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• Slides: 
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• Nir Friedman’s slides at HUJI (based on ALGMB 98)
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• Sources: Joe Felsenstein “Inferring Phylogenies” (2004)
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Phylogeny

• Phylogeny: the ancestral relationship 
of a set of species.

• Represented by a phylogenetic tree
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• Classical –
morphological 
characters

• Modern -
molecular 
sequences.

Classical vs. Modern
Phylogeny schools

http://www.scientific-art.com/GIF%20files/Palaeontological/hominidtree.jpg
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Page from Darwin's notebooks around July 1837 showing the first-known sketch by Charles 
Darwin of an evolutionary tree describing the relationships among groups of organisms.
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Trees and Models

• rooted / unrooted

• topology / distance 

• binary / general
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To root or not to root?

• Unrooted tree: phylogeny without 
direction.
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Rooting an Unrooted Tree

• We can estimate the position of the root 
by introducing an outgroup: 
– a species that is definitely most distant from 
all the species of interest

Aardvark Bison Chimp Dog Elephant

Falcon

Proposed root

HOW DO WE FIGURE OUT 
THESE TREES? TIMES?
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Dangers of Paralogs

Speciation events

Gene Duplication

1A 2A 3A 3B 2B 1B

• Right species topology: (1,(2,3))

Sequence Homology Caused By:

•Orthologs - speciation,

•Paralogs - duplication

•Xenologs - horizontal (e.g., by virus)
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Dangers of Paralogs
• Right species distance: (1,(2,3))

• If we only consider 1A, 2B, and 3A: 
((1,3),2)

Speciation events

Gene Duplication

1A 2A 3A 3B 2B 1B
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Type of Data 

• Distance-based
– Input: matrix of distances between species
– Distance can be 

• fraction of residue they disagree on,
• alignment score between them, 
• …

• Character-based
– Examine each character (e.g., residue) 
separately
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Distance Based Methods
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Tree based distances

• d(i,j)=sum of arc 
lengths on the 
path i��j

• Given d, can we 
find 
– an exactly 
matching tree?

– An approximately 
matching tree?

CG © Ron Shamir
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The Problem
The least squares criteria

Input: matrix d of distances between 
species

Goal: Find a tree with leaves=chars and edge 
distances, matching d best.

Quality measure: sum of squares:

∑∑ −=
≠i

ijij

ij

ij tdwTSSQ
2)()(

tij: distance in the tree 

wij: pair weighting. Options: (1) ≡1   (2) 1/dij (3) 1/dij2

NP-hard (Day ’86). We’ll describe common heuristics
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UPGMA Clustering (Sokal & Michener 1958) 
(Unweighted pair-group method with arithmetic mean)

• Approach: Form a tree; closer species according 
to input distances should be closer in the tree

• Build the tree bottom up, each time merging two 
smaller trees

• All leaves are at same distance from the root
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Efficiency lemma
• Approach: gradually form clusters: sets of species

• Repeatedly identify two clusters and merge them.

• For clusters Ci Cj , define the distance between 
them to be the average dist betw their members:

• Lemma: If Ck is formed by merging Ci and Cj then 
for every other cluster Cl
d(Ck,Cl) = (|Ci|*d(Ci,Cl) + |Cj|*d(Cj,Cl)) / (|Ci| + |Cj|) 

� Can update distances between clusters in time prop. to the 
number of clusters.

∑ ∑
∈ ∈

=
i jCp Cqji
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||||
),(
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UPGMA algorithm
Initialize: each node is a cluster Ci={i}. d(Ci,Cj)=d(i,j) set height(i) = 0 ∀i
Iterate:
• Find Ci,Cj with smallest d(Ci,Cj)
• Introduce a new cluster node Ck that replaces Ci and Cj

//Ck represents all the leaves in clusters Ci and Cj
• Introduce a new tree node Aij with height(Aij) = d(Ci,Cj)/2 

// d(Ci,Cj) is the average dist among leaves of Ci and Cj
• Connect the corresponding tree nodes Ci,Cj to Aij with

length(Ci, Aij) = height(Aij) - height(Ci)
length(Cj,Aij) = height(Aij) - height(Cj)

• For all other Cl:
d(Ck,Cl) = (|Ci|*d(Ci,Cl) + |Cj|*d(Cj,Cl)) / (|Ci| + |Cj|) 
//dist to any old cluster is the ave dist between its leaves and 

leaves in Ci, Cj

Time: Naïve: O(n3); Can show O(n2 logn) (ex.) and O(n2)  
(harder ex.)
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UPGMA alg (2)

