

S.....i-------

T..............j

S...............i

T.....j-------

1

2

3

• G(i,j) is max value of any alignment
of type 1, where si and tj match

• E(i,j) is max value of any
alignment of type 2, where tj

matches a space

• F(i,j) is max value of any alignment
of type 3, where si matches a
space

http://www.tau.ac.il/

CG © Ron Shamir
50

Alignment with Affine
Gap Penalty (2)

Base Conditions:

 V(i, 0) = F(i, 0) = Wg + iWs

 V(0, j) = E(0, j) = Wg + jWs
Recursive Computation:

 V(i, j) = max{ E(i, j), F(i, j), G(i, j)}
where:
• G(i, j) = V(i-1, j-1) + (si, tj)
• E(i, j) = max{ E(i, j-1) + Ws , G(i, j-1) + Wg +

Ws , F(i, j-1) + Wg + Ws }

• F(i, j) = max{ F(i-1, j) + Ws , G(i-1, j) + Wg +
Ws , E(i-1, j) + Wg + Ws }

S.....i

T.....j

S.....i------

T..............j

S...............i

T.....j-------

G(i,j)

E(i,j)

F(i,j)

• Time complexity O(nm) - compute 4 matrices instead of one.

• Space complexity O(nm) - saving 4 matrices (trivial implementation).

http://www.tau.ac.il/

CG © Ron Shamir
51

Other Gap Penalty Models:
Convex Gap Penalty Model:
• Each additional space in a gap contributes less to

the gap weight.
• Example: Wg + log(q), where q is the length of the

gap.
• solvable in O(nm log m) time

Arbitrary Gap Penalty Model:
• Most general gap weight.
• Weight of a gap is an arbitrary function of its

length w(q).
• solvable in O(nm2+n2m) time.

http://www.tau.ac.il/

