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Genome Rearrangements 
Slides with Itsik Pe’er, Michal Ozery-Flato, Tamar Barzuza 

 
Additional sources: 
 
•E. Tannier’s CPM’04 slides 
•V. Helms Bioinfo III course (Saarlands) 
•P.A. Pevzner, N. Jones BioAlgorithms course www.bioalgorithms.info 

http://www.tau.ac.il/�
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Comparative 
map: Human 
Chr 11 vs cow, 
mouse (12/00) 

http://bos.cvm.tamu.edu/ 

http://www.tau.ac.il/�
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Oxford 
Grid: 
human vs 
mouse 
(1/2010) 

http://www.informatics.jax.org/searches/oxfordgrid_form.shtml 

http://www.tau.ac.il/�
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Waardenburg’s Syndrome: Mouse 
Provides Insight into Human Genetic 
Disorder 
  
• Waardenburg’s syndrome is characterized by 

hearing loss, neurological problems and 
pigmentary dysphasia 

• Gene implicated in the disease was linked to 
human chromosome 2 but it was not clear where 
exactly it is located on chromosome 2  

http://www.tau.ac.il/�
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http://w
w

w.ncbi.nlm
.nih.gov/pm

c/articles/PM
C

1017240/
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Waardenburg’s syndrome and splotch 
mice 
• A breed of mice (with splotch gene) 

had similar symptoms caused by the 
same type of gene as in humans 
 

• Scientists succeeded in identifying 
location of gene responsible for 
disorder in mice 
 

• Finding the gene in mice gives clues to 
where the same gene is located in 
humans 

http://www.tau.ac.il/�
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Oxford 
Grid: rat 
vs mouse 
(1/2010) 

http://www.tau.ac.il/�
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Genomic Rearrangements (GR) 
• Single Chromosome: 
 

Deletion Insertion 

Duplication 

Inversion /reversal 

Transposition 

http://www.tau.ac.il/�
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• Inter – Chromosome: 

Translocation 

Fusion 

Fission 

Genomic Rearrangements (GR) 

http://www.tau.ac.il/�
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Why study GR? 
Evolution! 
• Rare events – can allow phylogenetic 

inference much further back 
• Less ambiguity than on base level 
• Larger scale data: chromosome, genome 
• Better multi-species analysis 
 
BG… 

http://www.tau.ac.il/�
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Reversals 
Assume: All genes on chromosome are distinguishable 
 Transform to permutation 

п1 1 2 3 4 5 6 

1 4 3 2 5 6 

1 4 6 5 2 3 

6 4 1 5 2 3 п2 
Goal: Given п, find its reversal distance from id 
Kececioglu-Sankoff  95 2-approx, b&b 
Bafna-Pevzner  96 1.75-approx 
Caprara   97 NPC 
Christie   98 1.5-approx 
Berman, Karpinski                     99       MAX-SNP hard 
Berman, Hannenhalli, Karpinski 01       1.375-approx 

http://www.tau.ac.il/�
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 Breakpoint in п: | пi - пi+1|≠1 
 0   7   6   4   1   9   8   2   3   5   10 
 
 
 

d d d d d i Strips 
i: increasing>1 
d: decreasing≥1 

“good” 

Lemma: if п contains a decreasing strip, there is a reversal 
that decreases #bp by ≥ 1 
 key: use decreasing strip with smallest element 

 

∆b=-1 

∆b=0 

Alg: If Ǝ decr. strip, find and perform good reversal 
    Else reverse an inc. strip 
Performance: ≤ 2b inversions ≤ 4·OPT 
 

 

b(п) := #bp in п  

∆b := change in #bp in a step 
d(п) := reversal distance of п 

Observation: OPT=d(п) ≥ ⌈b(п)/2⌉ 

http://www.tau.ac.il/�
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Lemma (Kececioglu – Sankoff ’95) : If ∄ reversal with 
∆b=-1 that leaves a decreasing strip, then  Ǝ a 
reversal with ∆b=-2 

 
 New approximation alg with ≤ 2·OPT reversals: 
• As long as possible: 