• Orange nodes represent the groups of 
nodes that they replaced, and maintain 
the average dist of the set from other 
leaf nodes/clusters
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Molecular Clock
• UPGMA assumes the tree has equal leaf-root 
distances => common uniform clock. Such tree is 
called (a particular type of) ultrametric

• Works reasonably well for nearby species 

4 1
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Additivity
• An additivity assumption: distances 
between species are the sum of distances 
between intermediate nodes (even if the 
tree is not ultrametric)
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If the distance matrix is an exact reflection of a true 
tree, then additivity holds
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Consequences of Additivity
• Suppose input distances are additive
• For any three leaves

• Thus
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• If  we can identify neighbor leaves, then 
can use pairwise distances to reconstruct 
the tree:

• Remove neighbors i, j from the leaf set

• Add k 

• Set dkm= (dim + djm –dij)/2

dik= dim-dkm =(dim - djm + dij)/2  

Can we find neighbor leaves?

Consequences of Additivity II

j
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b

k
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Closest pairs may not be 
neighbors!

• Closest pair: k and j, but they are not 
neighbors
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Neighbor Joining (Saitou-Nei ’87)

• Let

where

)(),(),( ji rrjidjiD +−=

∑−
=

k

i kid
L

r ),(
2||

1

Theorem: if D(i,j) is minimum among all pairs of 
leaves, then i and j are neighbors in the tree

“Corrected” average 
distance of i from all 
other nodes
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Neighbor Joining algorithm
• Set L to contain all leaves
Iteration:

• Choose i,j such that D(i,j) is minimum
• Create new node k, and set

• remove i,j from L, and add k
• Update r, D
• Termination: when |L| =2 connect the two nodes

2/)),(),(),((),(
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Thm: Opt tree guaranteed if distances match a tree
Does not assume a clock

Time:O(n3)
Ex.
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Character Based Methods
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Inferring a Phylogenetic Tree
Generic problem: Optimal Phylogenetic
Tree:

• Input:
– n species,
– set of characters,
– for each species, the state of each 
of the characters.

– (parameters)
• Goal: find a fully-labeled phylogenetic
tree that best explains the data. 
(maximizes a target function).

A: CAGGTA
B: CAGACA
C: CGGGTA
D: TGCACT
E: TGCGTA

A B C D EAssumptions: 

• characters are mutually independent

• species evolve independently
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A Simple Example

• Five species, three have ‘C’ and two ‘T’ at a 
specified position.

• A minimal tree has one evolutionary change:

C

C

C

T

T
C

C T

T ↔ C

CG © Ron Shamir
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Inferring a Phylogenetic Tree
Naive Solution - Enumeration:

• No. of non-isomorphic, labeled, binary, rooted 
trees, containing n leaves: (2n -3)!! = Πi=3…n(2i-3)

• Unrooted: (2n-5)!!

Adding 3rd species

Each new species

adds 2 new edges

a b

a cb a bc b ac

for n=20

this is 1021 !
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Parsimony
• Goal: explain data with min. no. of evolutionary 
changes (“mutations”, or mismatches)

• Parsimony: S(T) ≡≡≡≡ ΣΣΣΣj ΣΣΣΣ{v,u}∈∈∈∈E(T) |{j: vj≠≠≠≠uj}|

• “Small parsimony problem”:
– Input: leaf sequences + a leaf-labeled tree T
– Goal: Find ancestral sequences implying minimum 
no. of changes (most parsimonious)

• “Large parsimony problem”:
– Input: leaf sequences
– Gaol: Find a most parsimonious tree (topology, 
leaf labeling and internal seqs.)

CG © Ron Shamir
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Algorithm for the Small Parsimony 
Problem (Fitch `71)

• Consider each site in a sequence separately
• Initialization: scan T in post-order, assign:

– leaf vertex m: Sm={state at node m}
– internal node m with children l, r : 
Sm= Sl∪∪∪∪Sr if Sl∩∩∩∩Sr=φφφφ (i)

Sl∩∩∩∩Sr o/w (ii)
• Solution Construction: scan tree in preorder, 
choose: 
– for the root choose x∈Sroot

– at node m with parent k (already constructed 
pick same state as k if possible; o/w - pick 
arbitrarily

time: O(m·n·k), 

k = #states s; n=#nodes; m=#sites
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Fitch’s Alg for small parsimony

T C C A T T

A,T

T,C T

T

T−>Α

T−>C
C
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Walter Fitch
May 21, 1929 - March 10, 2011

• One of the most influential evolutionary 
biologists in the world, who established 
a new scientific field: molecular 
phylogenetics. He was a member in the 
National Academy of Sciences, the 
American Academy of Arts and 
Sciences and the American Philosophical 
Society. He co-founded and was the 
first president of the Society for 
Molecular Biology, which established the 
annually awarded Fitch Prize. 
Additionally, he was a founding editor of 
Molecular Biology and Evolution.

