Networks & Modules

1. Networks
2. Protein complex identification
3. Pathway identification



Networks

* Represent relations
between elements.

» Nodes — elements (towns).
 Edges — relations (roads).
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It's a Small World
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Milgram’67: six degrees of separation.



Collaboration Networks

Nodes — collaborators
(scientists)

Edges — acts of collaboration
(Joint articles)

http://www.orgnet.com/Erdos.htmi



Molecular Networks

Interaction networks
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Regulatory networks Expression networks

Nodes — molecules
Edges — interactions / similarity




The human disease network

Kwang-ll Goh***%, Michael E. Cusick'*", David Vallel, Barton Childsl, Marc Vidal**"*#*  and Albert-Laszlo Barabasi*t***

DISEASOME

disease phenome disease genome

Human Disease Network Disease Gene Network

Ataxia-telangiectasia

AR
(HDN) Perineal hypospadias (DGN)
Androgen insensitivity ATM
T-cell ymphoblastic Teukemia BRCA1
Charcot -Me.Jmh disease . .
Papillary sefous carcinoma HEXB
f.ipo.]phy Prostate canc 7
) k . r er
Sastc atax.apleg|a 'r spastic paraplegia syndrome CDH1 8sCL2
VAPB
. Qvarian cancer GARS GARS
Amyotrophic lateral .asis Sa‘{' dstane
HEXB
Spinal nv. atrophy Lymphoma
KRAS AR
Androgen insensitivity
Breast cancer LMNA ATM
ProstagQERer Perineal hypospadias BRCA?
MSHD BRIPT
Pancreatic cancer
PIK3CA
L Wilms tumor KRAS BRGAT
Wilm s tumor Breast cance: TP53 BADS4L
Ovarian sancer Spinal atrophy P53
Pancrealic cancer . LD
Papillary sefous carcinoma Sandh.nsease PR MADTL? CHEK?2
Fam.emial ‘gell lymphoblastic leukemi uf"’."’h?
ymphoblastic leukernia
VAPE PIK3CA
Charcot-Ma.om disease
Ataxia-telangiectasia CHEK? CDH1 MSH2
Amyctmphi.ra] sclerosis
Silver spastic p‘hegia syndrame EECE
Spastic at.laraplegia -
BRIP1

~1200
diseases

Fancr.nemia

~1800
genes



Drug—target network

Muhammed A Yildirimb23, Kwang-11 Goh!%2, Michael E Cusick!2, Albert-Laszlé Barabasil**® & Marc Vidall-2
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Protein-protein
Interaction Networks

* Nodes — proteins (6K).
 Edges — Interactions (40K).
 Reflect the cell’s machinery
and signlaing pathways.
e Measured by high-throughput
technologies:

— yeast two-hybrid

— cOo-Immunoprecipitation




Yeast Two-Hybrid
Transcription Activation Domain (AD)
Activator (TA) Binding Domain (BD)

Promoter Gane
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Promoter Reporter

http://www.bioteach.ubc.ca/MolecularBiology/AYeastTwoHybridAssay/



Network properties:
Degree



Why is degree important?

 Degree: #neighbors.
e Local characterization of a node.
e Indicates its centrality in the network.
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Degree Distribution

 Degree distribution P(k): probability that a node has
degree k.

* For directed graphs, two distributions: in-degree and
out-degree.

» Average degree: d =" kP(k)

k>0

* Number of edges: Nd/2.



Random Networks
N oo (Erdos/Rényi)

 Every pair of nodes Is
connected with probability p.

e Mean degree: d=(N-1)p~Np.
 Degree distribution Is binomial,
asymptotically Poisson:

e 9dX

P(k)

P(k) =

k!




Scale-Free Networks

(Barabasi&Albert'99)
* Power-law degree distribution T
P(k) oc k= k #0,c>1 Sl
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 Characterized by a small
number of highly connected
nodes, known as hubs.




Scale-Free Distribution

e A distribution p(x) that Is scale-invariant, I.e.:
p(@x)=g(@)p(x)

e |t can be shown that the only scale free
distributions are power-law distributions!!!



Are Real Networks Random
or Scale-Free?



The Internet

Nodes — routers.
Edges — physical links.

P(k) ~ k -%°
(Faloutsos et al.”99)
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Film Actors

Days of Thunder (1990)
Far and Away  (1992)
Eyes Wide Shut (1999)

10"

Nodes — actors.

