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Introduction
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|S| = m, 

n different patterns p1 … pn

Pattern occurrences can overlap

Text S

Exact String/Pattern Matching 

beginning end

http://www.tau.ac.il/
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String/Pattern Matching - I

 Given a text S, answer queries of the 
form: is the pattern pi a substring of S?

 Knuth-Morris-Pratt 1977 (KMP) string 
matching alg:
O(|S| + | pi |) time per query.   

O(n|S| + Si | pi |) time for n queries.

 Suffix tree solution:
O(|S| + Si | pi |) time for n queries.

http://www.tau.ac.il/
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String/Pattern Matching - II

 KMP preprocesses the patterns pi; 

 The suffix tree algorithm: 
preprocess S in O(|S| ): builds a data 

structure called suffix tree for S

when a pattern p is input, the algorithm 
searches it in O(|p|) time using the suffix 
tree

http://www.tau.ac.il/
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Donald Knuth
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Prefixes & Suffixes

 Notation: S[i,j] =S(i), S(i+1),…, S(j)

 Prefix of S: substring of S beginning at the 
first position of S   S[1,i]

 Suffix of S: substring that ends at last 
position  S[i,n]

 S=AACTAG
 Prefixes: AACTAG,AACTA,AACT,AAC,AA,A

 Suffixes: AACTAG,ACTAG,CTAG,TAG,AG,G

 Note: P is a substring of S iff P is a prefix of 
some suffix of S.

9
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Suffix Trees
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Trie

 A tree representing a set of strings.

a

c

b

c

e

e

f

d b

f

e g

{

aeef

ad

bbfe

bbfg

c     

}

http://www.tau.ac.il/


12CG © Ron Shamir

Trie (Cont)

 Assume no string is a prefix of another

a
b

c

e

e

f

d b

f

e g

Each edge is labeled by 
a letter,
no two edges outgoing 
from the same node 
are labeled the same.

Each string 
corresponds to a leaf.
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Compressed Trie  

 Compress unary nodes, label edges by strings
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Def: Suffix Tree for S                |S|= m  

1. A rooted tree T with  m leaves numbered  1,…,m.
2. Each internal node of T, except perhaps the root, has  2

children.
3. Each edge of T is labeled with a nonempty substring of S.
4. All edges out of a node must have labels starting with 

different characters.
5. For any leaf i, the concatenation of the edge-labels on 

the path from the root to leaf i exactly spells out S[i,m].

S=xabxac

http://www.tau.ac.il/
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 If one suffix Sj of S matches a prefix of 
another suffix Si of S, then the path for Sj

would not end at a leaf.

 S = xabxa

 S1 = xabxa and S4 = xa

Existence of a suffix tree S

1
23

 How to avoid this problem?

Make sure that the last character of S 
appears nowhere else in S.

Add a new character $ not in the alphabet to 
the end of S.

http://www.tau.ac.il/
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Example: Suffix Tree for S=xabxa$

1

25

4
3

6
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Example: Suffix Tree for S=xabxa$
Query: P = xac

1

25

4
3

6

P is a substring of S iff P is a prefix of some 

suffix of S.

http://www.tau.ac.il/


18CG © Ron Shamir

Trivial algorithm to build a Suffix tree

Put the largest suffix in

Put the suffix bab$ in

a
b
a
b
$

a
b
a
b

$

a
b
$

b

S= abab
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Put the suffix ab$ in

a
b
a
b

$

a
b
$

b

a
b

a
b

$

a
b
$

b

$
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Put the suffix b$ in

a
b

a
b

$

a
b
$

b

$

a
b

a
b

$

a
b
$

b

$

$
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Put the suffix $ in

a
b

a
b

$

a
b

$

b

$

$

a
b

a
b

$

a
b

$

b

$

$

$
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We will also label each leaf with the starting point of the 
corresponding suffix.

a
b

a
b

$

a
b

$

b

$

$

$

1
2

a
b

a
b

$

a
b

$

b

3

$ 4

$

5

$
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Analysis

Takes O(m2) time to build.

