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Phylogeny

* Phylogeny: the ancestral relationship
of a set of species.

- Represented by a phylogenetic tree

*( branch H’

Leaves - contemporary
Internal nodes - ancestral
Branch length - distance between sequences
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Life Persists
to the present

me

Life Began
More than three
billion years ago
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Classical vs. Modern
Phylogeny schools
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Page from Darwin's notebooks around July 1837 showing the first-known sketch by Charles
Darwin of an evolutionary tree describing the relationships among groups of organisms. 8
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Trees and Models

* rooted / unrooted
* fopology / distance
* binary / general

To root or not to root?

* Unrooted tree: phylogeny without
direction.




Rooting an Unrooted Tree

* We can estimate the position of the root
by introducing an outgroup:
- a species that is definitely most distant from
all the species of interest
Proposed root

\ (o

Aardvark Bison Chimp Dog Elephant
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HOW DO WE FIGURE OUT
THESE TREES? TIMES?




Dangers of Paralogs
- Right species topology: (1,(2,3))

Sequence Homology Caused By:
*Orthologs - speciation,

*Paralogs - duplication

*Xenologs - horizontal (e.g., by virus)

Gene Duplication

Speciation events

Dangers of Paralogs

- Right species distance: (1,(2,3))
» If we only consider 1A, 2B, and 3A:
((1.3).2)

Gene Duplication

Speciation events

1A 2A 3A 3B 2B 1B




Type of Data

- Distance-based
- Input: matrix of distances between species

- Distance can be
* fraction of residue they disagree on,
« alignment score between them,

- Character-based

- Examine each character (e.g., residue)
separately

b oo
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Distance Based Methods
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Tree based distances

- d(i,j)=sum of arc
lengths on the R O
paTh iéej E 17 024 ol 021 0

- Given d, can we
find
- an exactly
matching tree?

- An approximately

y» matching tree?
S shaniriRo© GG

The Problem
The least squares criteria
Input: matrix d of distances between
species
Goal: Find a tree with leaves=chars and edge
distances, matching d best.

Quality measure: sum of squares:

SSAT) = szj(dij ~1;)°

t;;: distance in the tree! /7
w;;: pair weighting. Options: (1)=1 (2) 1/d;; (3) 1/d;?

§ |
5~ NP=hard (Day '86). We'll describe common heuristics




UPGMA CIUSTer‘ing (Sokal & Michener 1958)

(Unweighted pair-group method with arithmetic mean)
» Approach: Form a tree; closer species according
to input distances should be closer in the tree

* Build the tree bottom up, each time merging two
smaller trees

- All leaves are at same distance from the root

AL AVA S
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UPGMA Algorithm




UPGMA Algorithm
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UPGMA Algorithm
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UPGMA Algorithm
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UPGMA Algorithm
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Efficiency lemma

Approach: gradually form clusters: sets of species
Repeatedly identify two clusters and merge them.

For clusters C ¢, define the distance between
them to be the aver'age dist betw their members:

(/' J)_IC'HC' |sz(P7)

pecigec;

Lemma: If Cy is formed by merging C; and C; then
for every other cluster C,
d(C.C) = (IGI*d(C,.C) + IC;1*d(C;.€)) 7 (1G] + [€1)

- Can update distances between clusters in time prop. fo the
number of clusters.

%‘ﬂ Shamir nRo © GC
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UPGMA algorithm

Initialize: each node is a cluster Ci={i}. d(Ci,Cj)=d(i,j) set height(i) = O Vi
Iterate:
- Find Ci,Cj with smallest d(Ci,Cj)
Infroduce a new cluster node Ck that replaces Ci and Cj
//Ck represents all the leaves in clusters Ci and Cj
Introduce a new tree node Aij with height(Aij) = d(Ci,Cj)/2
// d(CiCj) is the average dist among leaves of Ci and Cj
Connect the corresponding free nodes Ci,Cj to Aij with
length(Ci, Aij) = height(Aij) - height(Ci)
length(Cj,Aij) = height(Aij) - height(Cj)
For all other Cl:
d(Ck.c) = (Ici*d(Cicl) + [CjI*d(Cj.c) / (ICil + ICjl)
//dist to any old cluster is the ave dist between its leaves and
leaves in Ci, Cj

Time: Naive: O(n3); Can show O(n? logn) (ex.) and O(n?)

