Computational Genomics
 גנומיקה חישובית

Phylogeny
 Nov, 2018

- Slides:
- Adi Akavia
- Nir Friedman's slides at HUJI (based on ALGMB 98)
- Anders Gorm Pedersen,Technical University of Denmark
- Sources: Joe Felsenstein "Inferring Phylogenies" (2004)

Phylogeny

- Phylogeny: the ancestral relationship of a set of species.
- Represented by a phylogenetic tree

Classical vs. Modern Phylogeny schools

- Classical morphological characters
- Modern molecular sequences.

The Letuice A, D. anting
Ar 4 ulatom. $C \times 3 \cdot \pi$
first pulsation, $B \times D$
withes greater $2 i t_{n c k}$
Then fencer wow he
fromes. - benny when

Page from Darwin's notebooks around July 1837 showing the first-known sketch by Charles Darwin of an evolutionary tree describing the relationships among groups of organisms.
Shamir nRo © GC

Trees and Models

- rooted / unrooted
- topology / distance
- binary / general

To root or not to root?

- Unrooted tree: phylogeny without direction.

Rooting an Unrooted Tree

- We can estimate the position of the root by introducing an outgroup:
- a species that is definitely most distant from all the species of interest
Proposed root

Aardvark Bison Chimp Dog Elephant

HOW DO WE FIGURE OUT THESE TREES? TIMES?

Dangers of Paralogs

- Right species topology: $(1,(2,3))$

Dangers of Paralogs

- Right species distance: $(1,(2,3))$
- If we only consider $1 A, 2 B$, and $3 A$: $((1,3), 2)$

Shamir nRo © GC

Type of Data

- Distance-based
- Input: matrix of distances between species
- Distance can be
- fraction of residue they disagree on,
- alignment score between them,
- ...
- Character-based
- Examine each character (e.g., residue) separately

Distance Based Methods

Tree based distances

- $d(i, j)=$ sum of arc lengths on the path $i \hookleftarrow \rightarrow j$
- Given d, can we find
- an exactly matching tree?
- An approximately matching tree?

Shamir nRo © GC

The Problem
 The least squares criteria

Input: matrix d of distances between species
Goal: Find a tree with leaves=chars and edge distances, matching d best.
Quality measure: sum of squares:
$S S Q(T)=\sum \sum w_{i j}\left(d_{i j}-t_{i j}\right)^{2}$
t_{ij} : distance in the tree ${ }^{i} \quad j \neq i$
w_{ij} : pair weighting. Options: $(1) \equiv 1 \quad$ (2) $1 / \mathrm{d}_{\mathrm{ij}} \quad$ (3) $1 / \mathrm{d}_{\mathrm{ij}}{ }^{2}$
NP-hard (Day '86). We'll describe common heuristics

UPGMA Clustering (sand memeacer seo

(Unweighted pair-group method with arithmetic mean)

- Approach: Form a tree; closer species according to input distances should be closer in the tree
- Build the tree bottom up, each time merging two smaller trees
- All leaves are at same distance from the root
\Rightarrow

\Rightarrow

Shamir nRo © GC
20

UPGMA Algorithm

UPGMA Algorithm

UPGMA Algorithm

UPGMA Algorithm

 -0000000 0000 000 000 0.

UPGMA Algorithm

Efficiency lemma

- Approach: gradually form clusters: sets of species
- Repeatedly identify two clusters and merge them.
- For clusters $C_{i} C_{j}$, define the distance between them to be the average dist betw their members:

$$
d\left(C_{i}, C_{j}\right)=\frac{1}{\left|C_{i}\right|\left|C_{j}\right|} \sum_{p \in C_{i} q \in C_{j}} d(p, q)
$$

- Lemma: If C_{k} is formed by merging C_{i} and C_{j} then for every other cluster C_{1}

$$
\mathrm{d}\left(C_{k}, C_{i}\right)=\left(\left|C_{i}\right| * \mathrm{~d}\left(C_{i}, C_{i}\right)+\left|C_{j}\right| * d\left(C_{j}, C_{i}\right)\right) /\left(\left|C_{i}\right|+\left|C_{j}\right|\right)
$$

\rightarrow Can update distances between clusters in time prop. to the number of clusters.

