
Suffix trees

December 2018

חישוביתגנומיקה
, רון שמיר' פרופ, ויקס-עירית גת' פרופ

רודד שרן' פרופ
אוניברסיטת תל אביב ,ס למדעי המחשב"ביה

Computational Genomics
Prof Irit Gat-Viks, Prof. Ron
Shamir, Prof. Roded Sharan

School of Computer Science, Tel Aviv University

http://www.tau.ac.il/

Suffix Trees

Description follows Dan Gusfield’s book “Algorithms
on Strings, Trees and Sequences”
Slides sources: Pavel Shvaiko, (University of Trento), Haim

Kaplan (Tel Aviv University), Ben Langmead (JHU)

CG © Ron Shamir

http://www.tau.ac.il/

3CG © Ron Shamir

Outline

 Introduction

 Suffix Trees (ST)

 Building STs in linear time: Ukkonen’s
algorithm

 Applications of ST

http://www.tau.ac.il/

4CG © Ron Shamir

Introduction

http://www.tau.ac.il/

5CG © Ron Shamir

|S| = m,

n different patterns p1 … pn

Pattern occurrences can overlap

Text S

Exact String/Pattern Matching

beginning end

http://www.tau.ac.il/

6CG © Ron Shamir

String/Pattern Matching - I

 Given a text S, answer queries of the
form: is the pattern pi a substring of S?

 Knuth-Morris-Pratt 1977 (KMP) string
matching alg:
O(|S| + | pi |) time per query.

O(n|S| + Si | pi |) time for n queries.

 Suffix tree solution:
O(|S| + Si | pi |) time for n queries.

http://www.tau.ac.il/

7CG © Ron Shamir

String/Pattern Matching - II

 KMP preprocesses the patterns pi;

 The suffix tree algorithm:
preprocess S in O(|S|): builds a data

structure called suffix tree for S

when a pattern p is input, the algorithm
searches it in O(|p|) time using the suffix
tree

http://www.tau.ac.il/

8CG © Ron Shamir

Donald Knuth

http://www.tau.ac.il/

CG © Ron Shamir

Prefixes & Suffixes

 Notation: S[i,j] =S(i), S(i+1),…, S(j)

 Prefix of S: substring of S beginning at the
first position of S S[1,i]

 Suffix of S: substring that ends at last
position S[i,n]

 S=AACTAG
 Prefixes: AACTAG,AACTA,AACT,AAC,AA,A

 Suffixes: AACTAG,ACTAG,CTAG,TAG,AG,G

 Note: P is a substring of S iff P is a prefix of
some suffix of S.

9

http://www.tau.ac.il/

10CG © Ron Shamir

Suffix Trees

http://www.tau.ac.il/

11CG © Ron Shamir

Trie

 A tree representing a set of strings.

a

c

b

c

e

e

f

d b

f

e g

{

aeef

ad

bbfe

bbfg

c

}

http://www.tau.ac.il/

12CG © Ron Shamir

Trie (Cont)

 Assume no string is a prefix of another

a
b

c

e

e

f

d b

f

e g

Each edge is labeled by
a letter,
no two edges outgoing
from the same node
are labeled the same.

Each string
corresponds to a leaf.

http://www.tau.ac.il/

13CG © Ron Shamir

Compressed Trie

 Compress unary nodes, label edges by strings

a

c

b

c

e

e

f

d b

f

e g

a

bbf

c

eef

d

e g

http://www.tau.ac.il/

14CG © Ron Shamir

Def: Suffix Tree for S |S|= m

1. A rooted tree T with m leaves numbered 1,…,m.
2. Each internal node of T, except perhaps the root, has 2

children.
3. Each edge of T is labeled with a nonempty substring of S.
4. All edges out of a node must have labels starting with

different characters.
5. For any leaf i, the concatenation of the edge-labels on

the path from the root to leaf i exactly spells out S[i,m].