(harder ex.) o
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UPGMA alg (2)

* Orange nodes represent the groups of
nodes that they replaced, and maintain
the average dist of the set from other
leaf nodes/clusters

A1 2345

h12 T 123

$

\;? SERRORSIGE, 09

Molecular Clock

+ UPGMA assumes the tree has equal leaf-root
distances => common uniform clock. Such tree is
called (a particular type of) ultrametric

True tree Distance matrix UPGMA tree
A B C D
A Al 0 17 21 27 B C D A

D
Yl B C 10‘_—_:}131701218@6 65 |8 |10833
./ 2
3 e 3 Cl21 12 0 14 2.833'11‘—‘

D27 18 14 0

 Works reasonably well for nearby species

% 29




Additivity
- An additivity assumption: distances
between species are the sum of distances
between intermediate nodes (even if the
tree is not ultrametric)

Kk
B d(/,j)=a+b

b j d(/,k)=a+c
; d(j,k)=b+c

i
If the distance matrix is an exact reflection of a true
" tree, then additivity holds
‘,‘Rﬂ Shamir nRo © GC
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Consequences of Additivity

« Suppose input distances are additive
* For any three leaves

d(i,j)=a+b
d(iim)=a+c
d(j,m)=b+c

*+ Thus d(i,k)=%(d(i,m)+d(i,j)—d(m,j))

31

A, ) =%<d<i,m>+d<j,m>—d<i, M

‘,g‘ﬂ Shamir nRo © GC




Consequences of Additivity IT

+ If we can identify neighbor leaves, then
can use pairwise distances to reconstruct
the tree:

* Remove neighbors i, j from the leaf set

- Add k i

* Set dyy= (diy + dj -d;)/2 m
di= dip-dim =(diy - djpm * dij)/z k

y Canwe find neighbor leaves? . b,
%.? Shamir nRo © GC J N

Closest pairs may not be

neighbors!
» Closest pair: k and j, but they are not
neighbors ;
4




Neighbor Joining (saitou-Nei‘87)

where
_ “C ted”
= m 2 AR e e
other nodes

Theorem: if D(i,j)is minimum among all pairs of
leaves, then /and j are neighbors in the tree

35
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Neighbor Joining algorithm

* Set L to contain all leaves " —mz G4
Iteration: O(.)=d(.j))-(r+1)

* Choose /,j such that D(i,j)is minimum
- Create new node 4, and set
d(i,k)=(d(i, j)+1,—1,)/2
d(j,k)y=d@, j)+r,—r)/2
d(k,m)=(d(i,m)+d(j,m)—d(, j))/2 ]

- remove /,f from L, and add &
- Update r, D Ex.

- Termination: when /L/ =2 connect the two nodes
AThm: Opt tree guaranteed if distances match a tree
SDvesnot assume a clock




True tree

An example

Distance matrix

C D
6 |8
33 T

UPGMA tree

Neighbor Joining Algorithm




Neighbor Joining Algorithm

(17+21+27) /2=32.5
(17+12+18) /2=23.5
(21+12+14) /2=23.5
(27+18+14) /2=29.5

Neighbor Joining Algorithm
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(17+12+18) /2=23.5
(21+12+14) /2=23.5
(27+18+14) /2=29.5




Neighbor Joining Algorithm
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Neighbor Joining Algorithm

(17+21+27) /2=32.5
(17+12+18) /2=23.5
(21+12+14) /2=23.5
(27+18+14) /2=29.5

0.5 x 14 + 0.5 x (23.5-29.5)
0.5 x 14 + 0.5 x (29.5-23.5)

Neighbor Joining Algorithm




Neighbor Joining Algorithm

dyp = (dep + dpy — cn)/z

(21 + 27 - 14)/2
17

dyp (deg + dpy — dgp) /2
12 + 18 - 14)/2

(
8

Neighbor Joining Algorithm

dyp = (dep + dpy — cn)/z

(21 + 27 - 14)/2
17

dys (deg + dpy — dgp) /2
12 + 18 - 14)/2

(
8




Neighbor Joining Algorithm

Neighbor Joining Algorithm

(17+8) /1 25




Neighbor Joining Algorithm

Neighbor Joining Algorithm

(17+8) /1
(17+8) /1

0.5 x 17 + 0.5 x (34-25)
0.5 x 17 + 0.5 x (25-34)