Can be done in O(m) time  - we will sketch the proof. 

See the CG class notes or Gusfield’s book for the full 
details of the proof.

http://www.tau.ac.il/
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Building STs in linear time: 

Ukkonen’s algorithm

http://www.tau.ac.il/
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History

 Weiner’s algorithm [FOCS, 1973]
 Called by Knuth ”The algorithm of 1973”
 First linear time algorithm, but much space

 McCreight’s algorithm [JACM, 1976]
 Linear time and quadratic space
More readable

 Ukkonen’s algorithm [Algorithmica, 1995]
 Linear time and less space
 This is what we will focus on

 ….

http://www.tau.ac.il/
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Esko Ukkonen
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Implicit Suffix Trees

 Ukkonen’s alg constructs a sequence of implicit 
STs, the last of which is converted to a true ST 
of the given string. 

 An implicit suffix tree for string S is a tree 
obtained from the suffix tree for S$ by
removing $ from all edge labels
removing any edge that now has no label
removing any node with only one child 

http://www.tau.ac.il/
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Example: Construction of the Implicit 
ST

 The tree for xabxa$

1

b

b

b

x
x

x
x

a

a
a

a
a

$
$

$

$

$$

2
3

6

5

4

{xabxa$, abxa$, bxa$, xa$, a$, $}

http://www.tau.ac.il/


29CG © Ron Shamir

Construction of the Implicit ST: Remove $

 Remove $

1

b

b

b

x
x

x
x

a

a
a

a
a

$
$

$

$

$$

2
3

6

5

4

{xabxa$, abxa$, bxa$, xa$, a$, $}
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Construction of the Implicit ST: After the 
Removal of $

1

b

b

b

x
x

x
x

a

a
a

a
a

2
3

6

5

4

{xabxa, abxa, bxa, xa, a}
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Construction of the Implicit ST: Remove 
unlabeled edges

 Remove unlabeled edges

1

b

b

b

x
x

x
x

a

a
a

a
a

2
3

6

5

4

{xabxa, abxa, bxa, xa, a}
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Construction of the Implicit ST: After 
the Removal of Unlabeled Edges

1

b

b

b

x
x

x
x

a

a
a

a
a

2
3

{xabxa, abxa, bxa, xa, a}
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Construction of the Implicit ST: Remove 
degree 1 nodes

 Remove internal nodes with only one child

1

b

b

b

x
x

x
x

a

a
a

a
a

2
3

{xabxa, abxa, bxa, xa, a}
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Construction of the Implicit ST: Final implicit 
tree

1

b b

b

x
x

xx

a
a a

aa

2
3

{xabxa, abxa, bxa, xa, a}

 Each suffix is in the tree, but may not end at 
a leaf.
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Implicit Suffix Trees (2)

 An implicit suffix tree for prefix S[1,i] of S is 
similarly defined based on the suffix tree for 
S[1,i]$.

 Ii = the implicit suffix tree for S[1,i].

http://www.tau.ac.il/
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Ukkonen’s Algorithm (UA)

 Ii is the implicit suffix tree of the string S[1, i]
 Construct I1

 /* Construct Ii+1 from Ii */
 for i = 1 to m-1 do /* generation i+1 */
for j = 1 to i+1 do /* extension j */

Find the end of the path p from the root 
whose label is S[j, i] in Ii and extend p with 
S(i+1) by suffix extension rules;

 Convert Im into a suffix tree S

http://www.tau.ac.il/
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Example
 S = xabxa$

 (initialization step)

x                    
 (i = 1), i+1 = 2, S(i+1)= a

 extend x to xa       (j = 1, S[1,1] = x)

 a                            (j = 2, S[2,1] = “”)