S=xabxac

http://www.tau.ac.il/

15CG © Ron Shamir

 If one suffix Sj of S matches a prefix of
another suffix Si of S, then the path for Sj

would not end at a leaf.

 S = xabxa

 S1 = xabxa and S4 = xa

Existence of a suffix tree S

1
23

 How to avoid this problem?

Make sure that the last character of S
appears nowhere else in S.

Add a new character $ not in the alphabet to
the end of S.

http://www.tau.ac.il/

16CG © Ron Shamir

Example: Suffix Tree for S=xabxa$

1

25

4
3

6

http://www.tau.ac.il/

17CG © Ron Shamir

Example: Suffix Tree for S=xabxa$
Query: P = xac

1

25

4
3

6

P is a substring of S iff P is a prefix of some

suffix of S.

http://www.tau.ac.il/

18CG © Ron Shamir

Trivial algorithm to build a Suffix tree

Put the largest suffix in

Put the suffix bab$ in

a
b
a
b
$

a
b
a
b

$

a
b
$

b

S= abab

http://www.tau.ac.il/

19CG © Ron Shamir

Put the suffix ab$ in

a
b
a
b

$

a
b
$

b

a
b

a
b

$

a
b
$

b

$

http://www.tau.ac.il/

20CG © Ron Shamir

Put the suffix b$ in

a
b

a
b

$

a
b
$

b

$

a
b

a
b

$

a
b
$

b

$

$

http://www.tau.ac.il/

21CG © Ron Shamir

Put the suffix $ in

a
b

a
b

$

a
b

$

b

$

$

a
b

a
b

$

a
b

$

b

$

$

$

http://www.tau.ac.il/

22CG © Ron Shamir

We will also label each leaf with the starting point of the
corresponding suffix.

a
b

a
b

$

a
b

$

b

$

$

$

1
2

a
b

a
b

$

a
b

$

b

3

$ 4

$

5

$

http://www.tau.ac.il/

23CG © Ron Shamir

Analysis

Takes O(m2) time to build.

Can be done in O(m) time - we will sketch the proof.

See the CG class notes or Gusfield’s book for the full
details of the proof.

http://www.tau.ac.il/

24CG © Ron Shamir

Building STs in linear time:

Ukkonen’s algorithm

http://www.tau.ac.il/

25CG © Ron Shamir

History

 Weiner’s algorithm [FOCS, 1973]
 Called by Knuth ”The algorithm of 1973”
 First linear time algorithm, but much space

 McCreight’s algorithm [JACM, 1976]
 Linear time and quadratic space
More readable

 Ukkonen’s algorithm [Algorithmica, 1995]
 Linear time and less space
 This is what we will focus on

 ….

http://www.tau.ac.il/

26CG © Ron Shamir

Esko Ukkonen

http://www.tau.ac.il/

27CG © Ron Shamir

Implicit Suffix Trees

 Ukkonen’s alg constructs a sequence of implicit
STs, the last of which is converted to a true ST
of the given string.

 An implicit suffix tree for string S is a tree
obtained from the suffix tree for S$ by
removing $ from all edge labels
removing any edge that now has no label
removing any node with only one child