UPGMA algorithm

Initialize: each node is a cluster $C i=\{i\} . d(C i, C j)=d(i, j)$ set height $(i)=0 \forall i$ Iterate:

- Find $C i, C j$ with smallest $d(C i, C j)$
- Introduce a new cluster node $C k$ that replaces $C i$ and $C j$
$/ / C k$ represents all the leaves in clusters $C i$ and $C j$
- Introduce a new tree node Aij with height $(A i j)=d(C i, C j) / 2$
// $\mathrm{d}\left(\mathrm{Ci}_{\mathrm{i}}, \mathrm{Cj}\right)$ is the average dist among leaves of Ci and $C \mathrm{j}$
- Connect the corresponding tree nodes $C i_{i}, C_{j}$ to $A i j$ with

$$
\text { length }(C i, A i j)=\text { height }(A i j)-\text { height }(C i)
$$

length $(C j, A i j)=$ height $(A i j)-$ height $(C j)$

- For all other Cl :
$d(C k, C l)=(|C i| * d(C i, C l)+|C j| * d(C j, C l)) /(|C i|+|C j|)$
//dist to any old cluster is the ave dist between its leaves and leaves in Ci, Cj
Time: Naïve: $O\left(n^{3}\right)$; Can show $O\left(n^{2} \operatorname{logn}\right)$ (ex.) and $O\left(n^{2}\right)$ (harder ex.)

UPGMA alg (2)

- Orange nodes represent the groups of nodes that they replaced, and maintain the average dist of the set from other leaf nodes/clusters

Molecular Clock

- UPGMA assumes the tree has equal leaf-root distances \Rightarrow common uniform clock. Such tree is called (a particular type of) ultrametric

- Works reasonably well for nearby species

Additivity

- An additivity assumption: distances between species are the sum of distances between intermediate nodes (even if the tree is not ultrametric)
k

$$
\begin{aligned}
& d(i, j)=a+b \\
& d(i, k)=a+c \\
& d(j, k)=b+c
\end{aligned}
$$

If the distance matrix is an exact reflection of a true tree, then additivity holds

Consequences of Additivity

- Suppose input distances are additive
- For any three leaves

$$
\begin{aligned}
d(i, j) & =a+b \\
d(i, m) & =a+c \\
d(j, m) & =b+c
\end{aligned}
$$

- Thus $d(i, k)=\frac{1}{2}(d(i, m)+d(i, j)-d(m, j))$

Shamir nRo © GC

$$
d(m, k)=\frac{1}{2}(d(i, m)+d(j, m)-d(i, j))
$$

Consequences of Additivity II

- If we can identify neighbor leaves, then can use pairwise distances to reconstruct the tree:
- Remove neighbors i, j from the leaf set
- Add k
- Set $d_{k m}=\left(d_{i m}+d_{j m}-d_{i j}\right) / 2$
$d_{i k}=d_{i m}-d_{k m}=\left(d_{i m}-d_{j m}+d_{i j}\right) / 2$

Can we find neighbor leaves?

Closest pairs may not be neighbors!