Neighbor Joining Algorithm

Neighbor Joining Algorithm

dyy (dpy + dpy — d‘AE)/Z
(17 + 8 - 17)/2
4




Neighbor Joining Algorithm

dyy (dpy + dpy - dm)/z
(17 + 8 - 17)/2
4

Neighbor Joining Algorithm

dyy (dpy + dpy — dm)/z
(17 + 8 - 17)/2
4




Joining Algorithm

Naruya Saitou

« Division of Population
Genetics, National Institute
of Genetics
& Department of Genetics,
Graduate University for
Advanced Studies
(Sokendai)

Mishima, 411-8540, Japan
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Character Based Methods

58

Inferring a Phylogenetic Tree

Generic problem: Optimal Phylogenetic
Tree:

+ Input:
- nspecies,
- set of characters,

- for each species, the state of each
of the characters.

- (parameters)

* Goal: find a fully-labeled phylogenetic
tree that best explains the data.
(maximizes a target function).

Assumptions:
b characters are mutually independent
7 4 species evolve independently

CAGGTA
CAGACA
: CGGGTA
3 INECCHE
TGCGTA

mooOw>

A'-B-AE D

59




A Simple Example

- Five species, three have 'C' and two ‘T  at a
specified position.

A minimal tree has one evolutionary change:

B

b

b

ToC

o

T

W un
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Inferring a Phylogenetic Tree

Naive Solution - Enumeration:

* No. of non-isomorphic, labeled, binary, rooted
trees, containing nleaves:  (2n -3)Il = 11,3 ,(2i-3)

+ Unrooted: (2n-5)!!

for n=20 ;

1

A

Each new species
adds 2 new edges

this is 1021!/\
a b
a b CliFa CL.SaD tulD (s Pe)

Adding 3rd species

W
Shamir nRo © GC
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Parsimony

* Goal: explain data with min. no. of evolutionary
changes ("mutations”, or mismatches)

© Parsimony: S(T) = 2, 2, ey I vieud/

- "Small parsimony problem™:
- Input: leaf sequences + a leaf-labeled tree T

- Goal: Find ancestral sequences implying minimum
no. of changes (most parsimonious)

- “Large parsimony problem"”:
- Input: leaf sequences

- Gaol: Find a most parsimonious tree (topology,
leaf labeling and internal segs.)

62
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Algorithm for the Small Parsimony
Problem (Fitch ~ 71)

+ Consider each site in a sequence separately
+ Initialization: scan T in post-order, assign:
- leaf vertex m: S,,~{state at node m}
- internal node m with children / r:
Sy { SLUS, if $S0S,.=¢ (i)
SNS, o/w (i7)
+ Solution Construction: scan tree in preorder,
choose:
- for the root choose x€5,,,;
- at node mwith parent k (already constructed
pick same state as k if possible; o/w - pick

arbitrarily
time: O(mn-k), 6

4 :
N Shamir nRo © GC k = #states s; n=#nodes; m=#sites




Fitch's Alg for small parsimony

64
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Walter Fitch

May 21, 1929 - March 10, 2011

One of the most influential evolutionar
biologists in the world, who establishe
a new scientific field: molecular
thylogeneﬁcs. He was a member in the
ational Academy of Sciences, the
American Academy of Arts and
Sciences and the American Philosophical
Society. He co-founded and was the -
first president of the Society for -
Molecular Biology, which established the
annually awarded Fitch Prize. e
Additionally, he was a founding editor of
Molecular Biology and Evolution.

