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Gene Finding 

Sources: 
•Lecture notes of Larry Ruzzo, UW.  
•Slides by Nir Friedman, Hebrew U. 
•Burge, Karlin: “Finding Genes in Genomic DNA”, Curr. 
Opin. In Struct. Biol 8(3) ’98 
• Slides by Chuong Huynh on Gene Prediction, NCBI 
•Durbin’s book, Ch. 3 
•Pevzner’s book, Ch. 9 
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Motivation 
• ~3Gb human DNA in GenBank 
• Only ~1.5% of human DNA is coding for 

proteins 
• 155,176,494,699 total bases in GenBank (10/13) 
• Hundreds of species have been sequenced, 

thousands to follow 
• Total number of species represented in 

UniProtKB/Swiss-Prot (11/13): 13,041 
• Need to locate the genes! 
• Goal: Automatic finding of genes 
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“The Central Dogma” 
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RNA Transcription 
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DNA RNA  Protein 

http://www.ornl.gov/hgmis/publicat/tko/index.htm 
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Ribosome 
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Reminder: The Genetic Code 

1 start, 3 stop codons 
CG © Ron Shamir 
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Gene Finding in Prokaryotes 
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Genes in Prokaryotes  
• High gene density (e.g. 70% coding in H. Influenza) 

• No introns  
•  most long ORFs are likely to be genes. 
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Open Reading Frames 
• Reading Frame: 3 possible ways to read the 

sequence (on each strand). 
• ACCUUAGCGUA = Threonine-Leucine-Alanine 
• ACCUUAGCGUA = Proline-Stop-Arginine 
• ACCUUAGCGUA = Leucine-Serine-Valine 
• Open Reading Frame (ORF):  Reading frame 

with no stop codons. 
• ORF is maximal if it starts right after a 

stop and ends in a stop 
• Untranslated region (UTR): ends of the 

mRNA (on both sides) that are not 
translated to protein. 
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Finding long ORFs 
• In random DNA, one stop codon every 

64/3  21 codons on average 
• Average protein is ~300 AA long 
• => search long ORFs 
• Problems: 

– short genes 
– many more ORFs than genes 

• In E. Coli one finds 6500 ORFs but only 1100 genes. 
• Call the remaining Non-coding ORF (NORFS) 

– Overlapping long ORFs on opposite strands 
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Codon Frequencies 
• Coding DNA is not random: 

– In random DNA, expect 
•  Leucine:Alanine:Tryptophan ratio of 6:4:1 

– In real proteins, 6.9:6.5:1 
– In some species, 3rd position of the 

codon, up to 90% A or T  
• Different frequencies for different 

species. 
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Human codon  
usage 

Gly  GGG  17.08 0.23 Arg  AGG  12.09 0.22 Trp  TGG  14.74 1 Arg  CGG  10.4 0.19 

Gly  GGA  19.31 0.26 Arg  AGA  11.73 0.21 End  TGA  2.64 0.61 Arg  CGA  5.63 0.1 

Gly  GGT  13.66 0.18 Ser  AGT  10.18 0.14 Cys  TGT  9.99 0.42 Arg  CGT  5.16 0.09 

Gly  GGC  24.94 0.33 Ser  AGC  18.54 0.25 Cys  TGC  13.86 0.58 Arg  CGC  10.82 0.19 

Glu  GAG  38.82 0.59 Lys  AAG  33.79 0.6 End  TAG  0.73 0.17 Gln  CAG  32.95 0.73 

Glu  GAA  27.51 0.41 Lys  AAA  22.32 0.4 End  TAA  0.95 0.22 Gln  CAA  11.94 0.27 

Asp  GAT  21.45 0.44 Asn  AAT  16.43 0.44 Tyr  TAT  11.8 0.42 His  CAT  9.56 0.41 

Asp  GAC  27.06 0.56 Asn  AAC  21.3 0.56 Tyr  TAC  16.48 0.58 His  CAC  14 0.59 

Val  GTG  28.6 0.48 Met  ATG  21.86 1 Leu  TTG  11.43 0.12 Leu  CTG  39.93 0.43 

Val  GTA  6.09 0.1 Ile  ATA  6.05 0.14 Leu  TTA  5.55 0.06 Leu  CTA  6.42 0.07 

Val  GTT  10.3 0.17 Ile  ATT  15.03 0.35 Phe  TTT  15.36 0.43 Leu  CTT  11.24 0.12 

Val  GTC  15.01 0.25 Ile  ATC  22.47 0.52 Phe  TTC  20.72 0.57 Leu  CTC  19.14 0.20 