http://www.tau.ac.il/

28CG © Ron Shamir

Example: Construction of the Implicit
ST

 The tree for xabxa$

1

b

b

b

x
x

x
x

a

a
a

a
a

$
$

$

$

$$

2
3

6

5

4

{xabxa$, abxa$, bxa$, xa$, a$, $}

http://www.tau.ac.il/

29CG © Ron Shamir

Construction of the Implicit ST: Remove $

 Remove $

1

b

b

b

x
x

x
x

a

a
a

a
a

$
$

$

$

$$

2
3

6

5

4

{xabxa$, abxa$, bxa$, xa$, a$, $}

http://www.tau.ac.il/

30CG © Ron Shamir

Construction of the Implicit ST: After the
Removal of $

1

b

b

b

x
x

x
x

a

a
a

a
a

2
3

6

5

4

{xabxa, abxa, bxa, xa, a}

http://www.tau.ac.il/

31CG © Ron Shamir

Construction of the Implicit ST: Remove
unlabeled edges

 Remove unlabeled edges

1

b

b

b

x
x

x
x

a

a
a

a
a

2
3

6

5

4

{xabxa, abxa, bxa, xa, a}

http://www.tau.ac.il/

32CG © Ron Shamir

Construction of the Implicit ST: After
the Removal of Unlabeled Edges

1

b

b

b

x
x

x
x

a

a
a

a
a

2
3

{xabxa, abxa, bxa, xa, a}

http://www.tau.ac.il/

33CG © Ron Shamir

Construction of the Implicit ST: Remove
degree 1 nodes

 Remove internal nodes with only one child

1

b

b

b

x
x

x
x

a

a
a

a
a

2
3

{xabxa, abxa, bxa, xa, a}

http://www.tau.ac.il/

34CG © Ron Shamir

Construction of the Implicit ST: Final implicit
tree

1

b b

b

x
x

xx

a
a a

aa

2
3

{xabxa, abxa, bxa, xa, a}

 Each suffix is in the tree, but may not end at
a leaf.

http://www.tau.ac.il/

35CG © Ron Shamir

Implicit Suffix Trees (2)

 An implicit suffix tree for prefix S[1,i] of S is
similarly defined based on the suffix tree for
S[1,i]$.

 Ii = the implicit suffix tree for S[1,i].

http://www.tau.ac.il/

36CG © Ron Shamir

Ukkonen’s Algorithm (UA)

 Ii is the implicit suffix tree of the string S[1, i]
 Construct I1

 /* Construct Ii+1 from Ii */
 for i = 1 to m-1 do /* generation i+1 */
for j = 1 to i+1 do /* extension j */

Find the end of the path p from the root
whose label is S[j, i] in Ii and extend p with
S(i+1) by suffix extension rules;

 Convert Im into a suffix tree S

http://www.tau.ac.il/

37CG © Ron Shamir

Example
 S = xabxa$

 (initialization step)

x
 (i = 1), i+1 = 2, S(i+1)= a

 extend x to xa (j = 1, S[1,1] = x)

 a (j = 2, S[2,1] = “”)

 (i = 2), i+1 = 3, S(i+1)= b

 extend xa to xab (j = 1, S[1,2] = xa)

 extend a to ab (j = 2, S[2,2] = a)

 b (j = 3, S[3,2] = “”)

 …

http://www.tau.ac.il/

38CG © Ron Shamir

--

-

S(i+1)

S(i)S(1)

All suffixes of S[1,i]
are already in the
tree

Want to extend them
to suffixes of S[1,i+1]

http://www.tau.ac.il/

39CG © Ron Shamir

Extension Rules

 Goal: extend each S[j,i] into S[j,i+1]
 Rule 1: S[j,i] ends at a leaf

 Add character S(i+1) to the end of the label on
that leaf edge

 Rule 2: S[j,i] doesn’t end at a leaf, and the
following character is not S(i+1)
 Split a new leaf edge for character S(i+1)
May need to create an internal node if S[j,i] ends

in the middle of an edge

 Rule 3: S[j,i+1] is already in the tree
No update

http://www.tau.ac.il/

40CG © Ron Shamir

Example: Extension Rules

 Constructing the implicit tree for axabxb
from tree for axabx

1

b
b

b

x x

x

x

a
a

a

2

3x

b
x4
b

b

b

b

Rule 1: at a leaf node

b

Rule 3: already in treeRule 2: add a leaf edge (and an interior node)

b

5

http://www.tau.ac.il/

41CG © Ron Shamir

UA for axabxc (1)

S[1,3]=axa

E S(j,i) S(i+1)

