Scoring and heuristic methods for sequence alignment

Amino Acid Substitution Matrices

- Used to score alignments.
- Reflect evolution of sequences.

Unitary Matrix:
$M_{i j}= \begin{cases}1 & i=j \\ 0 & o / w\end{cases}$
Genetic Code Matrix:
$M_{i j}=\min$ no. of base changes needed to alter codon of i to codon of j.

Scoring Matrices

- Wish evolutionary-based matrices
- More similar pairs of sequences should require different matrices than more divergent pairs.
- Several families of matrices were constructed, to be used according to the level of divergence:
- Global approach (PAM).
- Local approach (BLOSUM)
- Higher PAM and Lower BLOSUM for more different sequences

Log-odds

- All matrices compare the probability of the aligned sequences according to:
- Random model: letters are independent
- Alternative model: paired letters have some joint probability.

$$
\frac{P(x, y \mid M)}{P(x, y \mid R)}=\prod_{i} \frac{P\left(x_{i}, y_{i}\right)}{P\left(x_{i}\right) P\left(y_{i}\right)}
$$

- Taking a logarithm results in an additive scoring system.

PAM Matrices (Dayhoff et al., 78)

- PAM = Percent (or Point) Accepted Mutation
- Protein sequences S_{1}, S_{2} are at evolutionary distance of one PAM if S_{1} has converted to S_{2} with an average of one accepted point mutation per 100 AAs.:
- PAM1 should be used for sequences whose evolutionary distance causes 1% difference between them.
- PAM2 should be used for sequences twice as distant...

Observed \% difference	Evolutionary distance in PAMs
1	1
5	5
10	11
15	17
20	23
30	38
40	56
50	80
55	94
60	112
70	159
75	195
80	246

PAM Matrices (2)

Generating PAM:

- Start with aligned sequences, highly similar, with known evolutionary trees.
- Count exchanges $A_{a b}=A_{b a}$
- Compute matrix $M_{a b}=$ "prob."(a changes to b in one unit) $=A_{a b} / \sum_{c} A_{a c}$
- Now M^{k} gives change probs. in k units.

$$
" \log -\text { odds" }=\log \frac{f(a) M^{k}(a, b)}{f(a) f(b)}=\log \frac{M^{k}(a, b)}{f(b)}
$$

Dayhoff's Data

- 71 parsimony-based evolutionary trees of close sequence families.
- 1,572 substitutions overall
- Normalized matrix (multiplying all non-diagonal entries by a constant) so that:

$$
\sum f(i)\left(1-M_{i i}\right)=0.01
$$

ORIGINAL AMINO ACID

	$\begin{gathered} \mathrm{A} \\ \mathrm{Ala} \end{gathered}$	R Arg			C					I 17		K K	M Met	F F	P	S S	Thr	W ${ }_{\text {Wrp }}$	Y Tyr	V Val
A Ala	9867	2	9	10	3	8	17	21	2	6	4	2	6	2	22	35	32	0	2	18
R Arg	1	9913	1	0	1	10	0	0	10	3	1	19	4	1	4	6	1	8	0	1
N Asn	4	1	9822	36	0	4	6	6	21	3	1	13	0	1	2	20	9	1	4	1
D Asp	6	0	42	9859	0	6.	53	6	4	1	0	3	0	0	1	5	3	0	0	1
C Cys	1	1	0	0	9973	0	0	0	1	1	0	0	0	0	1	5	1	0	3	2
Q G1n	3	9	4	5	0	9876	27	1	23	1	3.	6	4	0	6	2	2	0	0	1
E Glu	10	0	7	56	0	35	9865	4	2	3	1	4	1	0	3	4	2	0	1	2
G G1y	21	1	12	11		3		9935		0		2	1		3	21	3	0	0	5
${ }^{\prime}$ His	1	8	18	3	1	20	1	0	9912	0	1	1	0	2	3	1	1	1	4	1
$\text { I } \mathrm{Ile}$	2	2	3	1	2	1	2	0	0	9872		2	12			1	7	0	1	33
L Leu	3	1	3	0	0	6	1	1	4	22	9947	2	45	13	3	1	3	4	2	15
K Lys	2	37	25	6	0	12	7	2	2	4	1	9926	20	0	3	8	11	0	1	1
M Met	1	1	0	0	0	2	0	0	0	5	8		9874	1	0	1	2	0	0	4
F Phe	1	1	1	0	0	0	0	1	2	8	6	0	4	9946	0	2	1	3	28	0
P Pro	13	5	2	1	1	8	3	2	5	1	2	2	1	1	9926	12	4	0	0	2
S Ser	28	11	34	7	11	4	6	16	2	2	1	7	4	3	17	9840	38	5	2	2
T Thr	22	2	13	4	1	3	2	2	1	11	2	8	6	1	5	- 32	9871	0	2	9
W Trp	0	2	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	9976	1	0
Y Tyr	1	0	3	0	3	0	1	0	4	1	1	0	0	21	0	1	1	2	9945	1
\checkmark Val	13	2	1	1	3	2	2	3	3	57	11	1	17	1	3	2	10	0	2	9901