Ala  GCG  7.27 0.1 Thr  ACG  6.8 0.12 Ser  TCG  4.38 0.06 Pro  CCG  7.02 0.11 

Ala  GCA  15.5 0.22 Thr  ACA  15.04 0.27 Ser  TCA  10.96 0.15 Pro  CCA  17.11 0.27 

Ala  GCT  20.23 0.28 Thr  ACT  13.24 0.23 Ser  TCT  13.51 0.18 Pro  CCT  18.03 0.29 

Ala  GCC  28.43 0.4 Thr  ACC  21.52 0.38 Ser  TCC  17.37 0.23 Pro  CCC  20.51 0.33 

http://genome.imim.es/courses/Lisboa01/slide3.8.html 

frequency of 
usage of each 
codon (per 
thousand)   

relative freq of 
each codon among 
synonymous codons  
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First Order Markov Model 
• Use two Markov models (similar to 

CpG islands) to discriminate genes 
from NORFs 

• Given a sequence of nucleotides 
X1,…,Xn we compute the log-likelihood 
(aka log-odds) ratio: 
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First Order Markov Model 

• Average log-odds per nucleotide in genes : 0.018 
• Average log-odds per nucleotide in NORFs :  

0.009 
• But the variance makes it useless for 

discrimination 

Test on E. 
Coli data  

Durbin et al 
pp.74 
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Second Order Markov Chains 
Assumption: 
• Xi+1 is independent of the past once 

we know Xi  and Xi-1 
• This allows us to write: 
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• Results are similar to the first order 
Markov chain 
 Idea: work with codons 
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Using codons 
• Translate each ORF into a sequence of 

codons 
• Form a 64-state Markov chain 

– Codon is more informative than its translation 

• Estimate probabilities in coding regions and 
NORFs 

 
 

Durbin et al 
pp.76 
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Using Codon Frequencies 

• The probability that the i-th 
reading frame is the coding 
region: 
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• Assume each codon is iid 
• For codon abc calculate frequency fabc  in 

coding region 
• Given coding sequence a1b1c1,…, an+1bn+1cn+1 
• Calculate  
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CodonPreference 

 
ORF 

The real 
genes 

 
Rare codons 

 
Sliding window length (in codons) 
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CodonPreference: 3rd position GC bias 
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RNA Transcription 
• Not all ORFs are expressed. 
• Transcription depends on regulatory 

regions 
• Common regulatory region – the promoter 
• RNA polymerase binds tightly to a specific 

DNA sequence in the promoter called the 
binding site. 

• “Anchor” point,  pinpoints where RNA 
transcription should begin. 

• At the termination signal the polymerase 
releases the RNA and disconnects from the 
DNA. 

CG © Ron Shamir 
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TF binding to the promoter 

www.science.siu.edu/microbiology/ micr302/transcription.html  
CG © Ron Shamir 
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DNA being transcribed by the enzyme RNA polymerase. The enzyme (white spot) 
binds to the DNA (thin line) After the NTP molecules arrive in the third picture on 
the top row, the enzyme starts to move along the DNA . As the enzyme moves along 
the DNA, it uses the NTPs to make RNA (not visible) until it comes to the end of 
the DNA and falls off in the bottom row of pictures. The DNA continually wiggles 
around, as you can see from the pictures. 

Kasas, et al 1997. Biochemistry. 36:461-468.  

 

www.physics.ucsb.edu/~hhansma/ afm-acs_news.htm  CG © Ron Shamir 
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E. coli promoters 

• “TATA box” (or Pribnow Box) 
• Not exact  
• Other common features. 

consensus sequence:  
nnnTTGACAnnnnnnnnnnnnnnnnnnTATAATnnnnnnNnnn 

      

     -35                                                  -12                     mRNA start 

   

CG © Ron Shamir 
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Positional Weight Matrix 
• fb.j : frequency of base b in position j. 
• Assumes independence btw positions  
• For TATA box: 

 
 
 
 
 

• fb : background frequency. 
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Scoring Function 
• For sequence S=B1B2B3B4B5B6  
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• Log-likelihood  ratio score: 
 
 
 
 
 

 

• Experiments show ~80% correlation 
of score to measured binding energy 
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TFIID 

3D reconstructions of 
TFIID at 35 and 30 
Angstroms resolution. 
 

    The transcription factor 
TFIID is localized within 
the nucleus of the cell 
and, along with other 
basal transcription 
factors, is primarily 
responsible for showing 
RNA polymerase the 
start of a transcription 
site by binding to the 
DNA TATA box upstream 
of a gene.  

cryoem.berkeley.edu/ ~fandel/TFIID.html  
CG © Ron Shamir 
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Promoter Variation 
• Why do promoters vary? 