1 ax a

2 x a

3 a

http://www.tau.ac.il/

42CG © Ron Shamir

UA for axabxc (2)

http://www.tau.ac.il/

43CG © Ron Shamir

UA for axabxc (3)

http://www.tau.ac.il/

44CG © Ron Shamir

UA for axabxc (4)

c

http://www.tau.ac.il/

45CG © Ron Shamir

Observations
 Once S[j,i] is located in the tree, applying the

extension rule takes only constant time
 Naive implementation: find the end of suffix S[j,i] in

O(i-j) time by walking from the root of the current tree
=> Im is created in O(m3) time.

 Making Ukkonen’s algorithm run in O(m) time is
achieved by a set of shortcuts:
 Suffix links
 Skip and count trick
 Edge-label compression
 A stopper
Once a leaf, always a leaf

http://www.tau.ac.il/

46CG © Ron Shamir

Ukkonen’s Algorithm (UA)

 Ii is the implicit suffix tree of the string S[1, i]
 Construct I1

 /* Construct Ii+1 from Ii */
 for i = 1 to m-1 do /* generation i+1 */
for j = 1 to i+1 do /* extension j */

Find the end of the path p from the root
whose label is S[j, i] in Ii and extend p with
S(i+1) by suffix extension rules;

 Convert Im into a suffix tree S

http://www.tau.ac.il/

Looking for a shortcut

47CG © Ron Shamir

After we extend a
string x, we need
to extend .
Can we jump right
to its position in
the current tree,
rather than going
down all the way
from the root?

x

http://www.tau.ac.il/

48CG © Ron Shamir

Suffix Links
 Consider the two strings and x (e.g. a, xa in the

example below).
 Suppose some internal node v of the tree is labeled

with x (x=char, = string, possibly) and another
node s(v) in the tree is labeled with

 The edge (v,s(v)) is called the suffix link of v
 Do all internal nodes have suffix links?
 (the root is not considered an internal node)

path label of v:
concatenation
of the strings
labeling edges
from root to v

http://www.tau.ac.il/

Example: Suffix links
abcabxabcd

50CG © Ron Shamir

https://stackoverflow.com/questions/9452701/
ukkonens-suffix-tree-algorithm-in-plain-english

http://www.tau.ac.il/

51CG © Ron Shamir

Suffix Link Lemma

If a new internal node v with path-label x is
added to the current tree in extension j of
some generation i+1, then either

the path labeled already ends at an internal
node of the tree, or

the internal node labeled will be created in
extension j+1 in the same generation i+1, or

string is empty and s(v) is the root

http://www.tau.ac.il/

52CG © Ron Shamir

Suffix Link Lemma

Pf: A new internal node is created
only by extension rule 2

 In extension j the path labeled

x.. continued with some y

S(i+1)
=> In extension j+1, a path p

labeled ..

 p continues with y only ext.
rule 2 will create a node s(v) at
the end of the path .

 p continues with two different
chars s(v) already exists.

If a new internal node v with path-label x is added to the current tree
in extension j of some generation i+1, then either

 the path labeled already ends at an internal node of the tree, or

 the internal node labeled will be created in extension j+1 in the
same generation

r

v

r

v

http://www.tau.ac.il/

53CG © Ron Shamir

Corollaries

 Every internal node of an implicit suffix
tree has a suffix link from it by the end
of the next extension
 Proof by the lemma, using induction.