 (i = 2), i+1 = 3, S(i+1)= b

 extend xa to xab   (j = 1, S[1,2] = xa)

 extend a to ab       (j = 2, S[2,2] = a)

 b                            (j =  3, S[3,2] = “”)

 …

http://www.tau.ac.il/
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-------- 

------- 

------ 

----- 

---- 

--- 

-- 

- 



S(i+1)

S(i)S(1)

All suffixes of S[1,i] 
are already in the 
tree 

Want to extend them 
to suffixes of S[1,i+1]

http://www.tau.ac.il/
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Extension Rules

 Goal: extend each S[j,i] into S[j,i+1]
 Rule 1: S[j,i] ends at a leaf

 Add character S(i+1) to the end of the label on 
that leaf edge

 Rule 2: S[j,i] doesn’t end at a leaf, and the 
following character is not S(i+1)
 Split a new leaf edge for character S(i+1)
May need to create an internal node if S[j,i] ends 

in the middle of an edge

 Rule 3: S[j,i+1] is already in the tree
No update

http://www.tau.ac.il/
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Example: Extension Rules

 Constructing the implicit tree for axabxb
from tree for axabx

1

b
b

b

x x

x

x

a
a

a

2

3x

b
x4
b

b

b

b

Rule 1: at a leaf node

b

Rule 3: already in treeRule 2: add a leaf edge (and an interior node)

b

5

http://www.tau.ac.il/


41CG © Ron Shamir

UA for axabxc (1)

S[1,3]=axa

E S(j,i) S(i+1)

1 ax a

2 x a

3 a

http://www.tau.ac.il/
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UA for axabxc (2)

http://www.tau.ac.il/
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UA for axabxc (3)

http://www.tau.ac.il/
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UA for axabxc (4)

c

http://www.tau.ac.il/
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Observations
 Once S[j,i] is located in the tree, applying the 

extension rule takes only constant time
 Naive implementation: find the end of suffix S[j,i] in 

O(i-j) time by walking from the root of the current tree 
=>  Im is created in O(m3) time.

 Making Ukkonen’s algorithm run in O(m) time is 
achieved by a set of shortcuts:
 Suffix links
 Skip and count trick
 Edge-label compression
 A stopper
Once a leaf, always a leaf

http://www.tau.ac.il/
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Ukkonen’s Algorithm (UA)

 Ii is the implicit suffix tree of the string S[1, i]
 Construct I1

 /* Construct Ii+1 from Ii */
 for i = 1 to m-1 do /* generation i+1 */
for j = 1 to i+1 do /* extension j */

Find the end of the path p from the root 
whose label is S[j, i] in Ii and extend p with 
S(i+1) by suffix extension rules;

 Convert Im into a suffix tree S

http://www.tau.ac.il/


Looking for a shortcut

47CG © Ron Shamir

After we extend a 
string x, we need 
to extend .
Can we jump right 
to its position in 
the current tree, 
rather than going 
down all the way 
from the root?

------- 

------ 

x
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Suffix Links
 Consider the two strings  and x  (e.g. a, xa in the 

example below).
 Suppose some internal node v of the tree is labeled 

with x (x=char, = string, possibly ) and another 
node s(v) in the tree is labeled with 

 The edge (v,s(v)) is called the suffix link of v
 Do all internal nodes have suffix links?
 (the root is not considered an internal node)

path label of v: 
concatenation 
of the strings 
labeling edges 
from root to v

http://www.tau.ac.il/


Example: Suffix links
abcabxabcd
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https://stackoverflow.com/questions/9452701/
ukkonens-suffix-tree-algorithm-in-plain-english
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Suffix Link Lemma

If a new internal node v with path-label x is 
added to the current tree in extension j of 
some generation i+1, then either

the path labeled  already ends at an internal 
node of the tree, or

the internal node labeled  will be created in 
extension j+1 in the same generation i+1, or

string  is empty and s(v) is the root

http://www.tau.ac.il/
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Suffix Link Lemma

Pf: A new internal node is created 
only by extension rule 2

 In extension j the path labeled 

x.. continued with some y 

S(i+1)
=> In extension j+1,  a path p

labeled ..

 p continues with y only  ext. 
rule 2 will create a node s(v) at 
the end of the path .

 p continues with two different 
chars s(v) already exists.

