Computational Genomics

Lecture 13: Genome

Rearrangements 11/1/13

Genome Rearrangements

Slides with Itsik Pe'er, Michal Ozery-Flato, Tamar Barzuza
Additional sources:
-E. Tannier's CPM'04 slides
-V. Helms Bioinfo III course (Saarlands)
-P.A. Pevzner, N. Jones BioAlgorithms course www.bioalgorithms.info

(a)

(b)

$$
1-5 \mu \mathrm{~m}-1
$$

Figure 1-17
(a) Electron micrograph of chromosome 4 from a salivary gland of Chironomus tentans. [Reproduced with permission from 13. Daneholt, Cell 4 (1975):1.1 (b) Diagram of a portion of a salivary gland chromosome (the right arm of chromosome 3) of Drosophila melanogaster. IAfter P N. Bridges, I. Hererlitu is (1)!い,

Comparative map: Human Chr 11 vs cow, mouse (12/00)

http://bos.cvm.tamu.edu/

mouse, laboratory

Oxford

Grid:
human vs
mouse
(1/2010)

Mouse chromosomes

Waardenburg's Syndrome: Mouse Provides Insight into Human Genetic Disorder

- Waardenburg's syndrome is characterized by hearing loss, neurological problems and pigmentary dysphasia
- Gene implicated in the disease was linked to human chromosome 2 but it was not clear where exactly it is located on chromosome 2

Waardenburg's syndrome and splotch mice

- A breed of mice (with splotch gene) had similar symptoms caused by the same type of gene as in humans
- Scientists succeeded in identifying location of gene responsible for disorder in mice
- Finding the gene in mice gives clues to where the same gene is located in humans

Oxford Grid: rat vs mouse
(1/2010)

Genomic Rearrangements (GR)

- Single Chromosome:

Oppositely oriented recombining siles

Identically oriented sites

Genomic Rearrangements (GR)

- Inter - Chromosome:

Translocation

Fusion

Fission

Why study GR?
Evolution!

- Rare events - can allow phylogenetic inference much further back
- Less ambiguity than on base level
- Larger scale data: chromosome, genome
- Better multi-species analysis

BG...

Reversals

Assume: All genes on chromosome are distinguishable
\longrightarrow Transform to permutation

Π_{1}	1	2	3	4	5	6
	1	4	3	2	5	6
	Π_{2}	6	4	1	5	2

Goal: Given n, find its reversal distance from id

Kececioglu-Sankoff Bafna-Pevzner Caprara
Christie
Berman, Karpinski
cg oron Benman, Hannenhalli, Karpinski 01

95
2-approx, b\&b
96 1.75-approx
97 NPC
98 1.5-approx
99 MAX-SNP hard
1.375-approx

Breakpoint in п: $\left|\Pi_{i}-\pi_{i+1}\right| \neq 1$

b(п) := \#bp in п
$\Delta \mathrm{b}:=$ change in \#bp in a step
$\mathrm{d}(\mathrm{\pi}):=$ reversal distance of π
Observation: OPT $=\mathrm{d}(\mathrm{n}) \geq\lceil\mathrm{b}(\mathrm{m}) / \mathbf{}]$
Lemma: if п contains a decreasing strip, there is a reversal that decreases \#bp by ≥ 1

Alg: If \exists decr. strip, find and perform good reversal $\quad \Delta b=-1$
Else reverse an inc. strip
Performance: $\leq 2 \mathrm{~b}$ inversions ≤ 4.OPT

Lemma (Kececioglu - Sankoff '95) : If \nexists reversal with $\Delta b=-1$ that leaves a decreasing strip, then $\exists \mathrm{a}$ reversal with $\Delta b=-2$
\rightarrow New approximation alg with $\leq 2 \cdot$ OPT reversals:

- As long as possible:
- reverse a good decreasing strip, leaving a $\Delta b=-1$ in one decreasing strip step
- if impossible:
- do a reversal with $\Delta b=-2$
- reverse any strip
$\Delta b=-2$ in two steps