- Closest pair: k and j , but they are not neighbors

Neighbor Joining (Saitou-Nei '87)

- Let $D(i, j)=d(i, j)-\left(r_{i}+r_{j}\right)$
where

$$
r_{i}=\frac{1}{|L|-2} \sum_{k} d(i, k)
$$

"Corrected" average distance of i from all other nodes

Theorem: if $D(i, j)$ is minimum among all pairs of leaves, then i and j are neighbors in the tree

Neighbor Joining algorithm

- Set \angle to contain all leaves Iteration:

$$
\begin{aligned}
r_{i} & =\frac{1}{L \mid-2} \sum_{k} d(i, k) \\
\Delta(i, j) & =d(i, j)-\left(r_{i}+r_{j}\right)
\end{aligned}
$$

- Choose i, j such that $D(i, j)$ is minimum
- Create new node k, and set

$$
\begin{aligned}
& d(i, k)=\left(d(i, j)+r_{i}-r_{j}\right) / 2 \\
& d(j, k)=\left(d(i, j)+r_{j}-r_{i}\right) / 2 \\
& d(k, m)=(d(i, m)+d(j, m)-d(i, j)) / 2
\end{aligned}
$$

remove i,j from L, and add k Update r, D

Time: $O\left(n^{3}\right)$
Ex.

Termination: when $/ L /=2$ connect the two nodes Thm: Opt tree guaranteed if distances match a tree Does not assume a clock

Neighbor Joining Algorithm

		A	B	C	D
	A	-	17	21	27
	B		-	12	18
	C			-	14
	D				-

Neighbor Joining Algorithm

		A	B	C	D
	A	-	17	21	27
	B		-	12	18
	C			-	14
	D				-

i	r_{i}
\mathbf{A}	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

Neighbor Joining Algorithm

		A	B	C	D
	A	-	17	21	27
	B		-	12	18
	C			-	14
	D				-

i	r_{i}
\mathbf{A}	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	-	-39	-35	-35
\mathbf{B}		-	-35	-35
\mathbf{C}			-	-39
\mathbf{D}				-
$\mathbf{d}_{\mathbf{i j}}-\mathbf{r a}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}$				

Neighbor Joining Algorithm

		A	B	C	D
	A	-	17	21	27
	B		-	12	18
	C			-	14
	D				-

i	r_{i}
\mathbf{A}	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	-	-39	-35	-35
\mathbf{B}		-	-35	-35
\mathbf{C}			-	-39
\mathbf{D}			-	
$\mathbf{d}_{\mathbf{i j}}-\mathbf{r}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}$				

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

i	r_{i}
\mathbf{A}	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	-	-39	-35	-35
\mathbf{B}		-	-35	-35
\mathbf{C}			-	-39
\mathbf{D}				-
$\mathbf{d}_{\mathbf{i j}}-\mathbf{r a}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}$				

Neighbor Joining Algorithm

		A	B	C	D
	A	-	17	21	27
	B		-	12	18
	C			-	14
	D				-

i	r_{i}
A	$(17+21+27) / 2=32.5$
B	$(17+12+18) / 2=23.5$
C	$(21+12+14) / 2=23.5$
D	$(27+18+14) / 2=29.5$

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	-	-39	-35	-35
\mathbf{B}		-	-35	-35
\mathbf{C}			-	-39
\mathbf{D}				-
$\mathbf{d}_{\mathbf{i j}}-\mathbf{r a}_{\mathbf{i}}-\mathbf{r}_{\mathbf{j}}$				

$$
\begin{aligned}
\mathrm{v}_{\mathrm{C}} & =0.5 \times 14+0.5 \times(23.5-29.5) \\
\mathrm{v}_{\mathrm{D}} & =0.5 \times 14+0.5 \times(29.5-23.5)
\end{aligned}
$$

Neighbor Joining Algorithm

		A	B	C	D	X
	A	-	17	21	27	
	B		-	12	18	
	C			-	14	
	D				-	
d	X					-

Neighbor Joining Algorithm

Neighbor Joining Algorithm

		A	B	X
	A	-	17	17
	B		-	8
	X			-

$$
\begin{aligned}
\mathrm{d}_{\mathrm{xA}} & =\left(\mathrm{d}_{\mathrm{CA}}+\mathrm{d}_{\mathrm{DA}}-\mathrm{d}_{\mathrm{CD}}\right) / 2 \\
& =(21+27-14) / 2 \\
& =17 \\
\mathrm{~d}_{\mathrm{xB}} & =\left(\mathrm{d}_{\mathrm{CB}}+\mathrm{d}_{\mathrm{DB}}-\mathrm{d}_{\mathrm{CD}}\right) / 2 \\
& =(12+18-14) / 2 \\
& =8
\end{aligned}
$$