 In any implicit suffix tree Ii, if internal
node v has path label x, then there is a
node s(v) of Ii with path label
 Proof by the lemma, applied at the end of a

generation

http://www.tau.ac.il/

54CG © Ron Shamir

Building Ii+1 with suffix links - 1
Goal: in extension j of generation i+1, find S[j,i] in the
tree and extend to S[j,i+1]; add suffix link if needed

http://www.tau.ac.il/

55CG © Ron Shamir

Building Ii+1 with suffix links - 2

 Goal: in extension j of generation i+1, find S[j,i] in the
tree and extend to S[j,i+1]; add suffix link if needed

 S[1,i] must end at a leaf since it is the longest
string in the implicit tree Ii

 Keep pointer to leaf of full string; extend to S[1,i+1]

(rule 1)

 S[2,i] =, S[1,i]=x; let (v,1) be the edge entering
leaf 1:

 If v is the root, descend from the root to find

Otherwise, v is internal. Go to s(v) and descend to find
rest of

http://www.tau.ac.il/

56CG © Ron Shamir

Building Ii+1 with suffix links - 3

 In general: find first node v at or above S[j-1,i] that has
s.l. or is root; Let = string between v and end of S[j-1,i]

 If v is internal, go to s(v) and descend following the path of
 If v is the root, descend from the root to find S[j,i]

 Extend to S[j,i]S(i+1) (if not already in the tree)
 If new internal node w was created in extension j-1, by the lemma

S[j,i+1] ends in s(w) => create the suffix link from w to s(w).

http://www.tau.ac.il/

57CG © Ron Shamir

Skip and Count Trick – (1)

 Problem: Moving down from s(v),
directly implemented, takes time
proportional to ||

 Solution: make running time proportional
to the number of nodes in the path
searched

 Key: surely exists in the current tree; need
to search only the first char. in each outgoing
node

http://www.tau.ac.il/

58CG © Ron Shamir

Skip and Count Trick – (2)
 counter=0; On each step from s(v), find

right edge below, add no. of chars on it
to counter and if still < || skip to child

 After 4 skips, the end of S[j, i] is found.

Can show: with
skip & count

trick, any
generation of

Ukkonen’s
algorithm

takes O(m)
time

http://www.tau.ac.il/

59CG © Ron Shamir

Interim conclusion

 Ukkonen’s Algorithm can be implemented in
O(m2) time

A few more smart tricks and we reach O(m) [see
scribe or the end of this presentation]

http://www.tau.ac.il/

60

Implementation Issues – (1)

 When the size of the alphabet grows:
 For large trees suffix, links allow to move quickly

from one part of the tree to another. This is slow
if the tree isn't entirely in memory.

Efficiently implementing ST to reduce space in
practice can be tricky.

 The main design issues are how to represent
and search the branches out of the nodes of
the tree.

 A practical design must balance between
constraints of space and need for speed

CG © Ron Shamir 60

http://www.tau.ac.il/

61

Representing the branches out of v
 An array of size (|S|) at each non-leaf node v
 A linked list of characters that appear at the beginning

of the edge-labels out of v.
 If kept in sorted order it reduces the average time to

search for a given character
 In the worst case, it adds time |S| to every node operation.

If the number of children k of v is large, little space is
saved over the array, more time

 A balanced tree implements the list at node v
 Additions and searches take O(logk) time and O(k) space.

Option makes sense only when k is fairly large.

 A hashing scheme. The challenge is to find a scheme
balancing space with speed. For large trees and
alphabets hashing is very attractive at least for some
of the nodes

CG © Ron Shamir 61

http://www.tau.ac.il/

62

Implementation Issues – (3)

 When m and S are large enough, a good design
is often a mixture. Guidelines:
Nodes near the root tend to have most children

use arrays.

 If k very dense levels – form a lookup table of all
k-tuples with pointers to the roots of the
corresponding subtrees.

Nodes in the middle of the tree: hashing or
balanced trees.

CG © Ron Shamir 62

http://www.tau.ac.il/

63CG © Ron Shamir

Applications of Suffix Trees

http://www.tau.ac.il/

64CG © Ron Shamir

What can we do with it ?

Exact string matching:

Given a Text T, |T| = n, preprocess it
such that when a pattern P, |P|=m,
arrives we can quickly decide if it
occurs in T.

