
Networks & Modules 

1. Networks 
2. Protein complex identification 
3. Pathway identification 

 



Networks 

• Represent relations 
between elements. 
• Nodes – elements (towns). 
• Edges – relations (roads).  

Node/vertex 

Edge 



It’s a Small World 

Milgram’67: six degrees of separation. 



Collaboration Networks 

Nodes – collaborators 
(scientists) 
Edges – acts of collaboration 
(joint articles) 

http://www.orgnet.com/Erdos.html 



Expression networks Regulatory networks 

Interaction networks 

Metabolic networks 

Molecular Networks 

Nodes – molecules 
Edges – interactions / similarity 
 



Construction of the diseasome bipartite network 

 ~1200 
diseases 

~1800 
genes 





Protein-protein  
Interaction Networks 

• Nodes – proteins (6K). 
• Edges – interactions (40K). 
• Reflect the cell’s machinery 
and signlaing pathways. 
• Measured by high-throughput 
technologies: 

– yeast two-hybrid 
– co-immunoprecipitation 



Yeast Two-Hybrid 

http://www.bioteach.ubc.ca/MolecularBiology/AYeastTwoHybridAssay/ 



Network properties: 
Degree  



Why is degree important? 
• Degree: #neighbors. 
• Local characterization of a node. 
• Indicates its centrality in the network. 

Jeong et al, Nature 411, 41-2, 2001 



Degree Distribution  
• Degree distribution P(k): probability that a node has 
degree k. 
• For directed graphs, two distributions: in-degree and 
out-degree. 
• Average degree:  
 

• Number of edges: Nd/2. 
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Random Networks 
(Erdös/Rényi)  

• N nodes. 
• Every pair of nodes is 
connected with probability p. 

• Mean degree: d=(N-1)p~Np.  
• Degree distribution is binomial, 
asymptotically Poisson: 
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Scale-Free Networks 
(Barabasi&Albert’99) 

• Power-law degree distribution 

• Characterized by a small 
number of highly connected 
nodes, known as hubs. 
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Scale-Free Distribution 

• A distribution p(x) that is scale-invariant, i.e.:   
p(ax)=g(a)p(x) 
• It can be shown that the only scale free 
distributions are power-law distributions!!! 



Are Real Networks Random 
or Scale-Free?  



The Internet 

Nodes – routers. 
Edges – physical links. 

P(k) ~ k -2.5 

(Faloutsos et al.’99) 



Days of Thunder (1990) 
Far and Away     (1992)  
Eyes Wide Shut  (1999) 

Film Actors 

Nodes – actors. 
Edges – joint movies. 

P(k) ~ k -2.3 

(Barabasi&Albert’99) 



Protein Interaction Networks 

• Nodes – proteins. 
• Edges – interactions. 

P(k) ~ k -2.5 

(Yook et al.’04) 



Metabolic Networks 
• Nodes – metabolites. 
• Edges – biochemichal reactions. 

Metabolic networks from all kingdoms of life are scale-free 
c=2.2±0.2 (Jeong et al.’00) 



Why Are Real Networks 
Scale-Free?  

 



Scale-Free Model  
(Barábasi & Albert) 

• Growth: nodes are constantly added. 
• Preferential attachment: the probability that a 
new node connects to existing ones is proportional to 
their degree.  
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In resulting network: 

Relevance to biology? 



Clustering  



Clustering Coefficient 
(Watts & Strogatz) 

• Characterizes tendency of nodes to cluster 
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(if d(v)=0,1 then C(v) is defined to be 0) 
 
• Lies in [0,1]. 



(Taken from Pruzlj’05) 

• What is C for random graphs? 



Shortest Paths  



Small World  
• What is the avg. distance in a random network? 
• Fact: a random network is locally tree-like 
(exponential growth of neighbors with distance) 
• di vertices on avg. are at distance i or closer from a 
vertex. 
• Since N~dl we have l~ln N/ln d – small world effect. 
• Implies fast spread of information. 



(Taken from Newman’03) 



Module Identification 



Gene/Protein Modules  
• A module is a set of genes/proteins performing a 
distinct biological function. 
• Characterized by a coherent behavior of its genes 
w.r.t. a certain biological property. 
• Examples:  

– transcriptional module: a set of co-expressed genes 
sharing a common function. 
– protein complex: assembly of proteins that build up 
some cellular machinery. 
– signaling pathway: a chain of interacting proteins 
propagating a signal in the cell. 