• Fitch was at the University of 
California, Irvine, until his death, 
preceded by three years at the 
University of Southern California and 
24 years University of Wisconsin–
Madison. 
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Weighted Small Parsimony
k states S1,…, Sk
Cij = cost of changing from state i to j
Algorithm (Sankoff-Cedergren ‘88):
• Need: Sk(x) – best cost for the subtree
rooted at x if state at x is k

• For leaf x, 
Sk(x) = 0 if state of x is k

∞ o/w
• Scan T in postorder. At node a with 
children l, r

• Sk(a) = minm(Sm(l)+Cmk) + minm(Sm(r)+Cmk)
• Opt=minm(Sm(root)) time: O(n·k)

In Ex.

CG © Ron Shamir
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David 
Sankoff

Over the past 30 years, Sankoff formulated and contributed to many of 

the fundamental problems in computational biology.
In sequence comparison, he introduced the quadratic version of the 

Needleman-Wunsch algorithm, developed the first statistical test for 

alignments, initiated the study of the limit behavior of random 

sequences with Vaclav Chvatal and described the multiple alignment 

problem, based on minimum evolution over a phylogenetic tree. In the 
study of RNA secondary structure, he developed algorithms based 

on general energy functions for multiple loops and for simultaneous 

folding and alignment, and performed the earliest studies of parametric 

folding and automated phylogenetic filtering. 

Sankoff and Robert Cedergren collaborated on the first studies of the 
evolution of the genetic code based on tRNA sequences. His 

contributions to phylogenetics include early models for horizontal 

transfer, a general approach for optimizing the nodes of a given tree, a

method for rapid bootstrap calculations, a generalization of the nearest 

neighbor interchange heuristic, various constraint, consensus and 
supertree problems, the computational complexity of several phylogeny 

problems with William Day, and a general technique for phylogenetic

invariants with Vincent Ferretti. Over the last fifteen years he has 

focused on the evolution of genomes as the result of chromosomal 

rearrangement processes. Here he introduced the computational 
analysis of genomic edit distances, including parametric versions, the 

distribution of gene numbers in conserved segments in a random 

model with Joseph Nadeau, phylogeny based on gene order with 

Mathieu Blanchette and David Bryant, generalizations to include multi-
gene families, including algorithms for analyzing genome duplication

and hybridization with Nadia El-Mabrouk, and the statistical analysis of 

gene clusters with Dannie Durand. Sankoff is also well known in 

linguistics for his methods of studying grammatical variation and 

change in speech communities, the quantification of discourse analysis 
and production models of bilingual speech.



CG © Ron Shamir

69

Large Parsimony Problem

Input: n x m matrix M:

• Mij = state of jth character of species i. 

• Mi· = label of i (all  labels are distinct)

Goal:
Construct a phylogenetic tree T with n leaves and a 
label for each node, s.t.

• 1-1 correspondence of leaves and labels
• cost of tree is minimum.

• NP-hard

CG © Ron Shamir
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Branch & Bound (Hendy-Penny ‘89)

• enumerate all unrooted trees with 
increasing no. of leaves

Note: cost of tree with all leaves ≥ cost of subtree
with some leaves pruned (and same labeling)
=> If cost of subtree ≥ best cost for full tree so far, 
then: can prune (ignore) all refinements of the 
subtree.

enumeration & pruning can be done in 
O(1) time per visited subtree.

In Ex.
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Branch swapping

Each internal edge defines 4 sub-trees:

Can swap two such non-adjacent sub-trees

A

B

C
D

A

B

C
D

In Ex.
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Nearest Neighbor Interchanges

• handles n-labeled trees

• T and T’ are neighbors if one can get T’ by 
following operation on T:

• Use the neighborhood structure on the set of 
solutions (all trees) via hill climbing, annealing, 
other heuristics...

