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RNA Structure & Stochastic
Context Free Grammars

Biological
sequence
analysis

Probabilistic models
of proteins and

Main source: Durbin et al.,
“Biological Sequence Alignment”
(Cambridge, “98)
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RNA Basics
. RNA bases A ¢ 6 U EENEEIEEGSoesEnc

» Canonical Base Pairs >_$7
- A-U B @3 U
B —
6 y pait
: - _ @ N—(
wobble" pairing / D
- Bases can only pair /

with one other base.
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RINA Secondary and Tertiary Structure:

AAUU CAA
CAGCCGUUCAGUACCAAGUC
UCAGGGGAAACUUUGAGAUG
GCCUUGCAAAGGGUAUGGUA
AUAAGCUGACGGACAUGGUC
CUAACCACGCAGCCAAGUCC
UAAGUCAACAGAUCUUCUGU
UGAUAUGGAUGCAGUUCA
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Waring & Davies.
(1984) Gene 28: 2717.

Cate, et al. (Cech & Doudna).
(1996) Science 273:1678.
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RNA Secondary Structure
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RNA Structure: Details
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Pseudoknots

Intersecting base pairs

XD

We shall assume no pseudoknots
in the structure

0 6
% CG © Ron Shamir, 09
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Base Pair Maximization - Dynamic
Programming A}Lpor‘i‘rhm

ussinov-Jacobson 1978)

S(i+1-1) S(i+1))
S(i,j) = max no. of base pairs in a
folding of the subsequence from index
| to index |
. : R ;
S(i+1,j—-1)+1 [if4,] base pair] S(j-1)

s10 5 S(i+1y)

\5 ‘Y - ¢ <

(1,§) = max S(ij— 1) _
\hmaxi<k<j8(i,k)+8(k+1,j) e

0 = = 7
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Grammars

&
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Grammars express languages

Example: the English language

(sentence, — (noun _ phrase) ( predicate,
(noun _ phrase) — (article) (noun)

_predicate) — (verb,



‘article) —> a
[article) — the

noun) — boy
‘noun) — dog

‘verb) — runs
‘verb) — walks

10



A derivation of "the boy walks":

'sentence) = (noun _ phrase, ( predicate,
<

)
— (noun_ phrase, (verb)
— (article) (noun) (verb;
— the (noun) (verb;
— the boy (verb)

—> the boy walks

11



Language of the grammar:

L = { "a boy runs”,
"a boy walks”,
"the boy runs”,
"the boy walks”,
"a dog runs”,
"a dog walks”,
“the dog runs”,
"the dog walks" }

12



Notation

noun) — boy

'noun) — dog

e

Variable
or
Non-terminal

T

Terminal

Production
rule
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Another Example

Grammar: S _s aSh

S > ¢

Derivation of sentence gb:

S=aSb= ab

N

S — aSb S > ¢

14



Another derivation:

S = aSb — aaSbb — aaaSbbbh — aaabbb

Language of the grammar

L={a"b":n>0}

15



The Chomsky Hierarchy

(aWp-> a vy B; recognized
by linear bounded automata)

(aWpB->y)

unrestricted grammars

context-sensitive grammars

context-free grammars

regular grammars

-

(W->aW or W->a; recognized by finite automata;
HMMs are equiv. to stochastic RGS)

(W->B; reco"gnized by pushdown automata)

SN N
B. Majoros, Duke
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Context-free Grammars (CFG’s)

A context-free grammar is a generative model
G=(V a, S R) where:

Vis a nonterminal alphabet, (e.q., {A B, C, D, E, ...}
a IS a terminal alphabet, (e.qg., {a, c, g, t})

Se Vs a special start symbol

R1s a set of rewriting rules called proauctions.

Productions in Rare rules of the form: X— A
where Xc V/ 1<(Wa)”

)

SN N
B. Majoros, Duke
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Context-freeness

The “context-freeness” 1s imposed by the requirement that the
|.h.s of each production rule may contain only a single
symbol, and that symbol must be a nonterminal:

X— A

Thus, a CFG cannot specify conitext-sensitive rules such as:

WX2 — WAZ

W .
B. Majoros, Duke
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Derivations

Suppose a CFG G has generated a terminal string xeo”. A
derivation S="x denotes a possible way for generating x.

A aerivation (or parse) consists of a series of applications of
productions from A, beginning with the start symbol Sand
ending with the rerminal string x.

S=> 5§25 =2>85=> =X
where s<(Wa)".

We will concentrate on leftmost derivations, where the
leftmost nonterminal is always replaced first.

‘% 19

B. Majoros, Duke
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Context-free Versus Regular

The advantage of CFGs over RGs/HMMs lies in their ability to model arbitrary runs of
matching pairs of elements, such as matching pairs of parentheses:

((((((G9)) Bs

When the number of matching pairs is unbounded, a finite-state model such as an

HMM is inadequate to enforce the constraint that all left elements must have a matching
right element.