Edges — joint movies. o |

~ Kk 23 -
P(k) ~ k 2

(Barabasi&Albert’99) o |

10°

10°

10"

10'

10°

10°



Protein Interaction Networks

* Nodes — proteins.
e Edges — Interactions.

P(k) ~ k -%°
(Yook et al.’04)
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Metabolic Networks

* Nodes — metabolites.
* Edges — biochemichal reactions.
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Metabolic networks from all kingdoms of life are scale-free
c=2.270.2 (Jeong et al.’00)



Why Are Real Networks
Scale-Free?



Scale-Free Model
(Bardbasi & Albert)

e Growth: nodes are constantly added.

* Preferential attachment: the probability that a
new node connects to existing ones Is proportional to
their degree.

. S
In resulting network:
_3 S go
P(k) = k

Relevance to biology?



Clustering



Clustering Coefficient
(Watts & Strogatz)

» Characterizes tendency of nodes to cluster

#{pairs of connected neighbors of v}
d(v)(d(v)-1)/2

Cv)=

C =%§C(v)

(if d(v)=0,1 then C(v) is defined to be 0)

e Liesin [0,1].



* What is C for random graphs?

Table 1: Clustering coefhicients, ', for a number of different networks; n is

the number of node, z is the mean degree, Taken from [146].
Network m z C ¢ for
measured | random graph
Internet [153] 6,374 3.8 (.24 0.000GD
World Wide Web (sites) [2] 133,127 | 35.2 (.11 0,002
power grid [192] 4,941 2.7 (L0800 0.00054
biology collaborations [140] 1,520,251 | 15.5 (LOE] IRLLLEI
mathematics collaborations [141] | 253,339 | 3.9 (.15 0.000015
film actor collaborations [149] 449,913 | 113.4 (0. 200 0.00025
company directors [149] 7,673 14.4 (.59 0.0019
word co-occurrence [90] 460,902 | T0.1 (.44 0.00015
neural network [192] 282 14.0 (.28 (.049
metabolic network [69] 315 28.3 (.59 (0.090
food web [138] 134 8.7 0.22 0.065

(Taken from Pruzlj’05)



Shortest Paths



Small World

e What is the avg. distance in a random network?

e Fact: a random network Is locally tree-like
(exponential growth of neighbors with distance)

» d' vertices on avg. are at distance i or closer from a
vertex.

e Since N~d! we have I~In N/In d — small world effect.
 Implies fast spread of information.



network type n m z 4
film actors undirected 449913 25516 482 113.43 3.48
company directors undirected 7673 55 392 14.44 4.60
math coauthorship undirected 253 339 496 489 3.92 7.57
physics coauthorship undirected 52 909 245 300 9.27 6.19
E biology coauthorship undirected 1520 251 11 803 064 15.53 4.92
; telephone call graph undirected 47 000 000 80 000 000 3.16
email messages directed 59912 36 300 1.44 4.95
email address books directed 16 881 57 029 3.38 .22
student relationships undirected h73 477 1.66 16.01
sexual contacts undirected 2 810
= WWW nd.edu directed 269 504 1497 135 5.55H 11.27
é WWW Altavista directed 203 549 046 2 130 000 000 10.46 16.18
g citation network directed 783 339 6716 198 8.57
‘é Roget’s Thesaurus directed 1022 5103 4.99 4.87
. word co-occurrence undirected 460 902 17 000 000 70.13

(Taken from Newman’03)




Module Identification



Gene/Protein Modules

* A module Is a set of genes/proteins performing a
distinct biological function.

» Characterized by a coherent behavior of its genes
w.r.t. a certain biological property.

e Examples:

— transcriptional module: a set of co-expressed genes
sharing a common function.

— protein complex: assembly of proteins that build up
some cellular machinery.

— signaling pathway: a chain of interacting proteins
propagating a signal in the cell.