Lemma: (Kececioglu - Sankoff '95)
If every reversal that removes a breakpoint leaves a permutation without decreasing strip, then п has a reversal that removes two breakpoints
Proof: Π_{i}-smallest element in decreasing strip
Π_{j} - greatest element in decreasing strip

impossible (rev. leaves a decr. strip)

situation:

(3) P_{i}, P_{j} must overlap

David Sankoff, John Kececioglou

Sorting signed permutations by reversals

Sorting by Reversals (SBR)

$$
\begin{array}{llllllllll}
0 & 7 & 5 & 3 & -1 & -6 & -2 & 4 & 8 & \text { (HS) }
\end{array}
$$

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
(MM)

Sorting by Reversals

$$
\begin{array}{llllllllll}
0 & 7 & 5 & 3 & -1 & -6 & -2 & 4 & 8 & \text { (HS) } \\
0 & 1 & -3 & -5 & -7 & -6 & -2 & 4 & 8 &
\end{array}
$$

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
(MM)

Sorting by Reversals

$\begin{array}{lllllllll}0 & 7 & 5 & 3 & -1 & -6 & -2 & 4 & 8 \\ 0 & 1 & -3 & -5 & -7 & -6 & -2 & 4 & 8\end{array}$
$\begin{array}{lllllllll}0 & 1 & -3 & -5 & -4 & 2 & 6 & 7 & 8\end{array}$
$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
(MM)

Sorting by Reversals

$\begin{array}{lllllllll}0 & 7 & 5 & 3 & -1 & -6 & -2 & 4 & 8 \\ 0 & 1 & -3 & -5 & -7 & -6 & -2 & 4 & 8\end{array}$
$\begin{array}{lllllllll}0 & 1 & -3 & -5 & -4 & 2 & 6 & 7 & 8 \\ 0 & 1 & -3 & -2 & 4 & 5 & 6 & 7 & 8\end{array}$
$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
(HS)
(MM)

Sorting by Reversals

$\begin{array}{lllllllll}0 & 7 & 5 & 3 & -1 & -6 & -2 & 4 & 8 \\ 0 & 1 & -3 & -5 & -7 & -6 & -2 & 4 & 8\end{array}$

| 0 | 1 | -3 | -5 | -4 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllll}0 & 1 & -3 & -5 & -4 & 2 & 6 & 7 & 8\end{array}$
$\begin{array}{lllllllll}0 & 1 & -3 & -2 & 4 & 5 & 6 & 7 & 8\end{array}$
$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
(HS)
(MM)

A Signed Permutation:
$\begin{array}{lllllll}4 & -3 & 1 & -5 & -2 & 7 & 6\end{array}$
Reversa/r(i,j):
Flip order, signs of numbers in positions $i, i+1, . . j$
After $r(4,6)$:
4
-3
1
-7
2
5
6

Goal: Find a shortest sequence of reversals that transform the given n-permutation to $1,2, \ldots . n$

4	-3	1	-7	-6	-5	-2
	-3	1	2	5	6	7
-4	-3	1	2	5	6	7
$\frac{-2}{2}$	-1	3	4	5	6	7
1	2	3	4	5	6	7

Reversal distance d: Length of shortest sequence

RADIATA PINE

(Fig. 4. Hypothesized deletions and inversions during evolution of the radiata pine chloroplast genome from a Petunia-mung beanlike ancestral genome shown in Fig. 3. Step 1 is deletion of a part of one repeat, similar to that seen in Ginkgo (12), the sole member of a different gymnosperm order. The evolutionary direction of the deletion is not clear (12), whereas the other five mutations shown are all clearly derived in a conifer-specific lineage. Step 2 is deletion of the inverted repeat. Steps 3-6 are inversions. The sequence of rearrangements that occurred during conifer evolution may differ from that presented.

