
 Gene finding and 
regulatory motif analysis 

December 20, 2016 

  גנומיקה חישובית  
,     חיים וולפסון' פרופ, רון שמיר' פרופ 

 ויקס  -עירית גת' דר
 אוניברסיטת תל אביב  ,ס למדעי המחשב"ביה

Computational Genomics 
Prof. Ron Shamir, Prof. Haim 
Wolfson, Dr. Irit Gat-Viks 

School of Computer Science, Tel Aviv University 

http://www.tau.ac.il/
http://www.tau.ac.il/


Gene Finding 

Sources: 
•Lecture notes of Larry Ruzzo, UW.  
•Slides by Nir Friedman, Hebrew U. 
•Burge, Karlin: “Finding Genes in Genomic DNA”, Curr. Opin. In Struct. 
Biol 8(3) ’98 
• Slides by Chuong Huynh on Gene Prediction, NCBI 
•Durbin’s book, Ch. 3 
•Pevzner’s book, Ch. 9 
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Motivation 
• ~3Gb human DNA in GenBank 

• Only ~1.5% of human DNA is coding for 
proteins 

• 220,731,315,250 total bases in GenBank (10/2016) 

• Thousands of species have been sequenced, 
more to follow 

• Total number of species represented in 
UniProtKB/Swiss-Prot (2016): 13,367 

• Need to locate the genes! 

• Goal: Automatic finding of genes 
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Reminder: The Genetic Code 

1 start, 3 stop codons 
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Genes in Prokaryotes  

• High gene density (e.g. 70% coding in H. Influenza) 

• No introns  

•  most long ORFs are likely to be genes. 
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Open Reading Frames 

• Reading Frame: 3 possible ways to read the 
sequence (on each strand). 

• ACCUUAGCGUA = Threonine-Leucine-Alanine 

• ACCUUAGCGUA = Proline-Stop-Arginine 
• ACCUUAGCGUA = Leucine-Serine-Valine 
• Open Reading Frame (ORF):  Reading frame 

with no stop codons. 
• ORF is maximal if it starts right after a 

stop and ends in a stop 
• Untranslated region (UTR): ends of the 

mRNA (on both sides) that are not 
translated to protein. 
 

CG © Ron Shamir 
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Finding long ORFs 

• In random DNA, one stop codon every 
64/3  21 codons on average 

• Average protein is ~300 AA long 
• => search long ORFs 

• Problems: 
– short genes 
– many more ORFs than genes 

• In E. Coli one finds 6500 ORFs but only 1100 genes. 
• Call the remaining Non-coding ORF (NORFS) 

– Overlapping long ORFs on opposite strands 
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Codon Frequencies 

• Coding DNA is not random: 
– In random DNA, expect 

•  Leucine:Alanine:Tryptophan ratio of 6:4:1 

– In real proteins, 6.9:6.5:1 

– In some species, 3rd position of the 
codon, up to 90% A or T  

• Different frequencies for different 
species. 
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Human codon  
usage 

Gly  GGG  17.08 0.23 Arg  AGG  12.09 0.22 Trp  TGG  14.74 1 Arg  CGG  10.4 0.19 

Gly  GGA  19.31 0.26 Arg  AGA  11.73 0.21 End  TGA  2.64 0.61 Arg  CGA  5.63 0.1 

Gly  GGT  13.66 0.18 Ser  AGT  10.18 0.14 Cys  TGT  9.99 0.42 Arg  CGT  5.16 0.09 

Gly  GGC  24.94 0.33 Ser  AGC  18.54 0.25 Cys  TGC  13.86 0.58 Arg  CGC  10.82 0.19 

Glu  GAG  38.82 0.59 Lys  AAG  33.79 0.6 End  TAG  0.73 0.17 Gln  CAG  32.95 0.73 

Glu  GAA  27.51 0.41 Lys  AAA  22.32 0.4 End  TAA  0.95 0.22 Gln  CAA  11.94 0.27 

Asp  GAT  21.45 0.44 Asn  AAT  16.43 0.44 Tyr  TAT  11.8 0.42 His  CAT  9.56 0.41 

Asp  GAC  27.06 0.56 Asn  AAC  21.3 0.56 Tyr  TAC  16.48 0.58 His  CAC  14 0.59 

Val  GTG  28.6 0.48 Met  ATG  21.86 1 Leu  TTG  11.43 0.12 Leu  CTG  39.93 0.43 

Val  GTA  6.09 0.1 Ile  ATA  6.05 0.14 Leu  TTA  5.55 0.06 Leu  CTA  6.42 0.07 

Val  GTT  10.3 0.17 Ile  ATT  15.03 0.35 Phe  TTT  15.36 0.43 Leu  CTT  11.24 0.12 