– reverse a good decreasing strip, leaving a 
decreasing strip 

• if  impossible: 
– do a reversal with ∆b=-2 
– reverse any strip 

∆b =-1 in one 
step 

∆b =-2 in 
two steps 

http://www.tau.ac.il/�
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Lemma: (Kececioglu – Sankoff ’95) 
If every reversal that removes a breakpoint leaves a permutation 

without decreasing strip, then п has a reversal that removes 
two breakpoints 

Proof: пi – smallest element in decreasing strip 
             пj – greatest element in decreasing strip 
   (1) пi пi-2    пi-1 

impossible (rev. leaves  
a decr. strip) 

(2) пj пj+1   пj+2 
       
situation: пi пi-2   пi-1 

Pi Pj 

пj пj+1   пj+2 ∫∫ 

(3) Pi, Pj must overlap   

пi пi-2   пi-1 Pi Pj 
пj пj+1   пj+2 

⇒ 

Similarly Pj\Pi= ∅    Pi=Pj      2 breakpoints! 

If Pi\Pj≠∅ contains decreasing strip – apply Pj 
     increasing strip  – apply Pi }   Pi\Pj= ∅  

impossible 

http://www.tau.ac.il/�
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David Sankoff, John Kececioglou 

http://www.tau.ac.il/�
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Sorting signed permutations 
by reversals 

http://www.tau.ac.il/�
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Sorting by Reversals (SBR) 

0     7     5     3    -1    -6    -2     4     8 (HS) 

0     1     2     3     4     5     6     7     8 (MM) 

http://www.tau.ac.il/�
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Sorting by Reversals 

0     7     5     3    -1    -6    -2     4     8 (HS) 

0     1     2     3     4     5     6     7     8 (MM) 

0     1    -3    -5   -7    -6    -2     4     8 

http://www.tau.ac.il/�
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Sorting by Reversals 

0     7     5     3    -1    -6    -2     4     8 (HS) 

0     1     2     3     4     5     6     7     8 (MM) 

0     1    -3    -5   -7    -6    -2     4     8 

0     1    -3    -5   -4     2     6     7     8 

http://www.tau.ac.il/�
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Sorting by Reversals 

0     7     5     3    -1    -6    -2     4     8 (HS) 

0     1     2     3     4     5     6     7     8 (MM) 

0     1    -3    -5   -7    -6    -2     4     8 

0     1    -3    -5   -4     2     6     7     8 

0     1    -3    -2    4     5     6     7     8 

http://www.tau.ac.il/�
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Sorting by Reversals 

0     7     5     3    -1    -6    -2     4     8 (HS) 

0     1     2     3     4     5     6     7     8 (MM) 

0     1    -3    -5   -7    -6    -2     4     8 

0     1    -3    -5   -4     2     6     7     8 

0     1    -3    -2    4     5     6     7     8 

http://www.tau.ac.il/�
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Goal: Find a shortest sequence of reversals that 
transform the given n-permutation to 1,2,…n 

 4 -3 1 -7 -6 -5 -2 
 4 -3 1 2 5 6 7 
 -4 -3 1 2 5 6 7 
 -2 -1 3 4 5 6 7 
 1 2 3 4 5 6 7 
Reversal distance d: Length of shortest sequence 
       d=6 

A Signed Permutation: 
4 -3 1 -5 -2 7 6 

   
Reversal r(i,j):  
Flip order, signs of numbers in positions i,i+1,..j 

 After r(4,6): 
4 -3 1 -7 2 5 6 

 

http://www.tau.ac.il/�
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Palmer et. al, Current Genetics ‘88 

http://www.tau.ac.il/�
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Strauss et. al; PNAS ‘88 

http://www.tau.ac.il/�
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Sorting by Reversals 
8 7 6 5 4 3 2 1 11 10 9 

8 7 6 5 4 3 2 1 11 10 9 

8 2 3 4 5 6 7 1 11 10 9 

4 3 2 8 7 1 5 6 11 10 9 

8 2 3 4 5 1 7 6 11 10 9 

4 3 2 8 5 1 7 6 11 10 9 

4 3 2 8 7 1 5 6 11 10 9 

4 3 2 8 7 1 5 6 11 10 9 

Cabbage 

Turnip 

http://www.tau.ac.il/�
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Bafna & Pevzner, Molecular Biology & Evolution ‘95 

http://www.tau.ac.il/�
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Group Theoretic Viewpoint 
Symmetric group of permutations Sn 
Reversals form a generator set of Sn 
 
Q: Given п1, п2 ∈ Sn , generators g1,…,gk find their distance: 

shortest product of generators that transforms п1 to п2  
 
Even – Goldreich (81): NP-hard 
Jerrum (85): PSPACE-complete 
 
diameter: longest distance between two permutations 
Q2: For generators g1,…,gk what is the diameter of Sn? 
 

http://www.tau.ac.il/�
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An aside: The Pancake   
 Flipping Problem 
 
 
• Goal: Given a stack of n pancakes, what 

is the minimum number of flips to 
rearrange them into perfect stack? 

