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RNA Structure & Stochastic 

Context Free Grammars 

Main source: Durbin et al., 
 “Biological Sequence Alignment” 
(Cambridge, ‘98) 
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RNA Basics 
• RNA bases A,C,G,U 
• Canonical Base Pairs 

– A-U 
– G-C 
– G-U 

“wobble” pairing 
– Bases can only pair 

with one other base. 
 

 

2 Hydrogen Bonds 3 Hydrogen Bonds – more stable 
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RNA Secondary Structure 

Hairpin loop 
Junction (Multiloop) 

Bulge Loop 

Single-Stranded 

Interior Loop 

Stem 

Pseudoknot 
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RNA Structure: Details 
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Pseudoknots 

We shall assume no pseudoknots  
in the structure 

Intersecting base pairs 
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Base Pair Maximization – Dynamic 
Programming Algorithm 

(Nussinov-Jacobson 1978) 

S(i,j) = max no. of base pairs in a 
folding of the subsequence from index 
i to index j 
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Grammars 
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Grammars express languages 
 
Example:    the English language 
 
 

verbpredicate

nounarticlephrasenoun

predicatephrasenounsentence

→

→

→

_

_
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walksverb
runsverb

dognoun
boynoun

thearticle
aarticle

→

→

→

→

→

→
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A derivation of “the boy walks”: 
 
 

walksboythe
verbboythe

verbnounthe
verbnounarticle
verbphrasenoun
predicatephrasenounsentence

⇒

⇒

⇒

⇒

⇒

⇒

_
_
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Language of the grammar: 
 
 

L = { “a boy runs”, 
        “a boy walks”, 
        “the boy runs”, 
        “the boy walks”, 
        “a dog runs”, 
        “a dog walks”, 
        “the dog runs”, 
        “the dog walks” } 
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Notation 
  

dognoun
boynoun

→

→

   Variable 
        or 
Non-terminal 

Terminal Production 
rule 
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Another Example 
Grammar: 
 
 
 
Derivation of sentence       : 
 

ε→
→

S
aSbS

abaSbS ⇒⇒

ab

aSbS → ε→S



15 

Another derivation: 
 
 
Language of the grammar 
 
 

aaabbbaaaSbbbaaSbbaSbS ⇒⇒⇒⇒

}0:{ ≥= nbaL nn



The Chomsky Hierarchy 

unrestricted grammars 

context-sensitive grammars 

context-free grammars 

regular grammars 
(W->aW or W->a; recognized by finite automata; 
HMMs are equiv. to stochastic RGs) 

(W->β; recognized by pushdown automata) 

(αWβ->γ) 

(αWβ-> α γ β; recognized 
by linear bounded automata) 

B. Majoros, Duke 
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Context-free Grammars (CFG’s) 

A context-free grammar is a generative model 
G = (V, α, S, R) where: 

 
 V is a nonterminal alphabet, (e.g., {A, B, C, D, E, ...} 
 α is a terminal alphabet, (e.g., {a, c, g, t} )  
 S∈V is a special start symbol  
 R is a set of rewriting rules called productions. 
 
Productions in R are rules of the form: X → λ 
where X∈V, λ∈(V∪α)* 

17 
B. Majoros, Duke 

http://www.tau.ac.il/�


Context-freeness 

The “context-freeness” is imposed by the requirement that the 
l.h.s of each production rule may contain only a single 
symbol, and that symbol must be a nonterminal: 
 

X → λ 
 
Thus, a CFG cannot specify context-sensitive rules such as: 
 

wXz → wλz 
 

18 
B. Majoros, Duke 

http://www.tau.ac.il/�


Derivations 
Suppose a CFG G has generated a terminal string x∈α*. A 
derivation S⇒*x denotes a possible way for generating x. 
 
A derivation (or parse) consists of a series of applications of 
productions from R, beginning with the start symbol S and 
ending with the terminal string x: 

 

S ⇒ s1 ⇒ s2 ⇒ s3 ⇒ L ⇒ x 
 

where si∈(V∪α)*.  
 
We will concentrate on leftmost derivations, where the 
leftmost nonterminal is always replaced first.  

19 
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The advantage of CFGs over RGs/HMMs lies in their ability to model arbitrary runs of 
matching pairs of elements, such as matching pairs of parentheses: 
 

L((((((((L))))))))L 
 
When the number of matching pairs is unbounded, a finite-state model such as an 
HMM is inadequate to enforce the constraint that all left elements must have a matching 
right element.  
 
In contrast, in a CFG we can use rules such as X→(X). A sample derivation using such a 
rule is: 
 

X ⇒ (X) ⇒ ((X)) ⇒ (((X))) ⇒ ((((X)))) ⇒ (((((X))))) 
 

An additional rule such as X→ε is necessary to terminate the recursion. 

 

Context-free Versus Regular 

20 
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A CFG for an RNA stem loop 
• Wish a CFG that models RNA stem loops with 3 

bps and a GCAA or GAAA loop. 
 