Distilling 
Modules 

from 
Networks 



Modularity and Community 
Structure in Networks 

 
M.E.J Newman, PNAS 2006 



Modularity of a division (Q) 
Q = #(edges within groups) - E(#(edges within groups in a  
                                   RANDOM graph with same node degrees)) 
Trivial division: all vertices in one group 
==> Q(trivial division) = 0 

Edges within groups 

ki = degree of node i 
M = ∑ki = 2|E| 
Aij = 1 if (i,j)∈E,  0 otherwise 
Eij = expected number of edges 
between i and j in a random graph with 
same node degrees. 
Lemma: Eij  ≈ ki*kj / M 

Q = ∑(Aij - ki*kj/M | i,j in the same group) 



Division into two groups 
 

• Suppose we have n vertices {1,...,n} 
• s - {±1} vector of size n.  

Represent a 2-division: 
– si == sj iff i and j are in the same group 
– ½ (si*sj+1) = 1 if si==sj, 0 otherwise 
 

• ==> 

Q = ∑(Aij - ki*kj/M  | i,j in the same group) 



Division into two groups (2) 

Since 

where 

B = the modularity matrix 
       - symmetric 
 



Division into two groups (3) 

• Which vector s maximizes Q?  
– clearly s ~ u1 maximizes Q, but u1 may not be {±1} 

vector  
– Heuristic: maximize the projection of s on u1 (a1):  

choose si= +1 if u1i>0, si=-1 otherwise 

B's eigenvalues B's orthonormal eigenvectors 
B is symmetric ⇒ B is diagonalizable (real eigenvalues) 

Bui = βiui 



Identifying protein pathways 
 



Finding Simple Paths 
Problem: Given a graph G=(V,E) and a parameter k, find a 
simple path of length k in G. 
• NPC by reduction from Hamiltonian path. 
• Trivial algorithm runs in O(nk). 
• We will be interested in a fixed parameter algorithm 
(Downey & Fellows ’92) – i.e., time is exponential in k but 
polynomial in n. 
 

 



Color Coding [AYZ’95] 
Problem: Given a graph G=(V,E) and a parameter k, find a 
simple path with k vertices (length k-1) in G. 
 
Algorithm: Randomly color vertices with k colors, and 
find a colorful path (distinct colors). 
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Main idea: only 2k color subsets vs. nk node subsets. 



Coloring Example 

• Two different colorings on toy graph, k=3 
• In coloring I, P(A,RGB) is built C->BC->ABC 
• In coloring II, P(A,RGB) is built G->BG->ABG 
• ABC is not colorful in coloring II 

F 

D E 

G H 

C 
A B 

F 

D E 

G H 

C 
A B 

I II 



Randomization Analysis 

• A colorful path is simple, but a simple path 
may not be colorful under a given coloring 

• Solution: run multiple independent trials. 
• After one trial:  



Color Coding [AYZ’95] 
Complexity:  

– Space complexity is O(2kn). 
– Colorful path found by DP in O(km2k). 
– O(ek) iterations are sufficient. 
– Overall time is 2O(k)m. 
– Note that the exponential part involves the 
parameter only, that is, the problem is fixed 
parameter tractable. 



Comparison of Running Times 

Path length Color coding Exhaustive 

8 435 866 

9 2,149 15,120 

10 11,650 -- 

• ~4500 vertices, ~14500 edges. 

Scott et al. JCB 2005 



Biologically-Motivated Constraints 

• Color-Coding gives an algorithmic basis, now 
introduce biologically motivated extensions. 

• Can introduce edge weights (confidence). 
• Can constrain the start or end of a path by type. 

– Steffen et al. ’02: pathways from membrane to TF. 
• Can force the inclusion of a specific protein on the 

path by … 



STE2/3   STE4/18  CDC42 STE20 STE11 STE7 FUS3 DIG1/2 STE12 

MID2 RHO1 PKC1 BCK1 MKK1/2 SLT2 RLM1 

MID2 ROM2 RHO1 PCK1 MKK1 SLT2 RLM1 
B) Best path of length 7 found from MID2 to RLM1  

STE3 AKR1 STE4 CDC24 BEM1 STE5 STE7 KSS1 STE12 

C) Pheromone response pathway in yeast  

D) Best path of length 9 found from STE2/3 to STE12  

Appl. to 
yeast  

A) Cell wall integrity pathway in yeast 
 



STE2/3   STE4/18  CDC42 STE20 STE11 STE7 FUS3 DIG1/2 STE12 

The real pathway (main chain): 

STE3 

STE50 
GPA1 

FAR1 
CDC24 

REM1 

STE11 CDC42 

STE4/18 

AKR1 KSS1 
STE5 

STE12 

DIG1/2 
FUS3 

STE7 

A Closer Look at Pheromone Response 
Aggregate of all 
(6-10)-length path 
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