• Input: Permutation π 
• Output: A series of prefix reversals ρ1, 

… ρt transforming π into the identity 
permutation such that t is minimum 
 

http://www.tau.ac.il/�
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Pancake Flipping Problem: Greedy 
Algorithm 
• Greedy approach: Starting from the 

bottom of the stack, 2 prefix reversals 
at most to place a pancake in its right 
position  2n – 2 steps total 
 

Gates & Papadimitriou (79): Alg for 
sorting by 5/3 (n + 1) prefix reversals 
 

http://www.tau.ac.il/�
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Christos Papadimitrou and Bill Gates flip pancakes 
www.bioalgorithms.info 

http://www.tau.ac.il/�
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Back to SBR: 
The Breakpoint Graph 

• Augment with 0, n+1 
• Vertices 2i-1, 2i for +i, 2i, 2i-1 for -i  
• Blue edges between adjacent vertices π2i π2i+1  
• Red edges between consecutive labels 2i,2i+1 

 

 0        5     6       7     8     4    3     10     9      1       2      11       
0          3                4           -2            -5            1         6 

•Allow only reversals that cut after even positions 
 

3                4           -2            -5            1 

http://www.tau.ac.il/�
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GOAL: Sort a given breakpoint graph 

⇒ Try to increase number of cycles at each 
step 
 

 into n+1 trivial cycles  
 0        5     6       7     8     4    3     10     9      1       2      11       

 0       1      2       3    4      5     6      7     8       9     10     11       

http://www.tau.ac.il/�
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Def:A reversal acts on two blue edges 

 cutting them and re-connecting them 

 0        5     6       7     8     4    3     10     9      1       2      11       

 0        5     6       8     7       4    3     10     9      1       2      11       

The impact of a reversal 

http://www.tau.ac.il/�
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A reversal can either… 

 Act on two cycles, joining them (bad!!) 

 0        5     6       7     8     4    3     10     9      1       2      11       

 0        5     6       8     7        4    3     10     9      1       2      11       

The impact of a reversal (2) 

http://www.tau.ac.il/�
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… or: 

Act on one cycle, changing it (profitless) 

0       9    10     3    4       8   7      6    5       1    2     11     

 0        5     6       7     8     4    3     10     9      1       2      11       

The impact of a reversal (3) 

http://www.tau.ac.il/�


 CG  © Ron Shamir 
45 

… or: 

Act on one cycle, splitting it (good reversal) 

 0        5     6       7     8     4    3     10     9      1       2      11       

 0        5     6       7     8     4       3      2     1      9    10      11       

The impact of a reversal (4) 

http://www.tau.ac.il/�
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Basic Theorem (Bafna, Pevzner 93) 

)(1)( ππ cnd −+≥
where d = reversal distance,  
c = # cycles. 

Proof: Every reversal changes c by at most 1. 

http://www.tau.ac.il/�
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Hannenhalli & Pevzner Theory (95) 

Thm:  ( ) 1 ( ) ( ) ( ), ( ) {0,1}d n c h f fπ π π π π= + − + + ∈

HP95 constructive proof;   
Implies an O(n4) algorithm for SBR 
Many improvements since. 

h – “hurdles” a parameter for reflecting interrelations of difficult cycles 
f – “fortress” an additional parameter for a particular combination of hurdles. Can be 0 or 1 

http://www.tau.ac.il/�
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Sorting by Signed Reversals: History 

Sankoff (90,92) 
 
Kececioglou – Sankoff (95) 2-approximation 
 
Bafna – Pevzner (94) 1.5-approximation 
 
Rich combinatorial structure (KS95, KR95, 

BP95, H95,…) 
 