Val  GTC  15.01 0.25 Ile  ATC  22.47 0.52 Phe  TTC  20.72 0.57 Leu  CTC  19.14 0.20 

Ala  GCG  7.27 0.1 Thr  ACG  6.8 0.12 Ser  TCG  4.38 0.06 Pro  CCG  7.02 0.11 

Ala  GCA  15.5 0.22 Thr  ACA  15.04 0.27 Ser  TCA  10.96 0.15 Pro  CCA  17.11 0.27 

Ala  GCT  20.23 0.28 Thr  ACT  13.24 0.23 Ser  TCT  13.51 0.18 Pro  CCT  18.03 0.29 

Ala  GCC  28.43 0.4 Thr  ACC  21.52 0.38 Ser  TCC  17.37 0.23 Pro  CCC  20.51 0.33 

http://genome.imim.es/courses/Lisboa01/slide3.8.html 

frequency of 
usage of each 
codon (per 
thousand)  

relative freq of 
each codon among 
synonymous codons  
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First Order Markov Model 

• Use two Markov models (similar to 
CpG islands) to discriminate genes 
from NORFs 

• Given a sequence of nucleotides 
X1,…,Xn we compute the log-odds 
ratio: 
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First Order Markov Model 

• Average log-odds per nucleotide 
–  in genes : 0.018 

– in NORFs :  0.009 

• But the variance makes it useless for 
discrimination (similar results for 2nd-order MM) 

Test on E. 

Coli data  

Durbin et al 

pp.74 
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Using codons 

• Translate each ORF into a sequence of 
codons 

• Form a 64-state Markov chain 
– Codon is more informative than its translation 

• Estimate probabilities in coding regions and 
NORFs 

 

 

Durbin et al 

pp.76 
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Using Codon Frequencies 

• The probability that the i-th 
reading frame is the coding 
region: 
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• Assume each codon is iid 
• For codon abc calculate frequency fabc  in 

coding region 
• Given coding sequence a1b1c1,…, an+1bn+1cn+1 
• Calculate  
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CodonPreference 

 
ORF 

The real 
genes 
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RNA Transcription 

• Not all ORFs are expressed. 
• Transcription depends on regulatory signals  
• Minimal regulatory region – core promoter   

to which RNA polymerase and initiation 
factors bind to start transcription.  

• At the termination signal the polymerase 
releases the RNA and disconnects from the 
DNA. 
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E. coli promoters 

• “TATA box” (or Pribnow Box) 

• Not exact  

consensus sequence:  
nnnTTGACAnnnnnnnnnnnnnnnnnnTATAATnnnnnnNnnn 

      

     -35                                                  -12                     mRNA start 
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Positional Weight Matrix (PWM) 

• Fb,j : frequency of base b in position j. 

• Assumes independence btw positions  

• For TATA box: 

 

 

 

 

• fb : background frequency. 
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Scoring Function 

• For sequence S=B1B2B3B4B5B6  
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• Log-likelihood  ratio score: 
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 Gene finding: coding density 

 As the coding/non-coding length ratio decreases, exon 
prediction becomes more complex 

     

     

 

     
Human 

Fugu 

worm 

E.coli 
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Eukaryote gene structure 

 

 
 

 

 

20 

CG © Ron Shamir 

AA…A addition 
to RNA only 

http://www.tau.ac.il/


Typical figures: verterbrates 

• Promoter: 2-5kb upstream of TSS 
• 5’ UTR: ~750 bp, 3’ UTR: ~450bp 
• Ave gene length: 30kb, coding region: 1-2kb 
• Average of 6 exons, 150bp long 
• Huge variance!  

- dystrophin: 2.4Mb long 

– TTN: 363 exons, longest: 17,106bp 
– Blood coagulation factor: 26 exons, 69bp to 

3106bp; intron 22 contains another unrelated gene 
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Splicing 

• Splicing: the removal of the introns. 
• Performed by the spliceosome complex, 

containing both proteins and snRNA. 
• The snRNA recognizes the splice sites 

through RNA-RNA base-pairing 
• Recognition must be precise: a 1nt error 

shifts the reading frame making nonsense 
of its message. 

• Many genes have alternative splicing, which 
changes the protein created. 
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Exon-intron junctions 

• 1st modeling approach: positional weight matrices 

• Problematic with weak/short signals 

• Does not exploit all info (reading frames, 
intron/exon stats…) 

 try integrated approaches! 