Figure 82. Mutation probability matrix for the evolutionary distance of 1 PAM. An element of this matrix, $M_{i j}$, gives the probability that the amino acid in column j will be replaced by the amino acid in row i after a given evolutionary interval, in this case

1 accepted ooint mutation per 100 amino acids. Thus, there is a
0.56% probability that Asp will be replaced by Glu. To simplify the appearance, the elements are shown multiplied by 10,000 .

Figure 83. Mutation probability matrix for the evolutionary distance of 250 PAMs. To simplify the appearance, the elements are shown multiplred by 100 . In comparing two sequences of average amino scid frequency at this evolutionary distance, there is a 13% probability that a position containing Ala in the first
sequence will contain Ala in the second. There is a $\mathbf{3 \%}$ chenee that it will contain Arg, and so forth. The relationship of two soquences at a distance of 250 PAMs can be demonstrated by stotistical methods.

Figure 84. Log odds matrix for 250 PAMs, Elements are shown multiplied by 10 . The neutral score is zero. A score of $\mathbf{- 1 0}$ means that the pair would be expected to occur only one-tenth as frequently in related sequences as random chance would predict, and
a score of +2 means that the pair would be expected to occur 1.6 times as frequently. The order of the amino acids has been arranged to illustrate the pat'erns in the mutation data.

Caveats

- Markovian model: state at time n depends only on state at time n-1
- Assumes constant molecular clock
- Same model for all AA positions
- Ignores indels

Margaret Oakley Dayhoff (1925-1983)

A pioneer in the use of computers in chemistry and biology, beginning with her PhD thesis project in 1948. Her work was multi-disciplinary, and used her knowledge of chemistry, mathematics, biology and computer science to develop an entirely new field. She is credited today as one of the founders of the field of Bioinformatics. Dr. Dayhoff was the first woman in the field of Bioinformatics.

BLOSUM (Henikoff \& Henikoff, 92)

- PAM: based on highly similar global alignments
- BLOSUM (BLOcks SUbstitution Matrix): based on short, gapless local alignments
- Identify blocks: conserved segments in alignment of proteins from the same family.
- Eliminate sequences that are $>\times \%$ identical (by clustering \& representing each cluster by a single sequence)
- Collect stats $A_{a b}$ on pairs (a, b) in each column
- $q_{a b}=$ prob of AA pairs (a, b) in same column
- $p_{a}=$ prob of observing a
- $e_{a b}=$ freq. of pair (a, b) assuming independence $=p_{a}{ }^{2}$ if $a=b$, $2 p_{a} p_{b}$ if $a \neq b$
- Log odds: $s_{a b}=\log \left(q_{a b} / e_{a b}\right)$
- BLOSUM X matrix: $s_{a b}$ discretized