Sorting by Reversals

 $\overleftarrow{8} \overleftarrow{7} \underset{6}{5} \underset{4}{\mathbf{3}} \underset{2}{4} \leftrightarrows \overleftarrow{11}_{10}^{4}$

Turnip

(a)

Human		
Location	Linkage group	Genes
q23	4	F8A
q24		LAMP2
	76	COLAAS
		!
q11.2		AR
	1	DXF34
	7	
pl1.22		ALAS2
	2	GATAI
p11.23		
	3	ARAFI
p21.1		CYBB
	5	DSM
P22.1		\vdots
	\triangle	ZFX
	8	PDHAI
p22.31	\triangle	AMG

AMG

(b)

(c)

FIG. 4.-Transformation of human X chromosome into mouse X chromosome. a. Conserved linkage groups betwee K chromosomes. b. A most parsimonious evolutionary scenario for the transtormation of human into mouse chromosor X chromosome evolves solely by inversions. c, A rearrangement scenario involving both inversions and transpositions.

Group Theoretic Viewpoint

Symmetric group of permutations S_{n}
Reversals form a generator set of S_{n}
Q: Given $\Pi_{1}, \Pi_{2} \in S_{n}$, generators g_{1}, \ldots, g_{k} find their distance: shortest product of generators that transforms Π_{1} to Π_{2}

Even - Goldreich (81): NP-hard
Jerrum (85): PSPACE-complete
diameter: longest distance between two permutations Q2: For generators g_{1}, \ldots, g_{k} what is the diameter of S_{n} ?

An aside: The Pancake Flipping Problem

- Goal: Given a stack of n pancakes, what is the minimum number of flips to rearrange them into perfect stack?
- Input: Permutation π
- Output: A series of prefix reversals ρ_{1}, ... ρ_{t} transforming π into the identity permutation such that t is minimum

Pancake Flipping Problem: Greedy Algorithm

- Greedy approach: Starting from the bottom of the stack, 2 prefix reversals at most to place a pancake in its right position $\rightarrow 2 n-2$ steps total

Gates \& Papadimitriou (79): Alg for sorting by $5 / 3(n+1)$ prefix reversals

BOUNDD FOR SORTING BY PREEXX REVERSAK,

William H. GATES

Microsoft, Albuquerque, New Mexico
Christos H. PAPADIMITRIOU* \dagger
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.
Received 18 January 1978
Revised 28 August 1978
For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let $f(n)$ be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_{n}. We show that $f(n) \leqslant(5 n+5) / 3$, and that $f(n) \geqslant 17 n / 16$ for n a multiple of 16 . If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function $g(n)$ is shown to obey $3 n / 2-1 \leqslant g(n) \leqslant 2 n+3$.

1. Introduction

We introduce our problem by the following quotation from [1]

> The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, and so on, down to the largest at the botom) by grabbing several from the top and flipping them over, repeating this (varying the number Ifip) as many times as neoessary. If there are n pancakes, what is the maximum number of flips (as a function $f(n)$ of n) that I will ever have to use to rearrange them?

In this paper we derive upper and lower bounds for $f(n)$. Certain bounds were already known. For example, consider any stack of pancakes. An adjacency in this stack is a pair of pancakes that are adjacent in the stack, and such that no other pancake has size intermediate between the two. If the largest pancake is on the bottom, this also counts as one extra adjacency. Now, for $n \geqslant 4$ there are stacks of n pancakes that have no adjacencies whatsoever. On the other hand, a sorted stack must have all n adjacencies and each move (flip) can create at most one adjacency. Consequently, for $n \geqslant 4, f(n) \geqslant n$. By elaborating on this argument, M.R. Garey, D.S. Johnson and S. Lin [2] showed that $f(n) \geqslant n+1$ for $n \geqslant 6$.
For upper bounds-algorithms, that is-it was known that $f(n) \leqslant 2 n$. This can be seen as follows. Given any stack we may start by bringing the largest pancake on top and then fiip the whole stack: the largest pancake is now at the bottom,

* Research supported by NSF Grant MCS 77-01193.
+ Current address: Laboratory for Computer Science, Massachusets, Institute of Technology, Cambridge, Ma 02139, USA.