If a new internal node v with path-label x is added to the current tree 
in extension j of some generation i+1, then either

 the path labeled  already ends at an internal node of the tree, or

 the internal node labeled  will be created in extension  j+1 in the 
same generation

r

v

r

v

http://www.tau.ac.il/
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Corollaries

 Every internal node of an implicit suffix 
tree has a suffix link from it by the end 
of the next extension
 Proof by the lemma, using induction.

 In any implicit suffix tree Ii, if internal 
node v has path label x, then there is a 
node s(v) of Ii with path label 
 Proof by the lemma, applied at the end of a 

generation

http://www.tau.ac.il/
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Building Ii+1 with suffix links - 1
Goal: in extension j of generation i+1, find S[j,i] in the 
tree and extend to S[j,i+1]; add suffix link if needed

http://www.tau.ac.il/
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Building Ii+1 with suffix links - 2

 Goal: in extension j of generation i+1, find S[j,i] in the 
tree and extend to S[j,i+1]; add suffix link if needed

 S[1,i] must end at a leaf since it is the longest 
string in the implicit tree Ii

 Keep  pointer to leaf of full string; extend to S[1,i+1]

(rule 1)

 S[2,i] =, S[1,i]=x; let (v,1) be the edge entering 
leaf 1:

 If v is the root, descend from the root to find 

Otherwise, v is internal. Go to s(v) and descend to find 
rest of 

http://www.tau.ac.il/
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Building Ii+1 with suffix links - 3

 In general: find first node v at or above  S[j-1,i] that has 
s.l. or is root; Let  = string between v and end of S[j-1,i]

 If v is  internal, go to s(v) and descend following the path of 
 If v is the root, descend from the root to find S[j,i]

 Extend to S[j,i]S(i+1) (if not already in the tree)
 If new internal node w was created in extension j-1, by the lemma 

S[j,i+1] ends in s(w) => create the suffix link from w to s(w).

http://www.tau.ac.il/
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Skip and Count Trick – (1)

 Problem: Moving down from s(v), 
directly implemented, takes time 
proportional to ||

 Solution: make running time proportional 
to the number of nodes in the path 
searched

 Key:  surely exists in the current tree; need 
to search only the first char. in each outgoing 
node

http://www.tau.ac.il/
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Skip and Count Trick – (2)
 counter=0; On each step from s(v), find 

right edge below, add no. of chars on it 
to counter and if still < || skip to child   

 After 4 skips, the end of S[j, i] is found.

Can show: with 
skip & count 

trick, any 
generation of 

Ukkonen’s 
algorithm 

takes O(m)
time

http://www.tau.ac.il/
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Interim conclusion 

 Ukkonen’s Algorithm can be implemented in 
O(m2) time

A few more smart tricks and we reach O(m) [see 
scribe or the end of this presentation]

http://www.tau.ac.il/
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Implementation Issues – (1)

 When the size of the alphabet grows: 
 For large trees suffix, links allow to move quickly 

from one part of the tree to another. This is slow 
if the tree isn't entirely in memory. 

Efficiently implementing ST to reduce space in 
practice can be tricky.

 The main design issues are how to represent 
and search the branches out of the nodes of 
the tree.

 A practical design must balance between 
constraints of space and need for speed

CG © Ron Shamir 60
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Representing the branches out of v
 An array of size (|S|) at each non-leaf node v
 A linked list of characters that appear at the beginning 

of the edge-labels out of v. 
 If kept in sorted order it reduces the average time to 

search for a given character
 In the worst case, it adds time |S| to every node operation. 