AGGUAAGU………CTGAC…….NCAGG……. 
62 77 100 100 60 74 84 50                 [ 63 –91]                       -   78 100 100 55             

 

     Donor site                         branchpoint  <-15bp ->  acceptor site 

                                                         pyrimidine [C,T] rich  

 

freq(%) 
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Length Distribution 

HMM is a memory-less process, so the only length 
distribution that can be modeled is geometric.  

exon intron p q 

1-p 

1-q 

)1()length  ofexon ( ppkP k 

•Suppose we use HMM for gene structure 
 
 
 
 

•The length of each exon (intron) has a 
geometric distribution: 
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Exon and Intron Length Distribution 

Roughly  
 geometric 

Definitely 
 not 

Definitely 
 not 

Definitely 
 not 
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Generalized HMM 
(Burge & Karlin, J. Mol. Bio. 97 268 78-94) 

– Hidden Markov states q1,…qn 

– State qi has output length distribution fi  

– Output of each state can have a 
different probabilistic model (weight 
matrix, codon freq, ...) 

– Initial state probability distribution  

– State transition probabilities Tij 
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GenScan Model 
Exon 

Intron 

Exon init/term 

5’/3’ UTR 

Promoter/PolyA 

Forward 
strand 

 

 

 

 

Backward 
strand 

Burge & Karlin JMB 97 
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GenScan model 

• states = functional units along a gene 

• The allowed transitions ensure the 
order is biologically consistent 

 

 

 

• The index of the intron model = the 
phase of the exons before and after it 

• In terms of output and length, I0,I1,I2 
are identical 
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Signal Models 

• Genscan uses different models to 
model the different biological signals 
– Weight Matrix Model 

• Position specific distribution. 
• Columns are independent 

– Used for 
• Translation initiation signal 
• Translation termination signal 
• promoters 
• polyadenylation signals 

CG © Ron Shamir 
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Splice Sites 

• Correct recognition of these sites greatly 
enhances ability to predict correct exon 
boundaries.   

• Used Weighted Array Model: a 
generalization of PWM that allows for 
dependencies between adjacent positions 

• Accurate modeling of these sites led to 
substantial improvement in performance. 
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GenScan Performance 

•Predicts correctly 80% of exons  

•Prediction accuracy per bp > 90% 
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Precision and Recall 
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GenScan Output 
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Sam Karlin, Chris Burge 
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Extras 
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Finding Genes via mRNA-DNA alignment 
Gelfand, Mironov, Pevzner PNAS ’93 9061-6 

• “Spliced alignment” problem 

Idea: If we have mature (spliced) mRNA 
seq, we can align it to the genomic DNA, 
skipping over introns 

CG © Ron Shamir 
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Transcript based prediction using NGS   
(2009+ style) 

• Extract mRNA; break randomly 
into short segments (~100bp) 

 

• Sequence 100K-1M segments 

• Align segments to the known gene 
sequences ( stringology here!) 

• Obtain counts how many copies of 
each gene were found 

 38 

100M 
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39 

Roche 454 

ABI SOLID 3  

Illumina Genome Analyzer II CG © Ron Shamir 
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Yassour M, et al. Ab initio Construction of a Eukaryotic Transcriptome 
 by Massively Parallel mRNA Sequencing. PNAS 09 CG © Ron Shamir 
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Detecting splice sites 

CG © Ron Shamir 
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Regulatory 
sequence analysis 

Slides with Chaim Linhart 

•43 
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Regulation of Transcription 
• A gene’s ranscription regulation is 

mainly encoded in the DNA in a region 
called the promoter 

• Each promoter contains several short 
DNA subsequences, called binding sites 
(BSs) that are bound by specific 
proteins called transcription factors 
(TFs) 

TF TF 

Gene 
5’ 3’ 

BS BS 

http://www.tau.ac.il/
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Regulation of Transcription (II) 

Assumption: 
 

Co-expression 

↓ 

Transcriptional co-regulation 

↓ 

Common BSs 

http://www.tau.ac.il/


GE © Ron Shamir 
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WH-questions 

•  Why are we looking for common BSs? 

 

• What exactly are we trying to find? 

 

• Where should we look for it? 

 

• How can we find it? 

http://www.tau.ac.il/
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Promoter Region (Where?) 

What is the promoter region? 

• Upstream Transcription Start Site (TSS) 
– Too short → miss many real BSs (false negatives) 

– Too long → lots of wrong hits (false positives) 

– Length is species dependent (e.g., yeast ~600bp, 
thousands in human) 

– Common practice: ~ 500-2000bp 

• Consider both strands?   
– Common practice: Yes 

http://www.tau.ac.il/


What: Models for Binding 
Sites 

•48 
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(I) Exact string(s) 
 

 Example:   

  BS = TACACC , TACGGC 
 

 CAATGCAGGATACACCGATCGGTA 

 GGAGTACGGCAAGTCCCCATGTGA 

 AGGCTGGACCAGACTCTACACCTA 

 
In red: hits 

http://www.tau.ac.il/
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(II) String with mismatches 

 Example:  