Neighbor Joining Algorithm

		A	3	X	i	r_{i}
	A		17	17	A	$(17+17) / 1=34$
	B			8	B	$(17+8) / 1=25$
	X			-	X	$(17+8) / 1=25$

Neighbor Joining Algorithm

		A	B	X
	A	-	17	17
	B		-	8
	X			-

i	r_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

\[

\]

Neighbor Joining Algorithm

		A	B	X
	A	-	17	17
	B		-	8
	X			-

i	r_{i}
A	$(17+17) / 1=34$
B	$(17+8) / 1=25$
X	$(17+8) / 1=25$

$$
\underbrace{C}_{x} 10
$$

Neighbor Joining Algorithm

	\mathbf{A}	\mathbf{B}	X			
\mathbf{A}	-	17	17			
B		-	8			
X			-	\quad	\mathbf{i}	r_{i}
:---:	:---:					
\mathbf{A}	$(17+17) / 1=34$					
\mathbf{B}	$(17+8) / 1=25$					
X	$(17+8) / 1=25$					

$$
\begin{array}{l|lll|}
& \mathbf{A} & \mathrm{B} & \mathrm{X} \\
\hline \mathbf{A} & - & -42 & -28 \\
\mathrm{~B} & & - & -28 \\
\mathrm{X} & & & - \\
\hline
\end{array}
$$

$d_{i j}-r_{i}-r_{j}$

$\mathrm{v}_{\mathrm{A}}=0.5 \times 17+0.5 \times(34-25)=13$ $\mathrm{v}_{\mathrm{D}}=0.5 \times 17+0.5 \times(25-34)=4$

Neighbor Joining Algorithm

		A	B	X	Y
	A	-	17	17	
	B		-	8	
	X			-	
	Y				

${ }^{13} \underbrace{B}_{4}$

Neighbor Joining Algorithm

		A	B	X	Y
	A	-	17	17	
	B		-	8	
	X			-	4
	Y				

$$
\begin{aligned}
d_{\mathrm{yx}} & =\left(d_{\mathrm{Ax}}+d_{\mathrm{Bx}}-d_{A B}\right) / 2 \\
& =(17+8-17) / 2 \\
& =4
\end{aligned}
$$

Neighbor Joining Algorithm

		\mathbf{X}	\mathbf{Y}
	$\frac{\omega}{\omega}$	\mathbf{X}	-
$\frac{\square}{\alpha}$	\mathbf{Y}		-

$$
\begin{aligned}
\mathrm{d}_{\mathrm{YX}} & =\left(\mathrm{d}_{\mathrm{AX}}+\mathrm{d}_{\mathrm{BX}}-\mathrm{d}_{\mathrm{AB}}\right) / 2 \\
& =(17+8-17) / 2 \\
& =4
\end{aligned}
$$

Neighbor Joining Algorithm

	A	B	C	D
A	-	17	21	27
B		-	12	18
C			-	14
D				-

Naruya Saitou

- Division of Population Genetics, National Institute of Genetics
\& Department of Genetics,
Graduate University for
Advanced Studies
(Sokendai)
Mishima, 411-8540, Japan

Character Based Methods

Inferring a Phylogenetic Tree

Generic problem: Optimal Phylogenetic

 Tree:- Input:
- n species,
- set of characters,
- for each species, the state of each of the characters.
- (parameters)
- Goal: find a fully-labeled phylogenetic tree that best explains the data. (maximizes a target function).