♣ Hannenhalli – Pevzner (95) first poly alg 

O(n4) 
 
Caprara (96) unsigned problem is NP-hard 
 
♣ Berman – Hannenhalli (96) O(n2α(n)) 

implementation 
 
♣ Kaplan Shamir Tarjan (99)  O(n2) alg, 

based on HP95, much simpler 
 

http://www.tau.ac.il/�
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Sorting by Signed Reversals: History (2) 
 
♣ Bergeron (01,03) – simplified theory, O(n3)  

 
Bader, Moret, Yan (01) O(n) alg for reversal distance 
 
• Bergeron (03)  simple presentation, O(n3)  
 
• Ozery-Flato & Shamir  (03) Ω(n3) for Bergeron’s alg 
 
• Verbin & Kaplan (03)  efficient data structure for 

reversals 
 

• Tannier, Bergeron, Sagot (04) O(n1.5 (logn)0.5 ) 
 

• Swenson Rajan Lin Moret (09) O(n log n) 
 
 

http://www.tau.ac.il/�
http://www.cs.tau.ac.il/~rshamir/Group/Photos/michal1.jpg�
http://www-igm.univ-mlv.fr/cgi-bin/annuaire.pl?composante=toutes&nom_prenom=Marie-France+SAGOT�
http://www.sciences.uqam.ca/scexp/img/img_contenu/anne_bergeron.jpg�
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More on Genome Rearrangements 

• Hannenhalli, Pevzner 95: Poly alg. for 
sorting by reversals, translocations, 
fusions and fissions 

• Reconstructed the Human-mouse 
evolution scenario with 131 events 

• Multi species GR phylogenies 
• Hot debate on breakpoint reuse 
• … 

http://www.tau.ac.il/�
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Murphy et al Science 2005 
    Fig. 3. Rates of chromosome 

breakage during mammalian 
evolution. The time scale is based 
on molecular divergence estimates 
(19). Rates (above the branches, 
in breaks per million years and 
95% confidence intervals) were 
calculated using the total number 
of lineage, order, or superordinal 
breakpoints defined by the 
multispecies breakpoint analysis, 
and dividing these by the 
estimated time on the branch of 
the tree. The vertical gray 
dashed line indicates the K-T 
boundary, marking the abrupt 
extinction of the dinosaurs at  65 
Ma and preceding the appearance 
of most crown-group placental 
mammal orders in the Cenozoic 
Era (19).  

Ferungulate ancestor  

Boreoeutherian (placental mammals) ancestor    

http://www.tau.ac.il/�
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• Fig. 2. Genome architecture of the ancestors of three mammalian 
lineages computed by MGR (33) from the seven starting genomes and 
compared to the human genome (far left). Each human chromosome is 
assigned a unique color and is divided into blocks corresponding to the 
seven-way HSBs common to all species. The size of each block is 
approximately proportional to the actual size of the block in human. 
Physical gaps between blocks are shown in human to give an indication of 
the coverage. Also in human, the heterochromatic/centromere regions 
are denoted by hatched gray boxes. Numbers above the reconstructed 
ancestral chromosomes indicate the human chromosome homolog. 
Diagonal lines within each block (from top left to bottom right) indicate 
the relative order and orientation of genes within the block. Black 
arrowheads under the ancestral chromosomes indicate that the two 
adjacent HSBs separated by the arrowhead were not found in every one 
of the most parsimonious solutions explored; these are considered 
"weak" adjacencies. Arrowheads at the ends of HSB chromosomes 
indicate that some alternative solutions placed these chromosome-end 
HSBs adjacent to HSBs from other chromosomes. [View Larger Version 
of this Image (46K GIF file)]  