Blosum62

	C	S	T	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W	
	0	-1	1	0	2	1	1	2	1	2	0	0	2	4	1	5	1	2	-2	5	C
		2	0	-2	0	-1	0	0	0	1	0	0	0	1	0	1	-1	1	1	-1	S
c	9		2	-1	-1	-1	0	0	0	0	0	0	-1	0	-1	1	0	1	1	3	T
S	-1	4		2	-2	-1	-1	0	-	-1	-1	-1	1	1	0	-1	0	0	2	1	P
T	-1	1	5		2	-1	-2	-2	-1	0	0		1	0	0	1	0	1	1	2	A
P	-3	-1	-1	7		2	0	-1	-2	0	1	1	0	0	-1	0	-1	1	2		G
A	,	1	0	-1	4		3	-1	-1	0	0	1	-1	0	-1	0	-1	0	0	0	N
G	-3	0	-2	-2	0	6		2	-1	-1	-1	0	-1	0	0	0	0	2	1	3	D
N	-3	1	0	-2	-2	0	6		1	0	0	2	2	1	-1	0	0	2	2	4	E
D	-3	0	-1	-1	-2	-1	1	6		0	-2	0	1	1	-1	0	0	1	3	3	Q
E	-4	0	-1	-1	-1	-2	0	2	5		2	-1	0	1	0	-1	0	1	2	-2	H
Q	-3	0	-1	-1	-1	-2	0	0	2	5		-1	-1	0	-1	,	0	1	3	-4	R
H	-3	-1	-2	-2	-2	-2	1	-1	0	0	8		1	-2	-1	1	1	2	3	1	K
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5		-2	-1	-1	0	1	2	4	M
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5		-1	1	0	0	1	3	I
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5		-1	0	-1	1	2	L
I	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1			0	1	2	4	V
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4		-1	-2	1	F
$\stackrel{L}{\mathrm{~V}}$	-1	-2	0	-2	,	-3	-3	-3	-2	-2	-3	-3	-2		3	1	4		-1	2	Y
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0		6		-1	
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7		
,	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3		-1	-3			1	,	11	
		S	T	P	A	G	N	D	E	Q	H	R		M	I			F	Y	W	

Fig. 2. blosum 62 substitution matrix (Lower) and difference matrix (Upper) obtained by subtracting the pam 160 matrix position by position. These matrices have identical relative entropies (0.70); the expected value of blosum 62 is -0.52 ; that for Pam 160 is -0.57 .

Comparing matrices

Fig. 4. Searching performance of BLAST using different matrices from the BLOSUM (BL) series, the PAM (P) series, and two recent updates of the standard Dayhoff matrix: GCB (25) and JTT (26). Results are based on searches using queries for each of 504 different groups. For each pair of numbers below a box representing a matrix, the first is the number of groups for which blosum 62 missed fewer sequences than that matrix, and the second is the number of groups for which blosum 62 missed more. The vertical distance between each matrix and blosum 62 is proportional to the difference.

PAM vs BLOSUM in different algorithms

Fig. 3. Searching performance of programs using members of the guanine nucleotide-binding protein-coupled receptor family as queries and matrices from the blosum and pam series scaled in half-bits (11). Removal of this family from the blocks data base led to a nearly identical matrix with similar performance. Matrices represented (left to right) are blosum (BL) $30,35,40,45,50,55,60,62,65,70,75$, 80,85 , and 90 and Paм (P) $400,310,250,220,200,160,150,140,120$, 110 , and 100. The average numbers of true positive Swiss-Prot entries missed are shown for LSHR\$RAT, RTA\$RAT, and UL33\$HCMVA versus Swiss-Prot 20. Results using blast and fasta or SSEARCH (S-W) are not comparable to each other, since different detection criteria were used for the three programs.

One recipe for selecting a matrix

- Close sequences: PAM 100 or BLOSUM 80
- Distant sequences: PAM 250 or BLOSUM 45
- Database scanning: PAM 120 or BLOSUM 62

Sequence Alignment Heuristics

Some slides from:

- Iosif Vaisman, GMU mason.gmu.edu/~mmasso/binf630alignment.ppt
- Serafim Batzoglu, Stanford http://ai.stanford.edu/~serafim/
- Geoffrey J. Barton, Oxford
"Protein Sequence Alignment and Database Scanning"
http://www.compbio.dundee.ac.uk/ftp/preprints/review93/review93.pdf

Why Heuristics?