We may also want to find all occurrences
of P in T

http://www.tau.ac.il/

65CG © Ron Shamir

Exact string matching

In preprocessing we just build a suffix tree in O(m)
time

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$

5

$

Given a pattern P = ab we traverse the tree
according to the pattern.

http://www.tau.ac.il/

66CG © Ron Shamir

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$

5

$

If we did not get stuck traversing the pattern then
the pattern occurs in the text.

Each leaf in the subtree below the node we reach
corresponds to an occurrence.

By traversing this subtree we get all k occurrences
in O(n+k) time

http://www.tau.ac.il/

67CG © Ron Shamir

Generalized suffix tree

Given a set of strings S, a generalized
suffix tree of S is a compressed trie of all
suffixes of s S

To associate each suffix with a unique
string in S add a different special ‘end’
char $i to each si

http://www.tau.ac.il/

68CG © Ron Shamir

Example

Let s1=abab and s2=aab

A generalized suffix tree for s1 and s2 :

{

$ #

b$ b#

ab$ ab#

bab$ aab#

abab$

}

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5

$

1

b
#

a

2

#

3

#

4

#

http://www.tau.ac.il/

69CG © Ron Shamir

So what can we do with it ?

Matching a pattern against a database of
strings

http://www.tau.ac.il/

70CG © Ron Shamir

Longest common substring (of two strings)

Every node that has both a
leaf descendant from string

s1 and a leaf descendant

from string s2 represents a
maximal common substring
and vice versa.

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5

$

1

b
#

a

2

#

3

#

4

#

Find such node with
largest “label depth”

O(|S1|+|S2|) to construct the tree and search it.

http://www.tau.ac.il/

71CG © Ron Shamir

Lowest common ancestors

A lot more can be gained from the suffix
tree if we preprocess it so that we can
answer LCA queries on it

http://www.tau.ac.il/

72CG © Ron Shamir

Why?

The LCA of two leaves represents the
longest common prefix (LCP) of these two
suffixes

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5

$

1

b
#

a

2

#

3

#

4

#

Harel-Tarjan (84),
Schieber-Vishkin
(88): LCA query in
constant time, with
linear pre-processing
of the tree.

http://www.tau.ac.il/

73CG © Ron Shamir

Finding maximal palindromes

 A palindrome: caabaac, cbaabc

 Want to find all maximal palindromes in
a string s

s = acbaaba

The maximal palindrome with center between i-1 and i is
the LCP of the suffix at position i of s and the suffix at

position m-i+2 of sr

1 … i-1 i … m

m … m-i+2 m-i+1 … 1

http://www.tau.ac.il/

74CG © Ron Shamir

Maximal palindromes algorithm

Prepare a generalized suffix tree for
s = cbaaba$ and sr = abaabc#

For every i find the LCA of suffix i of s
and suffix m-i+2 of sr

O(m) time to identify all palindromes

http://www.tau.ac.il/

75CG © Ron Shamir

3

a

a

b

3

$

7

$

b

7

#

c

1

6

5

2 2

a

5

6

$

4

4

1

a

$

$

Let s = cbaaba$ then sr = abaabc#

i=4

m-i+2=4

http://www.tau.ac.il/

SUFFIX ARRAYS

76CG © Ron Shamir

http://www.tau.ac.il/

77CG © Ron Shamir

ST Drawbacks

 Space is O(m) but the constant is quite
big

 For human genome, space >45GB.

http://www.tau.ac.il/

78CG © Ron Shamir

Suffix arrays (U. Mander, G. Myers ‘91)

Sort the suffixes of S lexicographically

The suffix array: list of starting
positions of the sorted suffixes

We lose some of the functionality but
save space.

http://www.tau.ac.il/

Suffix Array for panamabananas$

79CG © Ron Shamir

SuffixArray (“panamabananas’)=(13,5,3,1,7,9,11,6,4,2,8,10,0,12)

Pevzner, Compeau Bioinfo Algs 14

Size: For human
genome, ~4 bytes

per base x 3 billion
bases
 12 GB

http://www.tau.ac.il/

80CG © Ron Shamir

How do we build it ?
 Build a suffix tree

 Traverse the tree in DFS, lexicographically picking
edges outgoing from each node. SA = leaf label order.