http://www.tau.ac.il/�
http://www.sciencemag.org/cgi/content/full/309/5734/613/FIG2�
http://www.sciencemag.org/cgi/content/full/309/5734/613/FIG2�
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• Fig. 2. Genome architecture of the ancestors of three mammalian 
lineages computed by MGR (33) from the seven starting genomes and 
compared to the human genome (far left). Each human chromosome is 
assigned a unique color and is divided into blocks corresponding to the 
seven-way HSBs common to all species. The size of each block is 
approximately proportional to the actual size of the block in human. 
Physical gaps between blocks are shown in human to give an indication of 
the coverage. Also in human, the heterochromatic/centromere regions 
are denoted by hatched gray boxes. Numbers above the reconstructed 
ancestral chromosomes indicate the human chromosome homolog. 
Diagonal lines within each block (from top left to bottom right) indicate 
the relative order and orientation of genes within the block. Black 
arrowheads under the ancestral chromosomes indicate that the two 
adjacent HSBs separated by the arrowhead were not found in every one 
of the most parsimonious solutions explored; these are considered 
"weak" adjacencies. Arrowheads at the ends of HSB chromosomes 
indicate that some alternative solutions placed these chromosome-end 
HSBs adjacent to HSBs from other chromosomes. [View Larger Version 
of this Image (46K GIF file)]  

http://www.tau.ac.il/�
http://www.sciencemag.org/cgi/content/full/309/5734/613/FIG2�
http://www.sciencemag.org/cgi/content/full/309/5734/613/FIG2�


 

 
 
  
 
 

Sorting genomes by 
DCJ operations 

Bergeron, Mixtacki, Stoye. A unifying view of Genome Rearrangements. 
WABI 2006.  

 
Slides based in part on Ghada Badr 

http://www.site.uottawa.ca/~turcotte/teaching/csi-
5126/lectures/09/1/GenomeRearrangement_PartII_Ghada.ppt 
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Rearrangement Problems 

Our problem:  
          Given two genomes and a set of possible 

evolutionary events (operations), find a shortest 
sequence of events transforming those genomes into 
one another. 
 

• Computing the distance d(π). 
• Computing one optimal sorting sequence of 
events. 

Two classical problems  
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Rearrangement Operations  

Can we have a unifying framework in which circular and 
linear chromosomes can coexist throughout evolving 
genomes? 
 
Can we have a unifying view of Genome Rearrangements? 
(Bergeron 2006) 
 

A Double Cut and Join Operation DCJ was introduced. 
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Rearrangement Operations - DCJ 

• Double Cut-and-Join DCJ was first proposed by 
Yancopoulos et. al. (2005). 
 

• Allows to model many classical operations (inversions, 
translocations, fissions, fusions) with a single operation. 
Others (transposition, block interchanges) in two. 
 

• Model assumes the coexistence of both linear and 
circular chromosomes. There is some evidence for this in 
genomes. 
 

• Both the DCJ sorting and distance problems can be 
solved in O(n) time by Bergeron et. al. (2006) 
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Adjacencies and telomeres 

• A “gene” a is an oriented sequence of DNA that starts 
with a tail at and ends with a head ah. 
 

• Two consecutive genes do not necessarily have the 
same orientation, thus adjacency of two consecutive 
genes a and b, can be of four different types:   

                         [ah,bt],[ah,bh],[at,bt],[at,bh] 
                            ,    ,   ,   
• An extremity that is not adjacent to any other gene is 

called telomere. It is denote by a singleton set: [ah] or 
[at].  
 

• We can use adjacencies to represent both genomes with 
multiple or uni-chromosomes.  

(we use [] and not {} 
for sets to avoid a PPT 
bug…) 
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Genome representation 

• A genome is a set of adjacencies and telomeres 
such that the tail or head of any gene appears in 
exactly one adjacency or telomere. 

Genome A: chr1:  a  c  -d 
                   chr2:   b  e   
                   chr3:   f    g 

Replace each gene by two extremities 
at  ah   ct  ch    dh   dt 
bt  bh  et  eh 
ft  fh  gt  gh 

Adjacencies :[ah, ct][ch, dh ][bh, et] [fh, gt ] 

Telomere:[at  ] [dt]   [bt] [eh][ft][gh ] 

A = [[at][ah, bt][bh, ct][ch, dt][dh]  [et] [eh,ft] [fh,gt] [gh ] ] 

Example 

 

Note: a chromosome is identical to its inverted copy 

Note 2: if  a genome has N 
genes,  a adjacencies , t 
telomeres, then N=a+t/2 
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Double cut and join (DCJ) - definition 
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Rearrangement Operations - DCJ 

• DCJ operations: 

[p,q][r,s]  [p,r][s,q] or [ p,s] [q,r] a) 

Translocation 
Inversion 
Excision (splicing out a cycle) 
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Rearrangement Operations - DCJ 

• DCJ operations: 
[p,q][r]              [ p,r][q] or  [p][q,r ]  b) 

Unbalanced (tail) translocation 
Inversion 
Excision (splicing out a cycle) 
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Rearrangement Operations - DCJ 

• DCJ operations: 

[q]  [r]   [q,r]  c) 

Fusion/fission Circularization/linearization 



 

 
  

 

 
 

Lemma 1:  A DCJ operation changes the 
number of linear or circular components by  ≤ 1 

Pf: case analysis 
(Q:  which case did we not consider?) 