- Motivation:
- Dynamic programming guarantees an optimal solution \& is efficient, but
- Not fast enough when searching a database of size $\sim 10^{12}$, with a query of length 200-500bp
- Solutions:
- Implement on hardware. (e.g. COMPUGEN)
- Use faster heuristic algorithms.
- Database preprocessing
- Common Heuristics: FASTA, BLAST

Alignment Dot-Plot Matrix

	a	a	9	t	c	c	c	9	t	9
a	\star	\star								
g			\star					\star		\star
g			\star							\star
t				\star					\star	
c					\star	\star	\star			
c					\star	\star	\star			
g			\star					\star		
t				\star					\star	\star
t				\star					\star	
c					\star	\star	\star			

 Example 1: close protein homologs (man and mouse)

Example 2: remote protein homologs (man and bacilus)

Example 2: dot for 4+

Key observations

- Substitutions are much more likely than indels
- Homologous sequences contain many matches
- Even $O(m+n)$ time would be problematic when db size is huge
- Numerous queries are run on the same db
\rightarrow Preprocessing of the db is desirable

Banded Alignment

Assume we know that x and y are very similar
Assumption: $\quad \# \operatorname{gaps}(x, y)<k(N) \quad$ (say $N>M$)
Then, $\quad \begin{aligned} & x_{i} \\ & \mid \\ & y_{j}\end{aligned} \quad$ implies $\quad|i-j|<k(N)$
We can align x and y more efficiently:
Time, Space:
$\mathrm{O}(\mathrm{N} \times \mathrm{k}(\mathrm{N})) \ll \mathrm{O}\left(\mathrm{N}^{2}\right)$

Banded Alignment

Initialization:

$$
F(i, 0), F(0, j) \text { undefined for } \mathrm{i}, \mathrm{j}>\mathrm{k}
$$

Iteration:

$$
\text { For } \mathrm{i}=1 \ldots \mathrm{M}
$$

$$
\text { For } j=\max (1, i-k) \ldots \min (N, i+k)
$$

$$
F(i, j)=\max \left\{\begin{array}{l}
F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\
F(i, j-1)-d, \text { if } j>i-k(N) \\
F(i-1, j)-d, \text { if } j<i+k(N)
\end{array}\right.
$$

$$
\mathrm{k}(\mathrm{~N}) \quad \text { Termination: same }
$$

FASTA (Lipman \& Pearson '88)

 Key idea: Good local alignment must have exact matching subsequences.ktup $=$ required min length of perfect match

1. Find 10 highest-scoring diagonal runs = almost consecutive matches of length ktup on the same diagonal
2. Rescore using a subs. matrix. Best soln $=$ init1
3. Combine close sub-alignments. best soln = initn
4. Compute best DP solution in a band around init1. result $=$ opt \dagger

FASTA - Step 1

\longleftarrow Sequence B

Find diagonal runs of matches of length ktup

4-6 for DNA,1-2 for AA

FASTA - Step 2

Rescoring using a subs. matrix

- high score low score

The score of the highest scoring initial region is saved as the init1 score.

FASTA - Step 3

\longleftarrow Sequence B

Join sub-alignments (allow indels)

Non-overlapping regions are joined. The score equals sum of the scores of the regions minus a gap penalty. The score of the highest scoring region is the initn score.

Combining diagonal runs

- Construct an alignment graph:
- nodes =sub-alignments (SAs)
- weight - alignment score (from 1)
- Edges btw SAs that can fit together,
- Weight - negative, depends on the size of the corresponding gap
- Find a maximum weight path in it, initn
- Use initn for an initial ranking of sequences.

Alignment graph

FASTA - Step 4

Banded alignment Around init1 (width=16/32)

The score for this alignment is the opt score.