Assumptions:

- characters are mutually independent

A Simple Example

- Five species, three have ' C ' and two ' T ' at a specified position.
- A minimal tree has one evolutionary change:

Inferring a Phylogenetic Tree

Naive Solution - Enumeration:

- No. of non-isomorphic, labeled, binary, rooted trees, containing n leaves: $\quad(2 n-3)!!=\Pi_{i=3 \ldots n}(2 i-3)$
- Unrooted: (2n-5)!!

Parsimony

- Goal: explain data with min. no. of evolutionary changes ("mutations", or mismatches)
- Parsimony: $S(T) \equiv \sum_{j} \sum_{\{v, u\} \in(T)}\left|\left\{j: v_{j} \neq u_{j}\right\}\right|$
- "Small parsimony problem":
- Input: leaf sequences + a leaf-labeled tree T
- Goal: Find ancestral sequences implying minimum no. of changes (most parsimonious)
- "Large parsimony problem":
- Input: leaf sequences
- Gaol: Find a most parsimonious tree (topology, leaf labeling and internal seqs.)

Algorithm for the Small Parsimony Problem (Fitch `71)

- Consider each site in a sequence separately
- Initialization: scan T in post-order, assign:
- leaf vertex m : $\quad S_{m}=\{s$ tate at node $m\}$
- internal node m with children /, r :

$$
S_{m}=\left\{\begin{array}{lll}
S_{1} \cup S_{r} & \text { if } S_{\cap} \cap S_{r}=\phi & \text { (i) } \\
S_{\cap} \cap S_{r} & \text { o/w } & \text { (ii) } \tag{ii}
\end{array}\right.
$$

- Solution Construction: scan tree in preorder, choose:
- for the root choose $x \in S_{\text {root }}$
- at node m with parent k (already constructed pick same state as k if possible; olw - pick arbitrarily

Fitch's Alg for small parsimony

Shamir nRo © GC

Walter Fitch

May 21, 1929 - March 10, 2011

- One of the most influential evolutionary biologists in the world, who established a new scientific field: molecular
phylogenetics. He was a member in the National Academy of Sciences, the American Academy of Arts and Sciences and the American Philosophical Society. He co-founded and was the first president of the Society for Molecular Biology, which established the annually awarded Fitch Prize.
Additionally, he was a founding editor of Molecular Biology and Evolution.
- Fitch was at the University of California, Irvine, until his death,
 preceded by three years at the University of Southern California and 24 years University of WisconsinMadison.

Weighted Small Parsimony

kstates S_{1}, \ldots, S_{k}

- Need: $S_{k}(x)$ - best cost for the subtree rooted at x if state at x is k
- For leaf x,
$S_{k}(x)=0 \quad$ if state of x is k
∞
olw
- Scan T in postorder. At node a with children I, r
- $S_{k}(a)=\min _{m}\left(S_{m}(l)+C_{m k}\right)+\min _{m}\left(S_{m}(r)+C_{m k}\right)$
- $\mathrm{Opt}=\mathrm{min}_{\mathrm{m}}\left(\mathrm{S}_{\mathrm{m}}(\mathrm{root})\right)$

[^0]Shamir nRo © GC

Large Parsimony Problem

Input: $n \times m$ matrix M :

- $M_{i j}=$ state of $j^{\text {th }}$ character of species i.
- M_{i}. = label of i (all labels are distinct)

Goal:
Construct a phylogenetic tree T with n leaves and a label for each node, s.t.

- 1-1 correspondence of leaves and labels
- cost of tree is minimum.
- NP-hard

Branch \& Bound (Hendy-Penny '89)

In Ex.

- enumerate all unrooted trees with increasing no. of leaves
Note: cost of tree with all leaves \geq cost of subtree with some leaves pruned (and same labeling)
=> If cost of subtree \geq best cost for full tree so far, then: can prune (ignore) all refinements of the subtree.
enumeration \& pruning can be done in $O(1)$ time per visited subtree.

Each internal edge defines 4 sub-trees:
Can swap two such non-adjacent sub-trees

Nearest Neighbor Interchanges

In Ex.