Back to SBR:
 The Breakpoint Graph

- Augment with $0, n+1$
- Vertices 2i-1, $2 i$ for $+\mathrm{i}, 2 \mathrm{i}, 2 \mathrm{i}-1$ for -i
- Blue edges between adjacent vertices $\pi_{2 i} \pi_{2 i+1}$
- Red edges between consecutive labels $2 i, 2 i+1$
- Allow only reversals that cut after even positions

GOAL: Sort a given breakpoint graph

 into $n+1$ trivial cycles

\Rightarrow Try to increase number of cycles at each step

The impact of a reversal

Def: A reversal acts on two blue edges

cutting them and re-connecting them

The impact of a reversal (2)

 A reversal can either...

Act on two cycles, joining them (bad!!)

$\begin{array}{llllllllllll}0 & 5 & 6 & 8 & 7 & 4 & 3 & 10 & 9 & 1 & 2 & 11\end{array}$

The impact of a reversal (3)

... or:

Act on one cycle, changing it (profitless)

The impact of a reversal (4)

... or:

Act on one cycle, splitting it (good reversal)

Basic Theorem (Bafna, Pevzner 93)

$$
d(\pi) \geq n+1-c(\pi)
$$

where $d=$ reversal distance,
$c=\#$ cycles.
Proof: Every reversal changes cby at most 1.

Hannenhalli \& Pevzner Theory (95)

$$
\text { Thm: } \quad d(\pi)=n+1-c(\pi)+h(\pi)+f(\pi), f(\pi) \in\{0,1\}
$$

h - "hurdles" a parameter for reflecting interrelations of difficult cycles
f - "fortress" an additional parameter for a particular combination of hurdles. Can be 0 or 1

HP95 constructive proof:
Implies an $O\left(n^{4}\right)$ algorithm for SBR
Many improvements since.

Sorting by Signed Reversals: History

 Sankoff $(90,92)$Kececioglou - Sankoff (95) 2-approximation Bafna - Pevzner (94) 1.5-approximation

Rich combinatorial structure (KS95, KR95, BP95, H95,...)

* Hannenhalli - Pevzner (95) first poly alg $O\left(n^{4}\right)$

Caprara (96) unsigned problem is NP-hard

- Berman - Hannenhalli (96) O(n2a(n)) implementation
- Kaplan Shamir Tarjan (99) O(n^{2}) alg, based on HP95, much simpler

Sorting by Signed Reversals: History (2)

* Bergeron $(01,03)$ - simplified theory, $O\left(n^{3}\right)$

Bader, Moret, Yan (01) $O(n)$ alg for reversal distance

- Bergeron (03) simple presentation, $O\left(n^{3}\right)$
- Ozery-Flato \& Shamir (03) $\Omega\left(n^{3}\right)$ for Bergeron's alg
- Verbin \& Kaplan (03) efficient data structure for reversals
- Tannier, Bergeron, Sagot (04) O(n $\left.{ }^{1.5}(\operatorname{logn})^{0.5}\right)$
- Swenson Rajan Lin Moret (09) O(n log n)

More on Genome Rearrangements

- Hannenhalli, Pevzner 95: Poly alg. for sorting by reversals, translocations, fusions and fissions
- Reconstructed the Human-mouse evolution scenario with 131 events
- Multi species GR phylogenies
- Hot debate on breakpoint reuse
\bullet ..