– ??? 
– Specificity of promoters is responsible  

for transcription level: the closer the 
sequence to the consensus, the higher 

– This allows a 1000 fold difference 
between genes transcription levels. 

 finding regulatory sequences is an 
inherently stochastic problem – and a 
hard one. 

CG © Ron Shamir 
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 Gene finding: coding density 

 As the coding/non-coding length ratio decreases, exon 
prediction becomes more complex 

     

     

 

     
Human 

Fugu 

worm 

E.coli 
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Gene Finding in 
 Eukaryotes 

CG © Ron Shamir 
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Eukaryote gene structure 
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Typical figures: verterbrates 

• TF binding site: ~6bp; 0-2kbp upstream of 
TSS 

• 5’ UTR: ~750 bp, 3’ UTR: ~450bp 
• Gene length: 30kb, coding region: 1-2kb 
• Average of 6 exons, 150bp long 
• Huge variance: - dystrophin: 2.4Mb long 

– Blood coagulation factor: 26 exons, 69bp to 
3106bp; intron 22 contains another unrelated gene 

•Transcription 
rate: <50 b/sec 
•Splicing rate: 
minutes 

CG © Ron Shamir 
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Intron & exon statistics 

Burge & Karlin JMB 97 
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Markov Sequence Models 
• Key: distinguish coding/non-coding statistics 
• Popular models: 

– 6-mers (5th order Markov Model) 
– Homogeneous/non-homogeneous (reading frame 

specific) 

Not sensitive enough for eukaryote 
genes: exons too short, poor detection 

of splice junctions CG © Ron Shamir 
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Splicing 
• Splicing: the removal of the introns. 
• Performed by complexes called 

spliceosomes, containing both proteins and 
snRNA. 

• The snRNA recognizes the splice sites 
through RNA-RNA base-pairing 

• Recognition must be precise: a 1nt error can 
shift the reading frame making nonsense of 
its message. 

• Many genes have alternative splicing, which 
changes the protein created. 

CG © Ron Shamir 
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Spliceosome - path 

http://www.neuro.wustl.edu/neuromuscular/pathol/diagrams/splicefunct.html 
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Spliceosome - mechanism 

http://www.neuro.wustl.edu/neuromuscular/pathol/diagrams/splicemech .html CG © Ron Shamir 
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Exon-intron junctions 

• 1st approach: position specific weight matrices 
• Problematic with weak/short signals 
• Does not exploit all info (reading frames, 

intron/exon stats…) 
 try integrated approaches! 

AGGUAAGU………CTGAC…….NCAGG……. 
62 77 100 100 60 74 84 50                 [ 63 –91]                       -   78 100 100 55             

 

     Donor site                         branchpoint  <-15bp ->  acceptor site 

                                                         pyrimidine [c,t] rich  

   

 

 
freq(%) 
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Length Distribution 

Since an HMM is a memory-less process, the only 
length distribution that can be modeled is 
geometric.  

exon intron p q 

1-p 

1-q 

)1()length  ofexon ( ppkP k −=

•Above is a simple HMM for gene structure 
•The length of each exon (intron) has a 
geometric distribution: 
 

CG © Ron Shamir 
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Exon Length Distribution 
• Intron length distribution seems 

approximately geometric 
• This is not so for exons. 
• Length seems to have a functional role on 

the splicing itself: 
– Too short (under 50bps):  the spliceosomes have no room 
– Too long  (over 300bps): ends have problems finding each other. 
– But as usual there are exceptions. 

 Need a different model for exons. 

CG © Ron Shamir 
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Generalized HMM 
(Burge & Karlin, J. Mol. Bio. 97 268 78-94) 

– Semi-Markov model with different 
output length at each node 

– HMM with different output length and 
different output distribution at each node 

CG © Ron Shamir 
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Generalized HMM 
(Burge & Karlin, J. Mol. Bio. 97 268 78-94) 

• Overview: 
– Hidden Markov states q1,…qn 

– State qi has output length distribution fi  
– Output of each state can have a separate 

probabilistic model (weight matrix model, 
HMM…) 

– Initial state probability distribution π 
– State transition probabilities Tij 
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GenScan Model 
Exon 

Intron 

Exon init/term 

5’/3’ UTR 

Promoter/PolyA 

Forward 
strand 

 

 

 

 

Backward 
strand 

Burge & Karlin JMB 97 CG © Ron Shamir 
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GenScan model 

• states = functional units on a gene 
• The allowed transitions ensure the 

order is biologically consistent. 
• As an intron may cut a codon, one must 

keep track of the reading frame, 
hence the three I phases: 

• phase I0: between codons 
• phase I1:: introns that start after 1st base 
• phase I2 : introns that start after 2nd base 

 
 CG © Ron Shamir 
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Prediction 
• A parse Φ of a sequence S with|S|=L: 

ordered sequence of states (q1,…,qt); 
associated durations di   for each state.  