64 
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 DCJ Example 

Genome A: chr1:  a  c  -d 
                   chr2:   b  e  
                   chr3:   f    g 

[ah, ct][ch, dh]  [bh, et] [fh, gt] [at] ]dt]  [bt] [eh][ft][gh] 

[ah,ct][fh, gt]  [ah,fh][ct,gt] Genome A: chr1:  a  -f 
                   chr2:   b  e  
                   chr3:   d  -c   g 

[ah,ct][fh, gt]   [ah,gt][ct,fh] Genome A: chr1:  a  g 
                   chr2:   b  e  
                   chr3:   f  c  -d 

Adjacencies and telomeres: 

 

 
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Problem: Given two genomes A and B defined on the 

same set of genes, find a shortest sequence of DCJ 
operations that transforms A into B. The length of 
such a sequence is called the DCJ distance between 
A and B, dcj(A,B). 

DCJ sorting and Distance problems 
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DCJ sorting and Distance problems 

 

Example: 

Genome A: chr1:  a  c  -d 
                   chr2:   b  e   
                   chr3:   f    g 

Genome B: chr 1: a  b  c  d  
                   chr 2: e  f  g       

Replace each gene by two extremities 
at  ah   ct  ch    dh   dt 
bt  bh  et  eh 
ft  fh  gt  gh 

at  ah  bt  bh  ct  ch  dt  dh 
et  eh  ft  fh  gt  gh 

 

 

A =[[ah, ct][ch, dh] [bh, et] [fh, gt] [at] [dt] ]bt] [eh][ft][gh]] 

B = [[at][ah, bt][bh, ct][ch, dt][dh]  [et] [eh,ft] [fh,gt] [gh]] 

Get adjacencies and telomeres for each genome: 
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Greedy Alg to sort by DCJ 

[ah, ct][ch, dh] [bh, et] [fh, gt] [at] [dt] ]bt] [eh][ft][gh] 

[at][ah, bt][bh, ct][ch, dt][dh]  [et] [eh,ft] ]fh,gt] [gh] 

[ah, bt][ch, dh] [bh, et] [fh, gt] [at] [dt] ]ct] [eh][ft][gh] 

[ah, bt] [ch, dh] [bh, ct] [fh, gt] [at] [dt] ]et] [eh][ft][gh] 

[ah, bt] [ch, dt] [bh, ct] [fh, gt] [at] [dh] [et] ]eh] [ft][gh] 

 

  

 

  

 

  

Genome A: chr1:  a  c  -d 
                   chr2:   b  e   
                   chr3:   f    g 

Genome A: chr1:  a  b  e 
                   chr2:   c   -d   
                   chr3:   f    g 
Genome A: chr1:  a  b  c  -d 
                   chr2:   e  
                   chr3:   f    g 
Genome A: chr1:  a  b  c  d 
                   chr2:   e  
                   chr3:   f    g 

 

  

Genome B: chr1:  a  b  c  d 
                   chr2:   e  f  g 
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The adjacency graph AG(A,B) of genomes A, B 

[ah, ct][ch, dh]  [bh, et]   [fh, gt]  [at]  [dt]  [bt] [eh]  [ft]  [gh] 

[at]  [ah, bt] [bh, ct] [ch, dt]   [dh]  [et] [eh,ft]   [fh,gt]   [gh] 

    

 

      

        

Vertices: adjacencies and telomeres 
Edges: between vertices that have common elements. 
A union of paths and cycles. 

  

  
 

 
 

A bipartite graph of the intersection of adj&tel in the two genomes: 

Graph can be easily constructed in O(n) time and space 
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The adjacency graph AG(A,A) 

C: no. of cycles. I: no. of odd paths. 