Fitch was at the University of

California, Irvine, until his death,

Br‘eceded by three years at the
niversifbof Southern California and

24 years

Madison.

i o
Shamir nRo © GC

niversity of Wisconsin-
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Weighted Small Parsimony

kstates S;,..., S, In Ex.
C;; = cost of changing from state 7 to j
Algorithm (Sankoff-Cedergren '88):

* Need: S, (x) - best cost for the subtree
rooted at x if state at x is k

« For leaf x,
Sx) = 0

/f state of x is k
o/w

+ Scan Tin postorder. At node a with
children /, r

« Sla) = min, (5, ()+C,) + min,(S,(r)+C,)

+ Opt=min, (S, (root))

i o
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time: O(n-k) 66

David
Sankoff

i o
Shamir nRo © GC

Over the past 30 years, Sankoff formulated and contributed to many of
the fundamental problems in computational biology.

In sequence comparison, he introduced the quadratic version of the
Needleman-Wunsch algorithm, developed the first statistical test for
alignments, initiated the study of the limit behavior of random
sequences with Vaclav Chvatal and described the multiple alignment
problem, based on minimum evolution over a phylogenetic tree. In the
study of RNA secondary structure, he developed algorithms based
on general energy functions for multiple loops and for simultaneous
folding and alignment, and performed the earliest studies of parametric
folding and automated phylogenetic filtering.

Sankoff and Robert Cedergren collaborated on the first studies of the
evolution of the genetic code based on tRNA sequences. His
contributions to phylogenetics include early models for horizontal
transfer, a general approach for optimizing the nodes of a given tree, a
method for rapid bootstrap calculations, a generalization of the nearest
neighbor interchange heuristic, various constraint, consensus and
supertree problems, the computational complexity of several phylogeny
problems with William Day, and a general technique for phylogenetic
invariants with Vincent Ferretti. Over the last fifteen years he has
focused on the evolution of genomes as the result of chromosomal
rearrangement processes. Here he introduced the computational
analysis of genomic edit distances, including parametric versions, the
distribution of gene numbers in conserved segments in a random
model with Joseph Nadeau, phylogeny based on gene order with
Mathieu Blanchette and David Bryant, generalizations to include multi-
gene families, including algorithms for analyzing genome duplication
and hybridization with Nadia El-Mabrouk, and the statistical analysis of
gene clusters with Dannie Durand. Sankoff is also well known in
linguistics for his methods of studying grammatical variation and
change in speech communities, the quantification of discourse analysis
and production models of bilingual speech.




Large Parsimony Problem

Input: n x m matrix M:

* M, = state of ™ character of species /.

* M;. = label of 7 (all labels are distinct)

Goal:
Construct a phylogenetic tree T with n leaves and a
label for each node, s.t.

* 1-1 correspondence of leaves and labels
+ cost of tree is minimum.

4 ° NP-hard 69

Branch & Bound (Hendy-Penny '89)

In Ex.

- enumerate all unrooted trees with
increasing no. of leaves

Note: cost of tree with all leaves > cost of subtree
with some leaves pruned (and same labeling)

=> If cost of subtree > best cost for full tree so far,
then: can prune (ignore) all refinements of the
subtree.

enumeration & pruning can be done in
O(1) time per visited subtree.

70
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Branch swapping In Ex

Each internal edge defines 4 sub-trees:

Can swap two such non-adjacent sub-trees

71
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Nearest Neighbor Interchanges

In Ex.
* handles n-labeled trees
+ Tand T are neighbors if one can get T by
following operation on T:
S U
R ¥
SVIRU SUIRV SRIUV

Use the neighborhood structure on the set of
solutions (all trees) via Aill c/imbing, annealing,
other heuristics... 7

Shamir nRo © GC




Probabilistic approaches

90

Likelihood of a Tree

- Given:

- naligned sequences M= XZ,... X"

- A tree T, leaves labeled with X!,...,. X"
* reconstruction 7.

- labeling of internal nodes

- branch lengths

* Goal: Find optimal reconstruction #*: One
maximizing the likelihood AM/T, +*)

91
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Likelihood (2)

- We need a model for computing AM/T,1*)
» Assumptions:
- Each character is independent

- The branching is a Markov process:

* The probability that a node x has a specific label is
only a function of the parent node y and the
branch length f between them.