S R

U V S

R

U

V

S R

U
V

SV|RU                               SU|RV                       SR|UV

In Ex.
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Probabilistic approaches
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Likelihood of a Tree

• Given:
– n aligned sequences M= X1,…,Xn

– A tree T, leaves labeled with X1,…,Xn

• reconstruction t:
– labeling of internal nodes

– branch lengths

• Goal: Find optimal reconstruction t* : One 
maximizing the likelihood P(M|T,t*)
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Likelihood (2)

• We need a model for computing P(M|T,t*)
• Assumptions:

– Each character is independent

– The branching is a Markov process:
• The probability that a node x has a specific label is 
only a function of the parent node y and the 
branch length t between them.

• The probabilities P(x|y,t) are known
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Modeling phylogeny as a Bayesian network

x1

x2

x3

x4

x5

t1
t2

t3

t4

edge v
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P root p t→
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x5

x3x1
x2

x4
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3

53

2

42

1

41
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• BN with variables x1-x5 and local distributions )(),|( ixPaiiii tPtPaxP
i→=
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Calculating the Likelihood - Example

Inference in a BN
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reconstrcuction character 

reconstrcuction character edge v

P(M|T, t) ( , | , )

( ) ( )

j

Rj

u v uv

Rj u

P M R T t

P root p t

•

→
→

 
=  

 

   
=   

   

∑∏

∑∏ ∏

Independence 

of sites

Markov property

independence of

each branch

Assume that the branch lengths tuv are known.

Let   be the branch lengths and R the rest of 
the reconstruction = the internal node labels

t

Calculating the Likelihood – General 
equation
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Additional Assumed Properties

∑ →→→ =+
b

zbbxzx tPsPtsP )()()(

)()()()( tPyPtPxP xyyx →→ =

•Additivity:  

•Reversibility (symmetry):

•Allows one to freely move the root

•Provable under broad and reasonable 
assumptions

z

x

z

x

b

z

x

t

z

t

s

s+t

tt

r
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Efficient Likelihood Calculation 
(Felsenstein ’73)

Use dynamic programming

Define Sj(a,v) = Pr(subtree rooted in v | vj = a)

Initialization:
∀ leafv set Sj(a,v) = 1 if v is labeled by a, else Sj(a,v) = 0

Recursion:
Traverse the tree in postorder: for each node v with 
children u and w,  for each state x

















= ∑∑ →→

y

vwyxj

y
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=

j x

j xProotxSL )(),(Final Soln:

Complexity: 
O(nmk2)
n species, 
m chars, 
k states
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Finding Optimal Branch lengths

∑ ======
yx

xzAPxzPtxzyvPyvBPL
,

)|()(),|()|(

)(xp)(tp yx→ ),( zxS
v

),( vyS z
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Finding Optimal Branch lengths

• Under the symmetry assumption, each node 
can be made (temporarily) the root

• To heuristically optimize all the branch 
lengths: repeatedly optimize one branch at 
a time
– No guaranteed convergence, but often works

Optimizing the length of a single branch z-v
can be done using standard optimization 
techniques

∑∑ →
=

=
yx

v

jyx

z

j

mj

zxSxPtPvySL
,,...,1

),()()(),(loglog
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HOW DO WE FIGURE OUT 
THE TIMES?
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)( uvvu tP →Calculating
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Jukes-Cantor Model (J-K ’69)
• Assumptions:

– Each base in sequence has equal chance of 
changing

– Changes to other 3 bases with equal probability

• Characteristics
– Each base appears with equal frequency in DNA

– The quantity a is the rate of change

– During each infinitesimal time ∆t a 
substitution occurs with probability 3a∆t
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Jukes-Cantor Model (J-K ’69)
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• prob. that the nucleotide remains unchanged 
over t time units:

• Probability of specific change:

• Probability of change:

• Note: For      

ateP 4

same 4
3

4

1 −+=

at

B eP 4

A
4

1

4

1 −
→ −=

4

3
P        change →∞→t

at

change eP 4

4

3

4

3 −−=

Jukes-Cantor Model (J-K ’69)
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Other Models

• Kimura’s 2-parameter model:
– A,G - purines; C,T - pyrmidines

– Two different rates
• purine-purine or pyrmidine-pyrimidine (transitions)

• purine-pyrmidine or pyrmidine-purine (transversions)

• Felsenstein ‘84 and Yano, Hasegawa & Kishino ’85 
extend the Kimura model to asymmetric base 
frequencies.

C T
A G
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FIN