Murphy et al Science 2005

Ferungulate ancestor
Fig. 3. Rates of chromosome breakage during mammalian evolution. The fime scale is based on molecular divergence estimates (19). Rates (above the branches, in breaks per million years and 95\% confidence intervals) were calculated using the total number of lineage, order, or superordinal breakpoints defined by the multispecies breakpoint analysis, and dividing these by the estimated time on the branch of the tree. The vertical gray dashed line indicates the K-T boundary, marking the abrupt extinction of the dinosaurs at 65 Ma and preceding the appearance of most crown-group placental mammal orders in the Cenozoic Era (19).
 boreoeutherian ancestor human／mouse／rat ancestor

4 패표

$8 \square$ Mil
9 닾：뵤Iㅛ

$13 \square$ Tmin
$14 \square$ IT

19 （Iniri EII

$21 \square \square$

$\mathrm{X} \square \boldsymbol{\square}$
$1 \frac{22}{22}$

107

$12 \square 8$
$13 \xrightarrow{9}$
$14 \xrightarrow{10}$
15 苗
$16 \xrightarrow{12}$
$17 \stackrel{2212}{\rightleftharpoons}$
$18 \xrightarrow{13}$
$19 \stackrel{15}{14}$
$20 \stackrel{15}{15}$
$21 \stackrel{19}{16}$
$22 \underset{17}{17}$
$23 \stackrel{18}{\square}$
$24 \underset{\square}{x}$

2
3 H
4 苗 12

$9 \frac{7}{7}$
$10 \xrightarrow{194^{8} 7}$
1188
$12 \underset{10}{9}$
13 mixin
$14 \stackrel{10}{\square}$

$16 \xrightarrow{12}$
$17 \underset{\square}{13}$
$1 8 \longdiv { 1 4 }$
19 留
$20 \stackrel{19}{16}$
$21 \xrightarrow{17}$
$22 \stackrel{20}{\square}$
$23 \xrightarrow{x}$

- Fig. 2. Genome architecture of the ancestors of three mammalian lineages computed by MGR (33) from the seven starting, genomes and compared to the human genome (far left). Each human chromosome is assigned a unique color and is divided into blocks corresponding to the seven-way HSBs common to all species. The size of each block is approximately proportional to the actual size of the block in human. Physical gaps between blocks are shown in human to give an indication of the coverage. Also in human, the heterochromatic/centromere regions are denoted by hatched gray boxes. Numbers above the reconstructed ancestral chromosomes indicate the human chromosome homolog.
Diagonal lines within each block (from top left to bottom right) indicate the relative order and orientation of genes within the block. Black arrowheads under the ancestral chromosomes indicate that the two adjacent HSBs separated by the arrowhead were not found in every one of the most parsimonious solutions explored; these are considered "weak" adjacencies. Arrowheads at the ends of HSB chromosomes indicate that some alternative solutions placed these chromosome-end HSBs adjacent to HSBs from other chromosomes. [View Larger Version of this Image (46K GIF file)]

Sorting genomes by DCJ operations

Bergeron, Mixtacki, Stoye. A unifying view of Genome Rearrangements. WABI 2006.

Slides based in part on Ghada Badr http://www.site.uottawa.ca/~turcotte/teaching/csi5126/lectures/09/1/GenomeRearrangement_Partll_Ghada.ppt

Rearrangement Problems

Our problem:

Given two genomes and a set of possible evolutionary events (operations), find a shortest sequence of events transforming those genomes into one another.

Two classical problems

- Computing the distance $\mathrm{d}(\pi)$.
- Computing one optimal sorting sequence of events.

Rearrangement Operations

Can we have a unifying framework in which circular and linear chromosomes can coexist throughout evolving genomes?

Can we have a unifying view of Genome Rearrangements? (Bergeron 2006)

A Double Cut and Join Operation DCJ was introduced.

Rearrangement Operations -DCJ

- Double Cut-and-Join DCJ was first proposed by Yancopoulos et. al. (2005).
- Allows to model many classical operations (inversions, translocations, fissions, fusions) with a single operation. Others (transposition, block interchanges) in two.
- Model assumes the coexistence of both linear and circular chromosomes. There is some evidence for this in genomes.
- Both the DCJ sorting and distance problems can be solved in O(n) time by Bergeron et. al. (2006)

Adjacencies and telomeres

- A "gene" \mathbf{a} is an oriented sequence of DNA that starts with a tail at and ends with a head ah.
- Two consecutive genes do not necessarily have the same orientation, thus adjacency of two consecutive genes \mathbf{a} and \mathbf{b}, can be of four different types:

$$
\begin{array}{ll}
{[a h, b t],[a h, b h],[a t, b t],[a t, b h]} & \begin{array}{l}
\text { (we use }[\text { and not }\} \\
\text { for sets to avoid a PPT } \\
\text { bug...) }
\end{array}
\end{array}
$$

- An extremity that is not adjacent to any other gene is called telomere. It is denote by a singleton set: [ah] or [at].
- We can use adjacencies to represent both genomes with multiple or uni-chromosomes.