  BS = TACACC + 1 mismatch 
 

 CAATGCAGGATTCACCGATCGGTA 

 GGAGTACAGCAAGTCCCCATGTGA 

 AGGCTGGACCAGACTCTACACCTA 
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(III) Degenerate string 
 

 

 

 Example:  

  BS = TASDAC (S={C,G} D={A,G,T}) 
 

 CAATGCAGGATACAACGATCGGTA 

 GGAGTAGTACAAGTCCCCATGTGA 

 AGGCTGGACCAGACTCTACGACTA 

 
 

T 

G G 

T A C A A C 
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(IV) Position Weight Matrix 
(PWM) 

a.k.a Position Specific Scoring Matrix (PSSM) 
 

 Example:    

 
 

0 0.2 0.7 0 0.8 0.1 A 

0.6 0.4 0.1 0.5 0.1 0 C 

0.1 0.4 0.1 0.5 0 0 G 

0.3 0 0.1 0 0.1 0.9 T 

   ATGCAGGATACACCGATCGGTA     0.0605 

       GGAGTAGAGCAAGTCCCGTGA  0.0605 

    AAGACTCTACAATTATGGCGT     0.0151 

 

Score: product of 

base probabilities. 

Need to set score 

threshold for hits. 
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How: Experimental 
techniques 
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Protein Binding Microarrays 
Berger et al, Nat. Biotech 2006 

• Generate an array of 
double-stranded 
DNA with all 
possible k-mers 

• Detect TF binding to 
specific k-mers 

http://www.tau.ac.il/
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Chromatin Immunoprecipitation 
(ChIP) 

http://www.bio.brandeis.edu/haberlab/jehsite/chip.html 

DNA-binding proteins are crosslinked to 

DNA with formaldehyde in vivo.  

Isolate the chromatin. Shear DNA along with 

bound proteins into small fragments.  

Bind antibodies specific to the DNA-binding 

protein to isolate the complex by 

precipitation. Reverse the cross-linking to 

release the DNA and digest the proteins.  

Identify bound DNA via microarray 

hybriziation or sequencing 

http://www.tau.ac.il/


How: I. Analyzing known motifs 
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PRIMA 
PRomoter Integration in Microarray Analysis (Elkon et al. ’03) 

Goal: Identify enriched TFs = TF motifs over-represented 

in promoters of co-regulated genes 

– Input: TF motif(s), target and background sets of promoter 

sequences 

– Find motif hits in all promoters 

– Compute enrichment of hits in the target set compared to the 

background set 

gene 7 

gene 9 

gene 5 

gene 3 
gene 2 

gene 4 

gene 6 

gene 8 

gene 10 

gene 1 

Target set 

Rest of genome 

C 
G 

A 
C 

T 

AACTGT 

CACTGT 

CACTCT 

CACTGT 

AACTGT 

ACT 

Motif: 
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Computation of Motif Hits 

Computing the threshold for a PWM: 

• Compute 2nd-order Markov model of background 

sequences 

• Generate random sequences using the model  (e.g., 

1,000 sequences of length 1,000) 

• Set threshold s.t. PWM has ~5%  hits at random. 

 

This “ensures” a pre-defined false-positive rate, 

but no guarantee on false-negative rate. 
•58 



Motif Enrichment 
Each promoter is hit or not. 

Let:  B = total # of promoters (BG) 

  T = # of target-set promoters 

  b = total # of promoters that are hit 

  t = # of target-set promoters that are hit 

Then (hypergeometric distribution assumption): 

Prob. for t hits in target-set: 

 

Prob. for at least t hits: 
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TF Synergism 

Find pairs of TFs that tend to occur in the same promoters 

Let:  T = # of promoters in target-set 

  t1 , t2 = # of promoters hit by TF 1,2 

  t12 = # of promoters hit by both TFs (w/o overlaps!) 

Then: 

  Prob. for co-occurrence of at least t12: 
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PRIMA: Human Cell Cycle 

Whitfield et al. (’02) identified 568 genes that are  

periodically expressed in the human cell-cycle and 

partitioned them into the 5 phases of the cell-cycle 
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PRIMA: results on HCC 

PRIMA found 8 enriched TFs in the 568  

HCC genes (w.r.t. 13K BG promoters): 
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Results on HCC (III) 

Co-occurring pairs of TFs: 
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How: II Motif discovery 
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Bailey & Elkan ZOOPS model 

• n sequences, m possible motif positions per sequence.  

• Assumption: Zero Or One occurrence of the motif Per 

Sequence. 

• Prior probability for one occurrence : γ 

• Prior probability for motif in position j: λ= γ/m 

• What is the hidden data? 

• What is the Q function? 
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Bailey & Elkan ZOOPS (cont.) 

• Zij indicator for motif at sequence i, position j.  

• Qi indicator for motif in sequence i. 

•66 

(ex.) 
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