In contrast, in a CFG we can use rules such as X~(.X). A sample derivation using such a
rule is:

X= (X = (X)) = (X)) = (X)) = (X))

An additional rule such as X~ ¢ is necessary to terminate the recursion.

W :

B. Majoros, Duke
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A CFG for an RNA stem loop

* Wish a CFG that models RNA stem loops with 3
bps and a GCAA or GAAA loop.

seql seq2 seqs
_ , | T g
A C A C UG seql
A ‘ Sl i A G C seq2
Jea b ol s ¢ C UG seqg3
A e x U ; P
{ s o

S->aXu|cXg|gXc|uXa
X->aYu|cYg|gYc|uYa

Y ->aZu|cZg|gZc | uZa

Z -> gaaa | gcaa 2t
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Parse trees

A representation of a parse of a string by a CFG (in 1-1
correspondence with left derivations)

Root — start nonterminal S
Leaves — terminal symbols in the given string
Internal nodes — non-terminals

The children of an internal node are the productions of that
nonterminal (left-to-right order)

A subtree spans a contiguous sequence segment

22
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Stochastic CFG

A stochastic context-free grammar (SCFG) i1s a CFG plus a
probability distribution on productions:

G=(V.a, SR Py

where P,: R —[0,1], and probabilities are normalized at the
level of each nonterminal X:
V[ ZP,(X—2)=1]

XeV X—A

The probability of a derivation S="x is the product of the
probabilities for all its productions: [1; A(X— A1)

We can sum over all possible (leftmost) derivations of a
given string x to get the probability that G will generate x at
gandom: P(x| G) = 2 P(5=" x| G).

A\ j 23
"{ B. Majoros, Duke
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A Simple Example

As an example, consider G=(\;, a, S R, Pg), for V={S§, L, MV}, a={a,c,g,t}, and &,
the set consisting of:

S—asSt|tSa|cSg|lgSc|L (P=0.2)
L—-> NNNN (P=1.0)
N—>a|C|g|t (P:OZS)

The probability of the sequence acgtacgtacgt is given by:
P(acgtacgtacgt) =

P(S= asSt = acht = acgscgt = acgtsacgt =
acgtlacgt = acgt NVNVNacgt = acgtaNNVNacgt =
acgtacNMMacgt = acgtacgNMacgt = acgtacgtacgt) =

02%x02x%x02%x02x0.2%x1x%x0.25x%x0.25%0.25x0.25= 1.25x10-°

because this sequence has only one possible (leftmost) derivation under grammar G.

)

SN .
B. Majoros, Duke
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Chomsky Normal Form (CNF)

Any CFG which does not derive the empty string (i.e., ¢ ¢ L(G)) can be converted into
an equivalent grammar in Chomsky Normal Form (CNF). A CNF grammar is one in
which all productions are of the form:

X— YZ or X— a
for nonterminals X Y Z and terminal a.

Transforming a CFG into CNF can be accomplished by appropriately-ordered
application of the following operations (ex.):

 Eliminating useless symbols (nonterminals that only derive &)

 Eliminating nul/l productions (X—¢&)

 Eliminating unit productions (X= Y)

* Factoring long rhs expressions (A—abc factored into A-aB, B—~b(C, C—C)
e Factoring terminals (A—cBis factored into A—»CB, C—cC)

)

A\ 25
"{ B. Majoros, Duke
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CNF - Example

Non-CNF:

S—-asSt|tSalcSg|gSc|L
L—> NNNN
N—alc|g|t

CNF:

S— AS| TS5, CS;| GS-| NL;
S5,— SA
S5— ST
Sc— SC
S;.— SG
Ll—)NLZ
L2—>NN

N—alc|g|t
A—a
C—cC
G—d
/>t

Disadvantages of CNF: (1) more nonterminals & productions (up to quadratic
blowup in size), (2) less obvious relation to problem domain

A Advantage: easy implementation of parsers

26
B. Majoros, Duke
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The Parsing Problem

Two questions for a CFG:
1) Can a grammar G derive string x?
2) If so, what series of productions would be used during
the derivation? (there may be multiple answers!)
Additional questions for an SCFG:
1) What is the probability that G derives string x?

/,?) What Is the most probable derivation of x via G? _

w B. Majoros, Duke
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The CYK Parsing Algorithm

Given a grammar G= (V «, S A) in CNF, we build a DP matrix Ds.t. D, ; holds the
set of nonterminals that could derive the subsequence ;.. x;

Initialization: V i, O,; ={A| A->x < R}
The remainder of the DP matrix is then computed left-to-right, top-to-bottom:
D, ={A| A->BC ¢ R, forsome Be D, and CeD,,, ;, K[}

Termination: S="xiff Se D, |,

(Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965)

b4 °
B. Majoros, Duke
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The CYK Parsing Algorithm

Cell (1, j) contains all the nonterminals X
which can derive the entire subsequence: S
actagctatctagcttacggtaatcgcatcgegc.