If the number of children k of v is large, little space is 
saved over the array, more time 

 A balanced tree implements the list at node v
 Additions and searches take O(logk) time and O(k) space. 

Option makes sense only when k is fairly large.

 A hashing scheme. The challenge is to find a scheme 
balancing space with speed. For large trees and 
alphabets hashing is very attractive at least for some 
of the nodes

CG © Ron Shamir 61
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Implementation Issues – (3)

 When m and S are large enough, a good design 
is often a mixture. Guidelines:
Nodes near the root tend to have most children 

use arrays. 

 If  k very dense levels – form a lookup table of all 
k-tuples with pointers to the roots of the 
corresponding subtrees.

Nodes in the middle of the tree: hashing or 
balanced trees.

CG © Ron Shamir 62
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Applications of Suffix Trees

http://www.tau.ac.il/
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What can we do with it ?

Exact string matching:

Given a Text T, |T| = n, preprocess it 
such that when a pattern P, |P|=m, 
arrives we can quickly decide if it 
occurs in T.

We may also want to find all occurrences 
of P in T

http://www.tau.ac.il/


65CG © Ron Shamir

Exact string matching

In preprocessing we just build a suffix tree in O(m) 
time

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$

5

$

Given a pattern P =  ab we traverse the tree 
according to the pattern. 

http://www.tau.ac.il/


66CG © Ron Shamir

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$

5

$

If we did not get stuck traversing the pattern then 
the pattern occurs in the text. 

Each leaf in the subtree below the node we reach 
corresponds to an occurrence.

By traversing this subtree we get all k occurrences 
in O(n+k) time

http://www.tau.ac.il/
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Generalized suffix tree  

Given a set of strings S, a generalized 
suffix tree of S is a compressed trie of all 
suffixes of s  S

To associate each suffix with a unique 
string in S add a different special ‘end’ 
char $i to each si

http://www.tau.ac.il/
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Example

Let s1=abab and s2=aab

A generalized suffix tree for s1 and s2 :

{

$           #

b$         b#

ab$       ab#

bab$     aab#

abab$  

}

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5

$

1

b
#

a

2

#

3

#

4

#

http://www.tau.ac.il/
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So what can we do with it ?  

Matching a pattern against a database of 
strings

http://www.tau.ac.il/
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Longest common substring (of two strings)

Every node that has both a 
leaf descendant from string 

s1 and a leaf descendant 

from string s2 represents a 
maximal common substring 
and vice versa.

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5

$

1

b
#

a

2

#

3

#

4

#

Find such node with 
largest “label depth”

O(|S1|+|S2|) to construct the tree and search it.

http://www.tau.ac.il/
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Lowest common ancestors

A lot more can be gained from the suffix 
tree if we preprocess it so that we can 
answer LCA queries on it

http://www.tau.ac.il/
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Why?

The LCA of two leaves represents the 
longest common prefix (LCP) of these two 
suffixes

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5

$

1

b
#

a

2

#

3

#

4

#

Harel-Tarjan (84), 
Schieber-Vishkin
(88): LCA query in 
constant time, with 
linear pre-processing 
of the tree.

http://www.tau.ac.il/
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Finding maximal palindromes

 A palindrome:  caabaac, cbaabc

 Want to find all maximal palindromes in 
a string s

s = acbaaba

The maximal palindrome with center between i-1 and i is 
the LCP of the suffix at position i of s and the suffix at 

position m-i+2 of sr

1 … i-1 i … m

m … m-i+2 m-i+1 … 1

http://www.tau.ac.il/
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Maximal palindromes algorithm

Prepare a generalized suffix tree for              
s = cbaaba$ and sr = abaabc#

For every i find the LCA of suffix i of s 
and suffix m-i+2 of sr

O(m) time to identify all palindromes

http://www.tau.ac.il/
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3

a

a

b

3

$

7

$

b

7

#

c

1

6

5

2 2

a

5

6

$

4

4

1

a 

$

$

Let s = cbaaba$ then sr = abaabc#

i=4

m-i+2=4

http://www.tau.ac.il/
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ST Drawbacks