Genome representation

- A genome is a set of adjacencies and telomeres such that the tail or head of any gene appears in exactly one adjacency or telomere.

Example
Genome A: chr1: a c -d chr2: b e chr3: f g \(\quad \rightarrow \begin{aligned} \& at ah ct ch dh dt
\& bt bh et eh
\& ft fh gt gh\end{aligned}\)
Adjacencies :[ah, ct][ch, dh][bh, et] [fh, gt]
Telomere:[at] [dt] [bt] [eh][ft][gh]

Note 2: if a genome has N genes, a adjacencies, t telomeres, then $\mathrm{N}=\mathrm{a}+\mathrm{t} / 2$

$$
\mathrm{A}=[[\mathrm{at}][\mathrm{ah}, \mathrm{bt}][\mathrm{bh}, \mathrm{ct}][\mathrm{ch}, \mathrm{dt}][\mathrm{dh}][\mathrm{et}][\mathrm{eh}, \mathrm{ft}][\mathrm{fh}, \mathrm{gt}][\mathrm{gh}]]
$$

Note: a chromosome is identical to its inverted copy

Double cut and join (DCJ) - definition

Definition 1. The double cut and join (DCJ) operation acts on two vertices u and v of a graph with vertices of degree one or two in one of the following three ways:
(a) If both $u=\{p, q\}$ and $v=\{r, s\}$ are internal vertices, these are replaced by the two vertices $\{p, r\}$ and $\{s, q\}$ or by the two vertices $\{p, s\}$ and $\{q, r\}$.
(b) If $u=\{p, q\}$ is internal and $v=\{r\}$ is external, these are replaced by $\{p, r\}$ and $\{q\}$ or by $\{q, r\}$ and $\{p\}$.
(c) If both $u=\{q\}$ and $v=\{r\}$ are external, these are replaced by $\{q, r\}$.

In addition, as an inverse of case (c), a single internal vertex $\{q, r\}$ can be replaced by two external vertices $\{q\}$ and $\{r\}$.

Rearrangement Operations -DCJ

- DCJ operations:
a) $[p, q][r, s] \longrightarrow[p, r][s, q]$ or $[p, s][q, r]$

Translocation

Inversion
Excision (splicing out a cycle)

Rearrangement Operations - DCJ

- DCJ operations:
b) $[\mathrm{p}, \mathrm{q}][\mathrm{r}] \longrightarrow[\mathrm{p}, \mathrm{r}][\mathrm{q}]$ or $[\mathrm{p}][\mathrm{q}, \mathrm{r}]$

Unbalanced (tail) translocation

Inversion
Excision (splicing out a cycle)

Rearrangement Operations -DCJ

- DCJ operations:
c) $[\mathrm{q}][\mathrm{r}] \longleftrightarrow[\mathrm{q}, \mathrm{r}]$

Fusion/fission

Circularization/linearization

Lemma 1: A DCJ operation changes the number of linear or circular components by ≤ 1

Pf: case analysis
(Q: which case did we not consider?)