 
 
 
 S -> aXu | cXg | gXc | uXa 
 X -> aYu | cYg | gYc | uYa 
 Y -> aZu | cZg | gZc | uZa 
 Z -> gaaa | gcaa 21 
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Parse trees 
• A representation of a parse of a string by a CFG (in 1-1 

correspondence with left derivations) 
• Root – start nonterminal S 
• Leaves – terminal symbols in the given string 
• Internal nodes – non-terminals 
• The children of an internal node are the productions of that 

nonterminal (left-to-right order) 
• A subtree spans a contiguous sequence segment 
 

22 
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Stochastic CFG 
A stochastic context-free grammar (SCFG) is a CFG plus a 
probability distribution on productions: 
 

   G = (V, α, S, R, Pp)  
 

where Pp : R a [0,1], and probabilities are normalized at the 
level of each nonterminal X: 
   ∀[ ∑ Pp(X→λ)=1 ] 
   X∈V

   
X→λ 

 

The probability of a derivation S⇒*x is the product of the 
probabilities for all its productions: ∏ i P(Xi→λi) 
 

We can sum over all possible (leftmost) derivations of a 
given string x to get the probability that G will generate x at 
random: P(x | G) = ∑ P(S⇒j

*x | G). 
                                j 

B. Majoros, Duke 
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A Simple Example 
As an example, consider G=(VG, α, S, RG, PG), for VG={S, L, N}, α={a,c,g,t}, and RG 
the set consisting of: 

S → a S t | t S a | c S g | g S c | L 
 

L → N N N N 
 

N → a | c | g | t 
 
The probability of the sequence acgtacgtacgt is given by: 
 

P(acgtacgtacgt) = 
 

P( S ⇒ aSt ⇒ acSgt ⇒ acgScgt ⇒ acgtSacgt ⇒ 
acgtLacgt ⇒ acgtNNNNacgt ⇒ acgtaNNNacgt ⇒ 

acgtacNNacgt ⇒ acgtacgNacgt ⇒ acgtacgtacgt) = 
 

0.2 × 0.2 × 0.2 × 0.2 × 0.2 × 1 × 0.25 × 0.25 × 0.25 × 0.25 =  1.25×10-6 
 

because this sequence has only one possible (leftmost) derivation under grammar G. 

(P=0.2) 
 

(P=1.0) 
 

(P=0.25) 

B. Majoros, Duke 
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Chomsky Normal Form (CNF) 
Any CFG which does not derive the empty string (i.e., ε ∉ L(G)) can be converted into 
an equivalent grammar in Chomsky Normal Form (CNF). A CNF grammar is one in 
which all productions are of the form: 

 
X → Y Z   or   X → a 

 
for nonterminals X, Y, Z, and terminal a. 
 
Transforming a CFG into CNF can be accomplished by appropriately-ordered 
application of the following operations (ex.): 
 

• Eliminating useless symbols (nonterminals that only derive ε) 
• Eliminating null productions (X→ε) 
• Eliminating unit productions (X→Y) 
• Factoring long rhs expressions (A→abc factored into A→aB, B→bC, C→c) 
• Factoring terminals (A→cB is factored into A→CB, C→c) 

 

B. Majoros, Duke 
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Non-CNF: 
 

S → a S t | t S a | c S g | g S c | L 
L → N N N N 

N → a | c | g | t 
 

CNF - Example 

CNF: 
 

S → A ST | T SA | C SG | G SC | N L1  
SA → S A 
ST → S T 
SC → S C 
SG → S G 
L1 → N L2 
L2 → N N 

N → a | c | g | t 
A → a 
C → c 
G → g 
T → t 

 Disadvantages of CNF: (1) more nonterminals & productions (up to quadratic 
blowup in size), (2) less obvious relation to problem domain 

Advantage: easy implementation of parsers 

 
B. Majoros, Duke 
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The Parsing Problem 

Two questions for a CFG: 
 

1) Can a grammar G derive string x? 
 

2) If so, what series of productions would be used during 
the derivation? (there may be multiple answers!) 

 
 

Additional questions for an SCFG: 
 

1) What is the probability that G derives string x? 
 

2) What is the most probable derivation of x via G? 
 B. Majoros, Duke 
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The CYK Parsing Algorithm 

Given a grammar G = (V, α, S, R) in CNF, we build a DP matrix D s.t. Di, j holds the 
set of nonterminals that could derive the subsequence xi... xj 
 

Initialization: ∀ 1≤i≤n Di,i ={A | A→xi ∈ R} 
 
The remainder of the DP matrix is then computed left-to-right, top-to-bottom:  
 

Di, j ={A | A→BC ∈ R, for some B∈Di,k and C∈Dk+1, j, i≤k<j} 
 

Termination: S⇒*x iff S∈D1, n. 
 