[at][ah, bt][bh, ct]    [ch, dt] [dh]  [et]  [eh,ft]   [fh,gt] [gh] 

[at]   [ah, bt][bh, ct][ch, dt]   [dh]  ]et] [eh,ft]   [fh,gt] [gh] 

         

          
          

   

When sorted :N   = C + I/2 
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DCJ sorting and Distance problems  

Adjacency Graph (bipartite graph): 

[ah, ct][ch, dh]  [bh, et]  [fh, gt]   [at] [dt]   [bt]  [eh]  [ft]  [gh] 
    

 

      

        

   

  

1 cycle   

  
 

4 odd paths 

 
 

1 even path 

[at]  [ah, bt] [bh, ct] [ch, dt]   [dh]  [et] [eh,ft]   [fh,gt]   [gh] 



 

 
  

 

 
 

Lemma 2:  For A, B N-gene genomes  
A=B iff N=C+I/2 

Pf:  A=B with a adjacencies, t telomeres 
  a=C, t=I.   N=a+t/2 = C+I/2 
 G adj. graph of A,B satisfies N=C+I/2. 
A has a adjacencies, t telomeres  N=a+t/2 
Each cycle has ≥1 adjacency  C≤a 
Each odd path has 1 telomere of A   t≤I 
N=a+t/2=C+I/2  a=C, I=t  
 All cycles of length 2, all odd paths of 

length 1  B=A 72 



 

 
  

 

 
 

Lemma 3:  A DCJ operation changes the 
number of odd paths by -2,0 or 2 

Pf: simple case analysis. Some cases: 
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Lemma 4:  For genomes A, B with the same set 
of N genes, dDCG(A,B)≥N-(C+I/2) 

Pf: One DCJ operation may change the 
number of cycles or the number of odd 
paths – but not both. 

 Each operation changes C by ≤1 (Lemma 1) 
 Each operation changes I by ≤2 (Lemma 3) 
Each operation changes C+I/2 by ≤1  
    When terminating N=C+I/2 (lemma 2) 
 dDCG(A,B)≥N-(C+I/2) 
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DCJ sorting algorithm 

O(n) time (ex) 



 

 
  

 

 
 

Theorem: dDCG(A,B)=N-(C+I/2)  
and the greedy alg is optimal 

Each iteration increases C by 1 or I by 2, so 
Lemma 4 implies the equality and the 
optimality.  76 

Pf. Effect of an iteration: 
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DCJ sorting and Distance problems  

Adjacency Graph (bipartite graph): 

[ah, ct][ch, dh]  [bh, et]  [fh, gt]   [at] [dt]   [bt]  [eh]  [ft]  [gh] 
    

 

      

        

   

  

1 cycle   

  
 

4 odd paths 

 
 

1 even path 
dcj(A,B)  = n - (cycles + oddPath/2) 

7-1-4/2  =4  

[at]  [ah, bt] [bh, ct] [ch, dt]   [dh]  [et] [eh,ft]   [fh,gt]   [gh] 
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80 (On the question of the formation of malignant tumors) 

Theodor Boveri  
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81 Janet D. Rowley 

Peter C. Nowell 

The "Philadelphia Chromosome" 
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t(8;21)(q22;q22) t(15;17)(q22;q21) 

inv(16)(p13q22) 

Chromosome Aberrations Typify Cancer Subtypes 

AML FAB type M2 AML FAB type M3 

AML FAB type M4 

t(11;22)(q24;q12) 

Ewing sarcoma 

Myxoid 

 liposarcoma 

t(12;16)(q13;p11) 82 

Myxoid  

chondrosarcoma 

t(9;22)(q31;q12) 
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Karyotypes 
Bands resolution: 1 band ~ 5-10Mbp G-Banding 

SKY 

http://www.tau.ac.il/�


Events 
Chrom 

gain 

loss Ploidy change 
Translocation 

Inversion 

Insertion 

Deletion 

Tandem  
duplication 

Iso-chromosome  
creation 

Dicentric creation 
Tail  

duplication 
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The Karyotype Sorting Problem 

• Model with all operations seems 
intractable 

• W developed a conservative heuristic 
• Sorts uniquely 98% of >60K karyotypes in 

the Mitelman DB 

Shortest sequece 
of events leading  

 
to the karyotype? 

http://www.tau.ac.il/�
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