(k+1, J) contains only those nonterminals
which can derive the red substring.

9)
(i, k) contains only those nonterminals & > |
) ) o
which can derive the green \@0% Cm( L))
substring. 5

A-BC

(1,n)
.

B. Majoros, Duke
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CYK for SCFG

D(i,),v) — (log) probability of optimal parse tree with root v of X; ... X

Initialization: V ,_;,, D(i,i,v)=log P(v — Xx;)

Iteration: D(i,j,v)=max{y,z,k} [D(i,k,y) + D(k+1,j,z) + log P(v —yz)]

Termination: log P(x,IT") = D(1,L,S)

Complexity: O(L3M3) time; O(L>M) memory (L-length; M-#non-terminals)
[compare to HMM: O(LM?) time, O(LM) memory]

vﬁ‘g 30
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Inside-outside vs. forward-backward

CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCA CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCA

S &

. . &0&?’
P(Xlxl_l y le y XJ+1X|_| GZ&C}@?’
9]

31
Aajoros, Duke
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The Inside Algorithm

The “equivalent” of the forward alg. for evaluating the probability of a parse subtree
rooted at nonterminal X for the subsequence ;... X;

a(i, j, X) = P(X=7%... %) = P(X; ... X [X;;, G)
Initialization:
a(_i , 1, X)=P(X-=X%;)

Recursion:
(Z(i 1j 1X):ZY,ZZk=i..j—1 P(X_)YZ) (Z(i ,k,Y)(Z(k"‘l,j 1Z);

The probability P(x|G) of the full input sequence x of length L can then be found in
the final cell of the matrix: «(1, L, S).

Complexity: time=0O(L*M?®) memory =0O(L°M)

() 3

w B. Majoros, Duke
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Training an SCFG

Two common methods for training an SCFG:

1) If parses are known for the training sequences, we can
simply count the number of times each production occurs
In the training parses and normalize these counts into
probabilities (analogous to HMMS).

2) If parses are NOT known for the training sequences, we
can use an EM algorithm similar to the Forward-
Backward (“Baum-Welch’) algorithm for HMMSs. The
EM algorithm for SCFGs is called Inside-Outside.

A\ 33
"ﬁ B. Majoros, Duke


http://www.tau.ac.il/�

Covariance models
(Eddy & Durbin 1994)

* A general modeling scheme for RNA families

o Based on “profile” SCFG:

— Model base pairs and single-stranded positions in an
RNA secondary structure consensus

— Allow for insertions and deletions w.r.t. the consensus

% 34
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The basic model

State type  Description Production Emission Transition
P (pair emitting) P — aYb e, (ab) t,(Y)

L (left emitting) L — a¥ e (a) t,(Y)

R (right emitting) R — Ya e (a) t,(Y)

B (bifurcation) B — 5§ I I

S (start) S Y | t(Y)

E (end) E—e I I

35
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A Toy RNA Family

iInput multiple alignment:

[structure] . X x>>>XXXX<X<<X>>X>.XXX.<<<.
human . AAGACUUCGGAUCUGGCG . ACA .CCC.
mouse aUACACUUCGGAUG-CACC . AAA . GUGa

orc .AGGUCUUC-GCACGGGCAgCCAcUUC .
1 5 10 15 20 25 28

example structure: U G
C"G 10

2?C 29 A

Figure |

An example RNA sequence family. Top: a toy multiple
alignment of three sequences, with 28 total columns, 24 of
which will be modeled as consensus positions. The [struc-
ture] line annotates the consensus secondary structure: >
and < symbols mark base pairs, x's mark consensus single
stranded positions, and .'s mark "insert" columns that will not
be considered part of the consensus model. Bottom: the sec-

ondary structure of the "human" sequence.

36
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Parsing according to structure

_ UucC
example structure: U G

10
C+G,
5A'U
G-C 15
A U C 21
AT TeGTeA

CC C
27

25

Ls... Ss
aLj... Ps —
aBy... P
S5815 Rg

gPic...
aRgu ...
&Y

cLip® s
LA v

y
T A A

MLlp_...
CLm...

8514...

L
I

b

)

L

uPy7...
gPlg(,‘...
gLgc...
C‘Pgo...
nglc...
aLzz...
Cng...

aEyy...

 The positional nonterminals are connected by a tree!