FASTA Output

```
>>SWNEW:HBE HYLSY Q95190 HEMOGLOBIN EPSILON CHAIN. (146 aa)
initn: 638 init1: 638 opt: 638 Z-score: 1255.8 expect() 5.2e-64
Smith-Waterman score: 638; 80.690% identity in 145 aa overlap (3-147:2-146)
10 \begin{tabular}{llllll} 
& 20 & 30 & 40 & 50 & 60
\end{tabular}
GGAMMA MGHFTEEDKATITSLWGKVNVEDAGGETLGRLLVVY PWTQRFFDSFGNLSSASA IMGNPK
SWNEW: \(\quad\) VHFTAEEKAAVTSLWNKMNVEEAGGEALGRLLVYY PWTORFFDSFGNLSSPSAILGNPK
\begin{tabular}{lllll}
10 & 20 & 30 & 40 & 50
\end{tabular}
70 80
90
\(100 \quad 110\)
120
GGAMMA VKAHGKKVLTSLGDAIKHLDDLKGTFAQLSELHCDKLHVDPENFKLLGNVLVTVLA IHFG
SWNEW: VKAHGKKVLTSFGDA IKNMDNLKTTFAKLSELHCDKLHVDPENFKLLGNVMVIILATHFG
\(\begin{array}{llllll}60 & 70 & 80 & 90 & 100 & 110\end{array}\)
130
140
GGAMMA KEFTPEVQASWQKMVTGVASALSSRYH
SWNEW: KEFTPEVQAAWQKLVSAVA IALAHKYH
120
130
140
```


The information on each hit includes:

- General information and statistics
- SW score, \%identity and length of overlap

August 1997: NCBI Director David Lipman (far left) coaches Vice President Gore (seated) as he searches PubMed. NIH Director Harold Varmus (center) and NLM Director Donald Lindberg look on.
政

Bill Pearson

Bill Pearson received his Ph.D. in Biochemistry in 1977 from the California Institute of
Technology. He then did a postdoctoral fellowships at the Caltech Marine Station in Corona del Mar, CA and at the Department of Molecular Biology and Genetics at Johns Hopkins. In 1983 he joined the Department of Biochemistry at the University of Virginia.

BLAST

Basic Local Alignment Search Tool Altschul, Gish, Miller, Myers and Lipman 1990

BLAST - outline

- Compile a list of high scoring words with the query
- Scan the database for hits
- Extend hits

BLAST Algorithm

1

Query sequence of length L

Maximium of $\mathrm{L}-\mathrm{w}+1$ words (typically w = 3 for proteins)

For each word from the query sequence find the list of words with score $>=\mathrm{T}$ using a substitution matrix

Word list

BLAST Algorithm

2

Database sequences
Word list

Exact matches of words from the word list to the database sequences (linear time)

BLAST Algorithm

For each exact word match, alignment is extended in both directions to find high scoring segments

In more detail

BLAST - Basic Definitions

- Given two sequences S_{1} and S_{2}, a segment pair is a pair of equal length subsequences of S_{1} and S_{2}, aligned without spaces.
- A locally maximal segment pair is a pair aligned without spaces whose alignment score cannot be improved by extending it or shortening it.
- A maximal segment pair (MSP) in S_{1}, S_{2} is a segment pair with the maximum score over all segment pairs in S_{1}, S_{2}.

match +2 , mismatch -1

$\mathrm{S}_{1}=\mathrm{agctggtta}$ $\mathrm{S}_{2}=\mathrm{cttgatggta}$
$\mathrm{S}_{1}=\mathrm{ag} \operatorname{ctg} \mathrm{tt} \mathrm{ta}$ $\mathrm{S}_{2}=\mathrm{cttgatggta}$

$$
\mathrm{S}_{1}=\mathrm{agctggt} t \mathrm{ta}
$$

$$
S_{2}=c t t g a \operatorname{tg} \mathrm{ta}
$$

Sensitivity-Speed Tradeoff

	long words $(\mathrm{k}=15)$	short words $(\mathrm{k}=7)$
Sensitivity		\checkmark
Speed	\checkmark	

Table 3. Sensitivity and Specificity of Single Perfect Nucleotide K-mer Matches as a Search Criterion

Sens.	87\%	0.996	0.978	0.945	0.888	0.808	0.707	0.594	0.532
	87\%	0.999	0.992	0.975	0.942	0.888	0.811	0.714	0.659
	89\%	1.000	0.998	0.991	0.976	0.946	0.897	0.824	0.782
	91\%	1.000	1.000	0.998	0.993	0.981	0.956	0.912	0.886
	93\%	1.000	1.000	1.000	0.999	0.995	0.987	0.968	0.957
	95\%	1.000	1.000	1.000	1.000	0.999	0.998	0.994	0.991
	97\%	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.999
Speed	$\text { B. } \underset{F}{K}$	7	8	9	10	11	12	13	14
		$1.3 \mathrm{e}+07$	$2.9 \mathrm{e}+06$	635783	143051	32512	7451	1719	399