DCJ Example

$$
\begin{aligned}
\text { Genome A: chr1: } & \text { a|c -d } \\
\text { chr2: } & \mathrm{b} \mathrm{e} \\
\text { chr3: } & \mathrm{f} \mid \mathrm{g}
\end{aligned}
$$

Adjacencies and telomeres:

[ah,|ct][ch, dh] [bh, et] [fh,|gt] [at]]dt] [bt] [eh][ft][gh]
[ah,ct][fh, gt] \rightarrow [ah,fh][ct,gt]
\rightarrow Genome A: chr1: a -f chr2: b e chr3: d -c g
[ah,ct][fh, gt] \rightarrow [ah,gt][ct,fh]
\Rightarrow Genome A: chr1: a g chr2: b e chr3: f c -d

DCJ sorting and Distance problems

Problem: Given two genomes A and B defined on the same set of genes, find a shortest sequence of DCJ operations that transforms A into B. The length of such a sequence is called the DCJ distance between A and B, dcj(A,B).

DCJ sorting and Distance problems

Example:

Replace each gene by two extremities
Genome A: chr1: a c -d at ah ct ch dh dt
\Rightarrow bt bh et eh chr3: f g ft fh gt gh

Genome B: chr 1: a b c d $\boldsymbol{\rightarrow}$ at ah bt bh ct ch dt dh chr 2: e f g et eh ft fh gt gh

Get adjacencies and telomeres for each genome:
A =[[ah, ct][ch, dh] [bh, et] [fh, gt] [at] [dt]]bt] [eh][ft][gh]]
$B=[[a t][a h, b t][b h, c t][c h, d t][d h][e t][e h, f t][f h, g t][g h]]$

Greedy Alg to sort by DCJ

[ah, ct][ch, dh] [bh, et] [fh, gt] [at] [dt]]bt] [eh][ft][gh]
[ah, bt][ch, dh] [bh, et] [fh, gt] [at] [dt]]ct] [eh][ft][gh]
[ah, bt] [ch, dh] [bh, ct] [fh, gt] [at] [dt]]et] [eh][ft][gh]
[ah, bt] [ch, dt] [bh, ct] [fh, gt] [at] [dh] [et]]eh] [ft][gh]
[at][ah, bt][bh, ct][ch, dt][dh] [et] [eh,ft]]fh,gt] [gh]

Genome A: chr1: a c -d chr2: b e chr3: f g
Genome A: chr1: a b e chr2: c -d chr3: f g
Genome A: chr1: a b c -d chr2: e chr3: f g
Genome A: chr1: a b c d chr2: e chr3: f g

Genome B: chr1: a b c d chr2: e f g_{68}

The adjacency graph $A G(A, B)$ of genomes A, B

A bipartite graph of the intersection of adj\&tel in the two genomes:
[ah, ct][ch, dh] [bh, et] [fh, gt] [at] [dt] [bt] [eh] [ft] [gh]

Vertices: adjacencies and telomeres
Edges: between vertices that have common elements. A union of paths and cycles.

Graph can be easily constructed in $O(n)$ time and space

The adjacency graph $A G(A, A)$

[at] [ah, bt][bh, ct][ch, dt] [dh]]et] [eh,ft] [fh,gt] [gh]

[ch, dt] [dh] [et] [eh,ft] [fh,gt] [gh] C: no. of cycles. I: no. of odd paths.

When sorted : $\mathrm{N}=\mathrm{C}+\mathrm{I} / 2$

DCJ sorting and Distance problems

Adjacency Graph (bipartite graph):

1cycle
4odd paths
1even path

Lemma 2: For A, B N-gene genomes

$$
A=B \text { iff } N=C+1 / 2
$$

Pf: $\leftarrow \mathrm{A}=\mathrm{B}$ with a adjacencies, t telomeres $\rightarrow \mathrm{a}=\mathrm{C}, \mathrm{t}=\mathrm{l} . \quad \mathrm{N}=\mathrm{a}+\mathrm{t} / 2=\mathrm{C}+\mathrm{l} / 2$
\rightarrow G adj. graph of A, B satisfies $N=C+1 / 2$.
A has a adjacencies, t telomeres $\rightarrow \mathrm{N}=\mathrm{a}+\mathrm{t} / 2$
Each cycle has ≥ 1 adjacency $\rightarrow \mathrm{C} \leq a$
Each odd path has 1 telomere of $\mathrm{A} \rightarrow \mathrm{t} \leq \mathrm{l}$
$\mathrm{N}=\mathrm{a}+\mathrm{t} / 2=\mathrm{C}+\mathrm{I} / 2 \rightarrow \mathrm{a}=\mathrm{C}, \mathrm{I}=\mathrm{t}$
\rightarrow All cycles of length 2, all odd paths of length $1 \rightarrow B=A$