 
(Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965) 

B. Majoros, Duke 
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The CYK Parsing Algorithm 

j 

k 

i 
( i, j ) 

i 

j 

(i, k) 

( k+1, j ) 

Cell (i, j) contains all the nonterminals X 
which can derive the entire subsequence: 

actagctatctagcttacggtaatcgcatcgcgc. 

(k+1, j) contains only those nonterminals 
which can derive the red substring. 

(i, k) contains only those nonterminals 
which can derive the green              

substring. 

 

 

(1, n ) 

A→BC 
A 

C 

B 

B. Majoros, Duke 
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CYK for SCFG 

D(i,j,v) – (log) probability of optimal parse tree with root v of xi … xj 
 
Initialization: ∀ 1≤i≤n,v D(i,i,v)=log P(v → xi) 
 
Iteration:  D(i,j,v)=max{y,z,k} [D(i,k,y) + D(k+1,j,z) + log P(v →yz)] 
 
Termination:  log P(x,Π*) = D(1,L,S) 
 
  
Complexity:           O(L3M3) time; O(L2M) memory (L-length; M-#non-terminals) 
[compare to HMM: O(LM2) time, O(LM) memory] 
 
 

30 
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Inside-outside vs. forward-backward 

Inside-Outside is the equivalent for trees 

B. Majoros, Duke 
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P(xi ... xj |Xij , G) P(x1..xi-1 ; Xij ; xj+1..xL | G) 
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The Inside Algorithm 
The “equivalent” of the forward alg. for evaluating the probability of a parse subtree 
rooted at nonterminal X for the subsequence xi... xj 

α(i, j, X) = P( X⇒*xi ... xj ) = P(xi ... xj |Xij , G) 
 
Initialization: 
    α(i,i,X)=P(X→xi) 
Recursion: 
      α(i,j,X)=∑Y,Z∑k=i..j-1 P(X→YZ)α(i,k,Y)α(k+1,j,Z); 
 

The probability P(x|G) of the full input sequence x of length L can then be found in 
the final cell of the matrix: α(1, L, S).  

Complexity:       

 

time = O(L3 M 3) )( 2MLOmemory =

B. Majoros, Duke 
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Training an SCFG 

Two common methods for training an SCFG: 

1) If parses are known for the training sequences, we can 
simply count the number of times each production occurs 
in the training parses and normalize these counts into 
probabilities (analogous to HMMs).  

2) If parses are NOT known for the training sequences, we 
can use an EM algorithm similar to the Forward-
Backward (“Baum-Welch”) algorithm for HMMs. The 
EM algorithm for SCFGs is called Inside-Outside. 

B. Majoros, Duke 
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Covariance models  
(Eddy & Durbin 1994) 

• A general modeling scheme for RNA families 
• Based on “profile” SCFG: 

– Model base pairs and single-stranded positions in an 
RNA secondary structure consensus 

– Allow for insertions and deletions w.r.t. the consensus 
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The basic model 
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A Toy RNA Family 
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Parsing according to structure 

37 • The positional nonterminals are connected by a tree! 
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From consensus structure to a 
guide tree model 

38 

Prefer MATL over MATR 

• Non-terminal → state. 
• State transition prob. = 1 
• Emission probs per state: MATP (16), MATL/R (4) 
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From guide tree to CM 
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• Each tree node is expanded into several states: 
– Split set – the main consensus state; one of which must 

be visited 
– Insert set – visited 0 or more times. 
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The final CM 
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1. Start from consensus structure, or use 
a variant of Nussinov-Jacobson on 
some multiple alignment if (*) no such 
structure is known. 

2. Learn parameters using EM. 
3. If (*) use the current model to create a 

new multiple alignment (via CYK) 
and feed to (1) till convergence. 
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Application to tRNA modeling 

• The largest gene family in most 
genomes. 

• Ideal test case – primary 
sequence varies while structure 
is conserved. 

• Started from an alignment of 
1415 tRNAs; avg. 40% sequence 
identity;100 held out for testing. 
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Performance Evaluation I 
• Two training modes: (A) start from known 

alignment; (U) start from unaligned sequences 
• Bit log-odds score averaged over test set 
• Alignment accuracy – % truly aligned symbol 

pairs that are also aligned in the inferred alignment 
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Accuracy Bit score #Iterations Mode 
94% 57.3 3 A100 
90% 56.7 23 U100 

30 for 
HMM 

30% for 
degapped 
alignment 
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Multiple sequence alignment 
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• Example of yeast tRNAs whose 3D structure is 
known from crystallography. 
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Performance Evaluation II 
• Tested A1415 in searching 

6Mb sequence from GenBank 
structural RNA db and C. 
elegans genome. 

• Perfect separation for a wide 
threshold range of the more 
conserved c-tRNAs 

• In C. elegans all 14 tRNAs 
were detected (score>31), no 
false positives 

• In GenBank, 26/522 (5%) 
annotated tRNAs were 
missed; 22/26 lack the D-stem 
loop 
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From GenBank 
& C.elegans 
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