- handles n-labeled trees
- T and T' are neighbors if one can get T' by following operation on T :

- Use the neighborhood structure on the set of solutions (all trees) via hill climbing, annealing, other heuristics...

Probabilistic approaches

Likelihood of a Tree

- Given:
- n aligned sequences $M=X^{1}, \ldots, X^{n}$
- A tree T, leaves labeled with X_{1}^{1}, \ldots, X^{n}
- reconstruction t.
- labeling of internal nodes
- branch lengths
- Goal: Find optimal reconstruction t^{*} : One maximizing the likelihood $P\left(M / T, t^{*}\right)$

Likelihood (2)

- We need a model for computing $P\left(M / T, t^{*}\right)$
- Assumptions:
- Each character is independent
- The branching is a Markov process:
- The probability that a node x has a specific label is only a function of the parent node y and the branch length t between them.
- The probabilities $P(x / y, t)$ are known

Modeling phylogeny as a Bayesian network

- BN with variables $\times 1-\mathrm{x} 5$ and local distributions $P\left(x_{i} \mid P a_{i}, t_{i}\right)=P_{P a i \rightarrow x_{i}}\left(t_{i}\right)$
$P\left(x^{1}, \ldots, x^{5} \mid T, t^{*}\right)=$
$P\left(x^{1} \mid x^{4}, t_{1}\right) P\left(x^{2} \mid x^{4}, t_{2}\right) P\left(x^{3} \mid x^{5}, t_{3}\right) P\left(x^{4} \mid x^{5}, t_{4}\right) P\left(x^{5}\right)$

$$
P(\text { root }) \prod_{\text {edge } u \rightarrow v} p_{u \rightarrow v}\left(t_{u v}\right)
$$

Calculating the Likelihood - General equation

Assume that the branch lengths $t_{u v}$ are known.
Let $\overline{\mathrm{t}}$ be the branch lengths and R the rest of the reconstruction $=$ the internal node labels

$$
\mathrm{P}(\mathrm{M} \mid \mathrm{T}, \overline{\mathrm{t}})=\prod_{\text {character } j}\left\{\sum_{\text {reconstrcuction } R} P\left(M_{\bullet j}, R \mid T, \bar{t}\right)\right\}
$$

$$
\begin{aligned}
& \qquad \prod_{\text {character } j}\left\{\sum_{\text {reconstrcuction } R}\left(P(\text { root }) \prod_{\text {edge }} p_{u \rightarrow v}\left(t_{u v}\right)\right)\right\} \\
& \begin{array}{l}
\text { Independence } \\
\text { of sites }
\end{array} \\
& \begin{array}{l}
\text { Markov property } \\
\text { independence of }
\end{array}
\end{aligned}
$$

Additional Assumed Properties

-Additivity:

$$
P_{x \rightarrow z}(s+t)=\sum_{b} P_{x \rightarrow b}(s) P_{b \rightarrow z}(t)
$$

-Reversibility (symmetry):

$$
P(x) P_{x \rightarrow y}(t)=P(y) P_{y \rightarrow x}(t)
$$

-Provable under broad and reasonable assumptions

- Allows one to freely move the root

Efficient Likelihood Calculation (Felsenstein '73)

Use dynamic programming
Define $S_{j}(a, v)=\operatorname{Pr}\left(\right.$ subtree rooted in $\left.v / v_{j}=a\right)$

Initialization:

\forall leaf v set $S_{j}(a, v)=1$ if v is labeled by a, else $S_{j}(a, v)=0$

Recursion:

Traverse the tree in postorder: for each node v with children u and w, for each state x

$$
S_{j}(x, v)=\left(\sum_{y} S_{j}(y, u) p_{x \rightarrow y}\left(t_{v u}\right)\right)\left(\sum_{y} S_{j}(y, w) p_{x \rightarrow y}\left(t_{v w}\right)\right)
$$

Finding Optimal Branch lengths

Optimizing the length of a single branch z-v can be done using standard optimization techniques

$$
\log L=\sum_{j=1, \ldots, m} \log \sum_{x, y} S_{j}^{z}(y, v) P_{x \rightarrow y}(t) P(x) S_{j}^{v}(x, z)
$$

- Under the symmetry assumption, each node can be made (temporarily) the root
- To heuristically optimize all the branch lengths: repeatedly optimize one branch at a time
- No guaranteed convergence, but often works

HOW DO WE FIGURE OUT THE TIMES?