Lemma 3: A DCJ operation changes the number of odd paths by $-2,0$ or 2

Pf: simple case analysis. Some cases:

Lemma 4: For genomes A, B with the same set of N genes, $d_{D C G}(A, B) \geq N-(C+I / 2)$

Pf: One DCJ operation may change the number of cycles or the number of odd paths - but not both.
Each operation changes C by ≤ 1 (Lemma 1)
Each operation changes I by ≤ 2 (Lemma 3)
\rightarrow Each operation changes $\mathrm{C}+\mathrm{I} / 2$ by ≤ 1
When terminating $\mathrm{N}=\mathrm{C}+\mathrm{I} / 2$ (lemma 2)
$\rightarrow \mathrm{d}_{\mathrm{DCG}}(\mathrm{A}, \mathrm{B}) \geq \mathrm{N}-(\mathrm{C}+\mathrm{I} / 2)$

DCJ sorting algorithm

```
Algorithm 2 (Greedy sorting by DCJ)
    1: for each adjacency {p,q} in genome B do
    2: let u be the element of genome A that contains p
    3: let v}\mathrm{ be the element of genome }A\mathrm{ that contains }
    4: if u\not=v then
    5: replace u and v}\mathrm{ in }A\mathrm{ by {p,q} and (u\{p}) }\cup(v\{q}
    6: end if
    7: end for
    8: for each telomere {p} in genome B do
    9: let u}\mathrm{ be the element of genome }A\mathrm{ that contains }
10: if u is an adjacency then
11: replace }u\mathrm{ in }A\mathrm{ by {p} and (u\{p})
12: end if
13: end for
```


Theorem: $\mathrm{d}_{\mathrm{DCG}}(\mathrm{A}, \mathrm{B})=\mathrm{N}-(\mathrm{C}+\mathrm{l} / 2)$ and the greedy alg is optimal

Pf. Effect of an iteration:

Each iteration increases C by 1 or I by 2, so Lemma 4 implies the equality and the optimality.

DCJ sorting and Distance problems

Adjacency Graph (bipartite graph):

1cycle
4odd paths
dcj(A,B) $=\mathrm{n}-($ cycles + oddPath/2)
1even path $4=7-1-4 / 2$

References

1. Bergeron A., A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Applied Mathematics, vol. 146, 134-145, 2001.
2. Marília D. V. Braga. Exploring the solution space of sorting by reversals when analyzing genome rearrangements. PhD thesis, University of Claude Bernard, 2009.
3. Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric Tannier, Stephan Vialette. Combinatorics of Genome Rearrangements. The MIT Press,Cambridge, England, 2009.
4. $\quad \rightarrow$ Yancopoulos S., Attie O., Friedberg R. Efficient sorting of genomic permutations by translocation, inversion and block exchange. Bioinformatics 21, 3340-3346 2005.
5. $\quad \rightarrow \rightarrow$ Anne Bergeron, Julia Mixtacki, Jens Stoye. A unifying view of Genome Rearrangements. WABI 2006, LNBI 4175, 163-173, 2006.

Rearrangements in cancer

Theodor Boveri
(On the question of the formation of malignant tumors)

The "Philadelphia Chromosome"

Changed chromosome 9

Chromosomes break

Chromosome Aberrations Typify Cancer Subtypes

Karyotypes

Events

Iso-chromosome
creation

The Karyotype Sorting Problem

\|						Shortest sequ		
\|								of events lead
III \|i ¢ if								
8	to the							

- Model with all operations seems intractable
- W developed a conservative heuristic
- Sorts uniquely 98% of $>60 \mathrm{~K}$ karyotypes in the Mitelman DB

FIN