 Space is O(m) but the constant is quite 
big

 For human genome, space  >45GB.

http://www.tau.ac.il/
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Suffix arrays   (U. Mander, G. Myers ‘91)

Sort the suffixes of S lexicographically

The suffix array: list of starting 
positions of the sorted suffixes

We lose some of the functionality but 
save space.

http://www.tau.ac.il/
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SuffixArray (“panamabananas’)=(13,5,3,1,7,9,11,6,4,2,8,10,0,12)

Pevzner, Compeau Bioinfo Algs 14

Size: For human 
genome, ~4 bytes 

per base x 3 billion 
bases 
 12 GB

http://www.tau.ac.il/
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How do we build it ?
 Build a suffix tree

 Traverse the tree in DFS, lexicographically picking 
edges outgoing from each node. SA = leaf label order.

 O(m) time; direct linear time algs known

Pevzner, Compeau Bioinfo Algs 14
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How do we search for a pattern ?

 If P occurs in S then all its occurrences 
are consecutive in the suffix array.

 Do a binary search on the suffix array

http://www.tau.ac.il/
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Example
Let  S = mississippi

i
ippi
issippi
ississippi
mississippi
pi

8

5

2

1

10

9

7

4

11

6

3

ppi
sippi
sissippi
ssippi
ssissippi

L

R

Let  P = issa M

For m=|S|, n=|P|:
O(log m) bisections, 
O(n) comparisons 
per bisection
 O(nlogm)

Can actually show: O(n+logm) time

http://www.tau.ac.il/
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Udi Manber Gene Myers
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The end?
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The missing pieces in the 

proof of Ukkonen’s Algorithm
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§ Edge Label Representation

 Problem
 Edge labels may require W(m2) space  W(m2) time 
 Example: S = abcdefghijklmnopqrstuvwxyz

 Total length is Sj<m+1 j = m(m+1)/2

 Solution
 Label each edge with a pair of indices indicating 

the beginning and the end positions of that edge’s 
substring in S

 Example: instead of label S = 
abcdefghijklmnopqrstuvwxyz  have label (11,36)

 ≤2m-1 edges, 2 numbers per edge  O(m) space

http://www.tau.ac.il/
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Modified Extension Rules - with 
the compact edge labels

 Rule 1: leaf edge extension
 label was (p,i) before extension

(p, i)  (p, i + 1)

 Rule 2: new leaf edge (phase i+1)

create edge (i+1, i+1)

split edge (p, q)  (p, w) and (w + 1, q)

 Rule 3: S[j,i+1] is already in the tree
Do nothing

http://www.tau.ac.il/
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Edge-label Compression
String S = xabxa$

1

b
b

b
x

x

x
x

a

a
a

aa
$

$

$

$

$$

2
3

6

5

4

1

(1,2)

(3,6)

(2,2)
(6,6)

2
3

6

5

4

(3,6)
(6,6)

(6,6)
(3,6)

[also (4,5)]
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§Early stopping of a phase

 Obs: In any phase, if rule 3 applies in extension 
j, it will also apply in all extensions k>j in that 
phase.

  end phase i+1 on the first time rule 3
applies.

 The extensions after the first execution of 
rule 3 are said to be done implicitly. 

 Ex: in phase i+1=7, explicitly extend (1,7), (2,7), 
(3,7)  by rule 3; do nothing for (4,7),…,(7,7)

http://www.tau.ac.il/
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§ Once a leaf, always a leaf (1)

 Obs: If at some point a leaf is created, rule 1
will always apply to it later
 it will remain a leaf in all subsequent phases.
 its label j is maintained in all subsequent phases.