Calculating $P_{u \rightarrow v}\left(t_{u v}\right)$

Jukes-Cantor Model (J-K'69)

- Assumptions:
- Each base in sequence has equal chance of changing
- Changes to other 3 bases with equal probability
- Characteristics
- Each base appears with equal frequency in DNA
- The quantity a is the rate of change
- During each infinitesimal time Δt a substitution occurs with probability $3 a \Delta t$

Jukes-Cantor Model (J-K'69)

Jukes-Cantor Model (J-K'69)

- prob. that the nucleotide remains unchanged over t time units:

$$
P_{\mathrm{same}}=\frac{1}{4}+\frac{3}{4} e^{-4 a \epsilon}
$$

- Probability of specific change: $P_{A \rightarrow B}=\frac{1}{4}-\frac{1}{4} e^{-4 a}$
- Probability of change: $\quad P_{\text {change }}=\frac{3}{4}-\frac{3}{4} e^{-4 a t}$
- Note: For $t \rightarrow \infty \quad \mathrm{P}_{\text {change }} \rightarrow \frac{3}{4}$

Charles Cantor

Boston University

 Professor Emeritus, Biomedical Engineering Professor of Pharmacology, School of MedicinePh.D., Biophysical Chemistry, University of California, Berkeley

CSO Sequenom, San Diego, California.

Other Models

- Kimura's 2-parameter model:
- A,G - purines; C,T - pyrmidines
- Two different rates

- purine-purine or pyrmidine-pyrimidine (transitions)
- purine-pyrmidine or pyrmidine-purine (transversions)
- Felsenstein '84 and Yano, Hasegawa \& Kishino '85 extend the Kimura model to asymmetric base frequencies.

C
T
adenAre suine

FIN

[^0]: Over the past 30 years, Sankoff formulated and contributed to many of the fundamental problems in computational biology.
 In sequence comparison, he introduced the quadratic version of the
 Needleman-Wunsch algorithm, developed the first statistical test for alignments, initiated the study of the limit behavior of random sequences with Vaclav Chvatal and described the multiple alignment problem, based on minimum evolution over a phylogenetic tree. In the study of RNA secondary structure, he developed algorithms based on general energy functions for multiple loops and for simultaneous folding and alignment, and performed the earliest studies of parametric folding and automated phylogenetic filtering.
 Sankoff and Robert Cedergren collaborated on the first studies of the evolution of the genetic code based on tRNA sequences. His contributions to phylogenetics include early models for horizontal transfer, a general approach for optimizing the nodes of a given tree, a method for rapid bootstrap calculations, a generalization of the nearest neighbor interchange heuristic, various constraint, consensus and supertree problems, the computational complexity of several phylogeny problems with William Day, and a general technique for phylogenetic invariants with Vincent Ferretti. Over the last fifteen years he has focused on the evolution of genomes as the result of chromosomal rearrangement processes. Here he introduced the computational analysis of genomic edit distances, including parametric versions, the distribution of gene numbers in conserved segments in a random model with Joseph Nadeau, phylogeny based on gene order with Mathieu Blanchette and David Bryant, generalizations to include multigene families, including algorithms for analyzing genome duplication and hybridization with Nadia El-Mabrouk, and the statistical analysis of gene clusters with Dannie Durand. Sankoff is also well known in linguistics for his methods of studying grammatical variation and change in speech communities, the quantification of discourse analysis and production models of bilingual speech