- The probabilities A(x/y,1) are known

92
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Modeling phylogeny as a Bayesian network

P (xy1x5,15)

» BN with variables x1-x5 and local distributions P (x; | Pa;,1;) = P, (1;)
P(x',...,x’ |T,t*%) =
P(x' |x4,t1)P(x2 Ix4,t2)P(x3 Ixs,l,‘3)P(x4 |x5,t4)P(x5)

P(root) H Do, (t,)

edge u—>v

93
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Calculating the Likelihood - Example

Inference in a BN

L = P(A‘Ur T) = Z Z P(T) ) R’—»s(tm) ’ P-r’—»v (t-rv) ° P-v—»-u(tt'u) ’ Pt'ﬁu:(tl'wj

Calculating the Likelihood - General
equation

Assume that the branch lengths t,, are known.

Let { be the branch lengths and R the rest of
the reconstruction = the internal node labels

P(MIT,t) = H{ > P(M,j,RIT,T)}

character j ( reconstrcuction R

- T11 3 [Peoon [T pti)
character j | reconstrcuction R edge u—>v
Independence Markov property
8 of sites independence of o

% Shamir nRo © GC each branch




Additional Assumed Properties
*Additivity:

C? o
PoG+)=F P, @B Ty T

)

t

(=)
‘Reversibility (symmetry): C? (?
P(x)P_, (1) = P(y)P,_,(1) @t %@‘

‘Provable under broad and reasonable
assumptions

*Allows one to freely move the root

o >—< D¢

Efficient Likelihood Calculation
(Felsenstein '73)

Use dynamic programming

Define Si(a,v) = Pr(subtree rooted inv / vi=a)
Initialization:
V leafv set Si(a,v) = 1if vis labeled by q, else S,a,v) = 0

Recursion:

Traverse the free in postorder: for each node v with
children vand w, for each state x

s,.<x,v>=[Zs,-w,u)pm(rvu)J[ZSj<y,w>pxﬁy<z‘,bv>J C°(')“(‘:";’;'z‘;y‘
. : ' n species,
Final Soln: L=H(2Sj(x, root)P(x)j m chars,

k states

b oo
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Finding Optimal Branch lengths

\’00}1 P
¥

B ;}N——/@A |

,{\Z;,
\?_

L=> P(Blv=y)P(v =Ty |z = x,t)P(sz x)P(Alz=1x)
’ysZ(Ty, y B0 PO g (Tx,z>
o
¢ ‘>v~f‘=*z<’ B
) o o

Finding Optimal Branch lengths

Optimizing the length of a single branch z-v
can be done using standard optimization
techniques

logL= > log> Si(y,»P,_, (NP(x)S!(x,z)
j m X,y

j=1,...,

* Under the symmetry assumption, each node
can be made (temporarily) the root
* To heuristically optimize all the branch
lengths: repeatedly optimize one branch at
a time
- No guaranteed convergence, but of ten works %

N o
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HOW DO WE FIGURE OUT
THE TIMES?

Calculating P, (%)




Jukes-Cantor Model -9

* Assumptions:
- Each base in sequence has equal chance of
changing
- Changes to other 3 bases with equal probability
* Characteristics
- Each base appears with equal frequency in DNA
- The quantity a is the rate of change

- During each infinitesimal time At a
substitution occurs with probability 3aAt

102
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Jukes-Cantor Model -9

1-(3a dt) (3a dt)

[

U<—>

[

1-(3a dt) -(3adt)

103
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Jukes-Cantor Model -9

* prob. that the nucleotide remains unchanged

. . 1 3 .
over ftime units: P =Z+%e !

* Probability of specific change: r,_, =%—ie_4‘”
* Probability of change: P, =——%e

* Note: For t > x Pnge =

105
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Charles Cantor

Boston University

Professor Emeritus,
Biomedical Engineering

Professor of Pharmacology,
School of Medicine

Ph.D., Biophysical Chemistry,
University of California,
Berkeley

CSO Sequenom, San Diego,
California.

106
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Other Models

+ Kimurad's 2-parameter model:
- AG - purines; C,T - pyrmidines
- Two different rates b =

* purine-purine or pyrmidine-pyrimidine (Tr‘ansmons)
* purine-pyrmidine or pyrmidine-purine (transversions)

* Felsenstein ‘84 and Yano, Hasegawa & Kishino '85
extend the Kimura model o asymme’rr'ic base

frequencies. N 0 .
(gN \fI\NH LJI’\> H, N SN | \>
N A

N 70 . 107
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