 O(m) time; direct linear time algs known

Pevzner, Compeau Bioinfo Algs 14

http://www.tau.ac.il/

81CG © Ron Shamir

How do we search for a pattern ?

 If P occurs in S then all its occurrences
are consecutive in the suffix array.

 Do a binary search on the suffix array

http://www.tau.ac.il/

82CG © Ron Shamir

Example
Let S = mississippi

i
ippi
issippi
ississippi
mississippi
pi

8

5

2

1

10

9

7

4

11

6

3

ppi
sippi
sissippi
ssippi
ssissippi

L

R

Let P = issa M

For m=|S|, n=|P|:
O(log m) bisections,
O(n) comparisons
per bisection
 O(nlogm)

Can actually show: O(n+logm) time

http://www.tau.ac.il/

Suffix Arrays vs. Suffix Trees - Summary

83CG © Ron Shamir http://www.cs.jhu.edu/~langmea/resources/lecture_notes/

http://www.tau.ac.il/

84CG © Ron Shamir

Udi Manber Gene Myers

http://www.tau.ac.il/

The end?

CG © Ron Shamir 85

The missing pieces in the

proof of Ukkonen’s Algorithm

CG © Ron Shamir 86

87CG © Ron Shamir

§ Edge Label Representation

 Problem
 Edge labels may require W(m2) space W(m2) time
 Example: S = abcdefghijklmnopqrstuvwxyz

 Total length is Sj<m+1 j = m(m+1)/2

 Solution
 Label each edge with a pair of indices indicating

the beginning and the end positions of that edge’s
substring in S

 Example: instead of label S =
abcdefghijklmnopqrstuvwxyz have label (11,36)

 ≤2m-1 edges, 2 numbers per edge O(m) space

http://www.tau.ac.il/

88CG © Ron Shamir

Modified Extension Rules - with
the compact edge labels

 Rule 1: leaf edge extension
 label was (p,i) before extension

(p, i) (p, i + 1)

 Rule 2: new leaf edge (phase i+1)

create edge (i+1, i+1)

split edge (p, q) (p, w) and (w + 1, q)

 Rule 3: S[j,i+1] is already in the tree
Do nothing

http://www.tau.ac.il/

89CG © Ron Shamir

Edge-label Compression
String S = xabxa$

1

b
b

b
x

x

x
x

a

a
a

aa
$

$

$

$

$$

2
3

6

5

4

1

(1,2)

(3,6)

(2,2)
(6,6)

2
3

6

5

4

(3,6)
(6,6)

(6,6)
(3,6)

[also (4,5)]

http://www.tau.ac.il/

90CG © Ron Shamir

§Early stopping of a phase

 Obs: In any phase, if rule 3 applies in extension
j, it will also apply in all extensions k>j in that
phase.

 end phase i+1 on the first time rule 3
applies.

 The extensions after the first execution of
rule 3 are said to be done implicitly.

 Ex: in phase i+1=7, explicitly extend (1,7), (2,7),
(3,7) by rule 3; do nothing for (4,7),…,(7,7)

http://www.tau.ac.il/

91CG © Ron Shamir

§ Once a leaf, always a leaf (1)

 Obs: If at some point a leaf is created, rule 1
will always apply to it later
 it will remain a leaf in all subsequent phases.
 its label j is maintained in all subsequent phases.

 In any phase, an initial sequence of
consecutive extensions (starting with
extension 1) in which only rule 1 or 2 applies.

 Denote ji : the last extension in this sequence in
phase i.

 in the next phase the first ji extensions are
of leaves and rule 1 applies.