37
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From consensus structure to a
guide tree model

Node Description
consensus structure: guide tree: 2 MATL 2|
3 MATL 3]
MATP (pair)
MATL (single strand, left)
MATR (single strand, right)
BIF (bifurcation)
4 14 15 MATL 16| ROOT (root)
5 13 16 27 BEGL (begin, left)
[ MATR 8[>12 17 26 BEGR (begin, right)
5 11 18 END (end)
7 MATL 10| 19 25
sQuATL 11]  21<(MATL 21] Prefer MATL over MATR
9 MATL 12] 22¢| MATL 22|
10<[ MATL 13] 23<| MATL 23

» Non-terminal - state.
e State transition prob. =1
\%' e Emission probs per state: MATP (16), MATL/R (4) -
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"split set”

inserts

"split set”

inserts

"split set”

insert

From guide tree to CM

ANREAN

MP 12] ML 13]MR 14| D 15

AN L
PR

7.

MATP 6

MATP 7

MATR 8

Node States

MATP [MPMLMRD]ILIR
MATL [MLD]IL

MATR [MR D] IR

BIF [B]

ROOT [S]ILIR

BEGL [S]

BEGR [S]IL

END [E]

» Each tree node Is expanded into several states:

— Split set — the main consensus state; one of which must
be visited

% — Insert set — visited O or more times.

39


http://www.tau.ac.il/�

The final CM

IL 2|ROOT 1

Start from consensus structure, or use ==
a variant of Nussinov-Jacobson on = e
some multiple alignment if (*) no such = o=

MATP &

structure is known.
Learn parameters using EM.

If (*) use the current model to create a
new multiple alignment (via CYK)
and feed to (1) till convergence.

MATP 7

MATR 8

MATP 9

MATL 10

MATL 11

MATL 12

MATL 13

F|ERD_14
—— BEGR 15
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Application to TRNA modeling

e The largest gene family in most
genomes.

 |deal test case — primary
sequence varies while structure
IS conserved.

o Started from an alignment of
1415 tRNAs; avg. 40% sequence
Identity;100 held out for testing.

42
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Performance Evaluation I

e Two training modes: (A) start from known
alignment; (U) start from unaligned sequences

» Bit log-odds score averaged over test set

o Alignment accuracy — % truly aligned symbol
pairs that are also aligned in the inferred alignment

——

A100 57.3 94%
U100 23 56.7 90%

. lii
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Multiple sequence alignment

o Example of yeast tRNAs whose 3D structure Is
known from crystallography.

Trusted:

DF6280 iﬁff""jﬁ SEUG i & j ' GUCeﬂﬁﬂquucsAuc

DF6280G H & GAGE GUCER: uﬁuucsnuc“h
DDE280 B B x :
DX1661
DS6280

DF6280
DF6280G HUAdEL: gattctl
DD62 80 Z.'Z .'..iIZI ZI .'...'. .' & o ca
DX1661 GUGHARE ; i Ca  UA
DS6280 E-! : AG MM

ClustalV:

DF6280 GGove i
DF6280G ; 7 t i _Acuucssi#iﬁﬁﬁﬁﬁﬁﬁhcucnncanauncuucaaucnnau GEGGEAGCUCEIRBBUUC GAUC
DD6280 : AU A HBUUG  UCGCHPEEE G - vl
DX1661 1 __CUCA UAAGHGHA CCARtETTEGEN
DS6280 E,,,, Aaanxﬁgﬁﬁﬂuuccc UUUGCCCE CHEASGUUC GAGUGEUGE R

% 44
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Performance Evaluation IT

Tested A1415 in searching
6Mb sequence from GenBank
structural RNA db and C.
elegans genome.

Perfect separation for a wide
threshold range of the more
conserved c-tRNAs

In C. elegans all 14 tRNAs
were detected (score>31), no
false positives

In GenBank, 26/522 (5%)
annotated tRNAS were
missed; 22/26 lack the D-stem
loop

number of hits

55

50

45

40

35

30 -

25

20

15

From GenBank
& C.elegans
>
—

genomic non—tRNA

—
cytoplasmic IRNA

other tRNA

20.00 40.00 60.00 80.00

score (bits)
highest lowest
non-tRNA  cytoplasmic tRNA
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HOME | SEARCH | BROWSE | FTP | BLOG | HELP

Rfam 9.1 (January 2009, 1372 families)

The Rfam database is a collection of RNA families, each represented by multiple sequence
alignments, consensus secondary structures and covariance models (CMs). More...

QUICK LINKS
SEQUENCE SEARCH
VIEW AN RFAM FAMILY
KEYWORD SEARCH
TAXONOMY SEARCH
JUMP TO

YOU CAN FIND DATA IN RFAM IN VARIOUS WAYS...
Analyze your RNA sequence for Rfam matches

View Rfam family annotation and alignments

Query Rfam by keywords

Fetch families or sequences by NCBI taxonomy

|Enter any acocession or [0 | m

Enter any type of accession or ID to jump to the page for a Rfam family.
sequence or genome

Or view the help pages for more information

46
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