Distilling
Modules
from
Networks




Modularity and Community
Structure in Networks

M.E.J Newman, PNAS 2006




Modularity of a division (Q)

Q = #(edges within groups) - E(#(edges within groups in a
RANDOM graph with same node degrees))

Trivial division: all vertices in one group

==> Q(trivial division) =0

k; = degree of node |

M =2k = 2|E]

Al =11f (1,)eE, O otherwise

Ei] = expected number of edges

between i and | in a random graph with /‘
same node degrees. \
Lemma: Eij ~ k*k;/ M Edges within groups

Q = > (Al) - ki*kj/M | 1,] In the same group)




Division into two groups

Q = >2(Al) - ki*kj/M | 1,J in the same group)

+ Suppose we have n vertices {1,...,n}

- s - {1} vector of size n.
Represent a 2-division:
- si == sj iff i and j are in the same group
- 7 (si*sj+1) = 1 if si==sj, O otherwise

- 1 ik
PER Q=g ;(Aij 17 )sisi 1)




Division into two groups (2)

Q=5 3 (Ay — ") (sis + 1)

i,J

1 since » . - Aijj =) i ki=M

1 ik
Q=3 > (A - 7 )55

ij B = the modularity matrix
1 // - symmetric
1 “ L L.
Q — §STBS where B?;j — A?;j ;’wj




Division into two groups @)

B Is symmetric = B Is diagonalizable (real eigenvalues)

B's eigenvalues B's orthonormal eigenvectors
01 2 P2 2 -+ 2 by W1, U2, - . . Up | BUY; = [

Q) = —STBS‘q = % Z Bia;

= > . azu,]
» Which vector s maximizes Q?
- clearly s ~ ul maximizes Q, but ul may not be {+1}
vector

- Heuristic: maximize the projection of s on ul (a;):
choose si= +1 if ul>0, si=-1 otherwise




Identifying protein pathways



Finding Simple Paths

Problem: Given a graph G=(V,E) and a parameter k, find a
simple path of length k in G.

* NPC by reduction from Hamiltonian path.

e Trivial algorithm runs in O(nk).

* \We will be interested In a fixed parameter algorithm
(Downey & Fellows ’92) — I.e., time Is exponential in k but
polynomial in n.




Color Coding [AYZ’95]

Problem: Given a graph G=(V,E) and a parameter k, find a
simple path with k vertices (length k-1) in G.

Algorithm: Randomly color vertices with k colors, and
find a colorful path (distinct colors).

c:V ->[1Kk];S e 214

P(v,S) = max P(u,S —{c(v
( ) u:(u,v)ek,c(u)eS—{c(v)} ( { ( )})

Main idea: only 2k color subsets vs. nk node subsets.




Coloring Example

« Two different colorings on toy graph, k=3

* Incoloring I, P(A,RGB) Is built C->BC->ABC
* Incoloring I, P(A,RGB) is built G->BG->ABG
« ABC is not colorful in coloring I



Randomization Analysis

A colorful path is simple, but a simple path
may not be colorful under a given coloring

 Solution: run multiple independent trials.

o After one trial:
Pr(Success) = k!/kk >1/ek



Color Coding [AYZ’95]

Complexity:
— Space complexity is O(2kn).
— Colorful path found by DP in O(km2X).
— O(eX) iterations are sufficient.
— Overall time is 2°0m,
— Note that the exponential part involves the

parameter only, that is, the problem is fixed
parameter tractable.




Comparison of Running Times

Path length  Color coding Exhaustive

8 435 866
9 2,149 15,120
10 11,650 --

» ~4500 vertices, ~14500 edges.

Scott et al. JCB 2005



Biologically-Motivated Constraints

Color-Coding gives an algorithmic basis, now
Introduce biologically motivated extensions.

Can introduce edge weights (confidence).

Can constrain the start or end of a path by type.
— Steffen et al. ’02: pathways from membrane to TF.

Can force the inclusion of a specific protein on the
path by ...




A) Cell wall integrity pathway in yeast
MID2 RHO1 PKC1 BCK1 MKK1/2SLT2 RLM1

000000 Avi

B) Best path of length 7 found from MID2 to RLM1 YeGST
MID2 ROM2 RHO1 PCK1 MKK1 SLT2 RLM1

00000 0¢

C) Pheromone response pathway In yeast
STE2/3 STE4/18 CDC42 STE20 STE11 STE7 FUS3 DIG1/2 STE12

000000 00O

D) Best path of length 9 found from STE2/3 to STE12
STE3 AKR1 STE4 CDC24 BEM1 STE5 STE7 KSS1  STE12

000000 00O




A Closer Look at Pheromone Response

REM1

Aggregate of all
(6-10)-length path

CDC24

STE3 STE4/1

STES0

AKR1

The real pathway (main chain):
STE2/3 STE4/18 CDC42 STE20 STE11 STE7 FUS3 DIG1/2 STE12
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