 Note : ji ji+1.

http://www.tau.ac.il/

92CG © Ron Shamir

Once a leaf, always a leaf – (2)

 Let e = global symbol denoting the current end.
e is set to i + 1 at the beginning of phase i + 1

 When a leaf is created, instead of writing
[p,i+1] as the edge label, write [p, e]. In all later
phases, we implicitly extend the leaf by
incrementing e once.

 Perform explicitly extensions ji+1 and on, until
the first rule 3 extension is found, or phase i+1
is done.

http://www.tau.ac.il/

93CG © Ron Shamir

Single phase algorithm

 Phase i+1

Increment e to i+1 (implicitly extending all
existing leaves)

Explicitly compute successive extensions
starting at ji+1 and continuing until reaching
the first extension j* where rule 3 applies or
no more extensions are needed

Set ji+1 to j*-1, to prepare for the next phase

 Obs: Phase i and i+1 share at most 1
explicit extension

http://www.tau.ac.il/

94CG © Ron Shamir

Example: S=axaxbb$ - (1)

 e = 1, a

 j1 = 1

1

1

(1,e)

I1

 e = 2, ax

 S[1,2] : skip

 S[2,2] : rule 2, create(2, e)

 j2 = 2

1

1

(1,e)

I2

2

(2,e)

 e = 3, axa

 S[1,3] .. S[2,3] : skip

 S[3,3] : rule 3

 j3 = 2

1

1

(1,e)

I3

2

(2,e)

http://www.tau.ac.il/

95CG © Ron Shamir

Example: S=axaxbb$ - (2)

 e = 4, axax

 S[1,4] .. S[2,4] : skip

 S[3,4] : rule 3

 S[4,4] : auto skip

 j4 = 2

1

1

(1,e)

I4

2

(2,e)

 e = 5, axaxb

 S[1,5] .. S[2,5] : skip

 S[3,5] : rule 2, split (1,e)
→ (1, 2) and (3,e), create (5,e)

 S[4,5] : rule 2, split (2,e)
→ (2,2) and (3,e), create (5,e)

 S[5,5] : rule 2, create (5,e)

 j5 = 5

1
(1,2)

I5

2

(2,2)

1 3

(3,e)
(5,e)

4

(3,e)
(5,e)

(5,e)

5

http://www.tau.ac.il/

96CG © Ron Shamir

Example: S=axaxbb$ - (3)

 e = 6, axaxbb

 S[1,6] .. S[5,6] : skip

 S[6,6] : rule 3

 j6 = 5

 e = 7, axaxbb$

 S[1,7] .. S[5,7] : skip

 S[6,7] : rule 2, split (5,e)
→ (5,5) and (6,e), create (6,e)

 S[7,7] : rule 2, create (7,e)

 j7 = 7

1
(1,2)

I6

2

(2,2)

1 3

(3,e)
(5,e)

4

(3,e)
(5,e)

(5,e)

5

1
(1,2)

I7

2

(2,2)

1 3

(3,e)
(5,e)

4

(3,e)
(5,e)

(5,5)

5

6
(6,e)

(7,e)

(7,e)
7

http://www.tau.ac.il/

97CG © Ron Shamir

Complexity of UA

 In any phase, all the implicit extensions take constant
time => their total cost is O(m).

 Totally, only 2m explicit extensions are executed.

 The max number of down-walking skips is O(m).

 Time-complexity of Ukkonen’s algorithm: O(m)

… 11 12 13 14 15 16 17 18 …

Phase i

Phase i+1

Phase i+2

: explicit extension

http://www.tau.ac.il/

98CG © Ron Shamir

Finishing up

 Convert final implicit suffix tree to a true
suffix tree:
Add $ using one more phase

 Now all suffixes will be leaves

Replace e on every leaf edge by m
 A traversal of tree in O(m) time

http://www.tau.ac.il/

The end!

CG © Ron Shamir 99