[^0]
Gene Myers, Webb Miller, Warren Gish

BLAST statistics

- Theory of Karlin, Altschul, and Dembo on the distribution of the MSP score at random: the maximum of mn local match scores has an Extreme value distribution
- Define parameters K, λ (depending on AA distribution and scoring matrix).
- Pr (finding a pair of score $>S$ in comparing two random seqs of length m, n) $=1-e^{-y}$ where $y=K m n e^{-\lambda s}$
- Generalizes to db search: $n->N$

Sam Karlin, Steve Altschul, Amir Dembo

$\frac{9}{\pi \times 2}$

Gapped BLAST (Altschul et al. 97)

- The original BLAST extends high-scoring SPs (HSPs) without gaps.
- The new version allows gapped extensions for the best segments passing the two hit condition: two close hits on the same diagonal

Gapped BLAST outline

- Find two non-overlapping w-long words with:
- score $\geq T$, each
- on same diagonal
- within distance $\leq A$
- Perform ungapped extension
- If score exceeds S (1:50 sequences), perform gapped extension; use center pair as seed.
- Apply DP on a changing region: stop extension when score falls X_{g} below bes \dagger score attained so far

- Figure 2. The BLAST comparison of broad bean leghemoglobin I (87) (SWISS-PROT accession no. P02232) and horse [beta]-globin (88) (SWISS-PROT accession no. PO2062). The 15 hits with score at least 13 are indicated by plus signs. An additional 22 non-overlapping hits with score at least 11 are indicated by dots. Of these 37 hits, only the two indicated pairs are on the same diagonal and within distance 40 of one another. Thus the two-hit heuristic with $T=11$ triggers two extensions, in place of the 15 extensions invoked by the one-hit heuristic with $T=13$.

Figure 3. A gapped extension generated by BLAST for the comparison of broad bean leghemoglobin I (87) and horse [beta]-globin (88). (a) The region of the path graph explored when seeded by the alignment of alanine residues at respective positions 60 and 62 . This seed derives from the HSP generated by the leftward of the two ungapped extensions illustrated in Figure 2. The Xg dropoff parameter is the nominal score 40, used in conjunction with BLOSUM-62 substitution scores and a cost of $10+k$ for gaps of length k. (b) The path corresponding to the optimal local alignment generated, superimposed on the hits described in Figure 2. The original BLAST program, using the one-hit heuristic with $T=11$, is able to locate three of the five HSPs included in this alignment, but only the first and last achieve a score sufficient to be reported. (c) The optimal local alignment, with nominal score 75 and normalized score 32.4 bits. In the context of a search of SWISS-PROT (26), release 34 (21 219450 residues), using the leghemoglobin sequence (143 residues) as query, the E-value is 0.54 if no edge-effect correction (22) is invoked. The original BLAST program locates the first and last ungapped segments of this alignment. Using sum-statistics with no edge-effect correction, this combined result has an E-value of $31(21,22)$. On the central lines of the alignment, identities are echoed and substitutions to which the BLOSUM-62 matrix (18) gives a positive score are indicated by a ${ }^{\text {' }}$

Time analysis

	Overhead: database scanning, output, etc.	Calculating whether hits qualify for ungapped extension	Ungapped extensions	Gapped extensions

Original BLAST	8 (8\%)		92 (92\%)	
Gapped BLAST	8 (24\%)	12 (37\%)	5 (15\%)	8 (24\%)

Speed: ~3 times faster than the original BLAST

Thomas Madden, David Lipman, Alex Schaeffer, Steve Altschul

[^0]: (A) Columns are for K sizes of 7-14. Rows represent various percentage identities between the homologous sequences. The table entries show the fraction of homologies detected as calculated from equation 3 assuming a homologous region of 100 bases. The larger the value of K , the fewer homologies are detected.
 (B) K represents the size of the perfect match. F shows how many perfect matches of this size expected to occur by chance according to equation 4 in a genome of 3 billion bases using a query of 500 bases.