 In any phase,  an initial sequence of 
consecutive extensions (starting with 
extension 1) in which only rule 1 or 2 applies.

 Denote ji : the last extension in this sequence in 
phase i.

  in the next phase the first ji extensions are 
of leaves and rule 1 applies.

 Note : ji  ji+1.

http://www.tau.ac.il/
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Once a leaf, always a leaf – (2)

 Let e = global symbol denoting the current end. 
e is set to i + 1 at the beginning of phase i + 1

 When a leaf is created, instead of writing 
[p,i+1] as the edge label, write [p, e]. In all later 
phases, we implicitly extend the leaf by 
incrementing e once. 

 Perform explicitly extensions ji+1 and on, until 
the first rule 3 extension is found, or phase i+1
is done.

http://www.tau.ac.il/
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Single phase algorithm

 Phase i+1

Increment e to i+1 (implicitly extending all 
existing leaves)

Explicitly compute successive extensions 
starting at ji+1 and continuing until reaching 
the first extension j* where rule 3 applies or 
no more extensions are needed

Set ji+1 to j*-1, to prepare for the next phase

 Obs:  Phase i and i+1 share at most 1
explicit extension

http://www.tau.ac.il/
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Example: S=axaxbb$ - (1)

 e = 1, a

 j1 = 1

1

1

(1,e)

I1

 e = 2, ax

 S[1,2] : skip

 S[2,2] : rule 2, create(2, e)

 j2 = 2

1

1

(1,e)

I2

2

(2,e)

 e = 3, axa

 S[1,3] .. S[2,3] : skip

 S[3,3] : rule 3

 j3 = 2

1

1

(1,e)

I3

2

(2,e)

http://www.tau.ac.il/
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Example: S=axaxbb$ - (2)

 e = 4, axax

 S[1,4] .. S[2,4] : skip

 S[3,4] : rule 3

 S[4,4] : auto skip

 j4 = 2

1

1

(1,e)

I4

2

(2,e)

 e = 5, axaxb

 S[1,5] .. S[2,5] : skip

 S[3,5] : rule 2, split (1,e)
→ (1, 2) and (3,e), create (5,e)

 S[4,5] : rule 2, split (2,e)
→ (2,2) and (3,e), create (5,e)

 S[5,5] : rule 2, create (5,e)

 j5 = 5

1
(1,2)

I5

2

(2,2)

1 3

(3,e)
(5,e)

4

(3,e)
(5,e)

(5,e)

5
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Example: S=axaxbb$ - (3)

 e = 6, axaxbb

 S[1,6] .. S[5,6] : skip

 S[6,6] : rule 3

 j6 = 5

 e = 7, axaxbb$

 S[1,7] .. S[5,7] : skip

 S[6,7] : rule 2, split (5,e)
→ (5,5) and (6,e), create (6,e)

 S[7,7] : rule 2, create (7,e)

 j7 = 7

1
(1,2)

I6

2

(2,2)

1 3

(3,e)
(5,e)

4

(3,e)
(5,e)

(5,e)

5

1
(1,2)

I7

2

(2,2)

1 3

(3,e)
(5,e)

4

(3,e)
(5,e)

(5,5)

5

6
(6,e)

(7,e)

(7,e)
7

http://www.tau.ac.il/
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Complexity of UA

 In any phase, all the implicit extensions take constant 
time => their total cost is O(m).

 Totally, only 2m explicit extensions are executed.

 The max number of down-walking skips is O(m).

 Time-complexity of Ukkonen’s algorithm: O(m)

… 11 12 13 14 15 16 17 18 …

Phase i   

Phase i+1     

Phase i+2  

: explicit extension

http://www.tau.ac.il/
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Finishing up

 Convert final implicit suffix tree to a true 
suffix tree:
Add $ using one more phase

 Now all suffixes will be leaves

Replace e on every leaf edge by m
 A traversal of tree in O(m) time
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