)|()()|()(),(
2

111 1111 kkqkq

t

k
qqqqq dSPdfTdSPdfSP

kkkk∏
=

−
=Φ π

Ldt

i i =∑ =1

•Parse = annotation 
•Given a parse Φ and a sequence S: 

–the probability the model went through states Φ 
to create S is: 
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Prediction 
• probability of a specific parse given 

the sequence: 
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• Can compute Φopt by Viterbi-like algorithm. 
• Can compute P(S) by forward-like alg. 
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 C+G Content variability 

CG © Ron Shamir 
50 www.nr.com/bio/IsochoresandGenesVer4.ppt  
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C+G Content 
• C+G content (“isochore”) has strong 

effect on  gene density, gene length 
etc. 
– < 43% C+G  : 62% of genome, 34% of genes 
– >57% C+G : 3-5% of genome, 28% of genes 

• Gene density in C+G rich regions is 5 times 
higher than moderate C+G regions and 10 
times higher than rich A+T regions 
– Amount of intronic DNA is 3 times higher for 

A+T rich regions. (Both intron length and 
number). 

– Etc…    
CG © Ron Shamir 
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C+G Content statistics 
 

Burge & Karlin JMB 97 Estimates by Duret et al. 95 

CG © Ron Shamir 
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 Handling diverse C+G Content 
• The training set was divided into 4 

categories: 
– < 43% C+G   
– 43-51% C+G 
– 51-57% C+G  
– >57% C+G  

• separate initial state probabilities, 
transition probabilities, and state length 
distributions for each category 

• Initial, terminal, internal exons treated 
separately 

CG © Ron Shamir 
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The Gory Details 
• Initial State Probabilities: 

– Proportional to the frequencies at 
which various functional units occur 
in actual genomic data. 

• Used not only training set of genes but all of 
Genbank 

• Transition Probabilities 
– Estimated frequencies of all 

biologically permissible transitions. 
• The diamond shaped states are 

regular HMM states emitting the 
background distribution  

 

CG © Ron Shamir 
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Exon States 
• Length Distribution 

– Varies great between initial, internal and 
terminal exons, separate density for each 

– Small variance with C+G content, pooled the 
different sets for larger sample size 

– Used a smoothed empirically calculated 
distribution 

– Length of exon needs to be consistent with 
phase of its adjacent introns 

• preceding state I2  succeeding state I1 then length is 
3n+2  for some randomly generated n. 

• Emission probabilities:  
– Based on base frequencies in all exons. 

CG © Ron Shamir 
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Signal Models 
• Genscan uses different models to 

model the different biological signals 
– WMM (Weight Matrix Model) 

• Position specific distribution. 
• Each column is independent 

– Used for 
• Translation initiation signal 
• Translation termination signal 
• promoters 
• polyadenylation signals 

CG © Ron Shamir 
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Splice Sites 
• Correct recognition of these sites greatly 

enhances ability to predict correct exon 
boundaries. 

• Used WAM (Weighted Array Model)  
• A generalization of PWM that allows for 

dependencies between adjacent positions 
• Much effort went to modeling these splice 

sites 
• This gave GenScan a substantial 

improvement in performance. 

CG © Ron Shamir 
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GenScan Performance 
• Features 

– Identification of complete intron, exon 
structures 

– Handles both multiple and partial genes 
– Ability to predict on both strands of the 

DNA 
– Predicts both optimal annotation and sub-

optimal exons 

CG © Ron Shamir 
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GenScan Performance 

•Predicts correctly 80% of exons  
•with multiple exons probability declines… 

•Prediction accuracy per bp > 90% CG © Ron Shamir 
59 

sensitivity 
true positive rate 

TP/(TP+FN) 

positive predictive 
value 

TP/(TP+FP) 
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GenScan Output 

CG © Ron Shamir 
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Sam Karlin, Chris Burge 

CG © Ron Shamir 
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Many prediction Tools 
• Many prediction tools: 
•  dynamic programming to make the high 

scoring model from available features. 
–  e.g. Genefinder (Green) 

•  Running a 5’ 3’ pass on the sequence 
through a Markov model based on a typical 
gene model 
–  e.g. TBparse (Krogh), GENSCAN (Burge) or 

GLIMMER (Salzberg) 
•  Running a 5’3’ pass on the sequence 

through a neural net trained with confirmed 
gene models 
–  e.g. GRAIL (Oak Ridge) 

• Tools are usually used in combination. 
 

CG © Ron Shamir 
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CG © Ron Shamir 
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Comparative Gene Finding 

CG © Ron Shamir 
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 An end to ab initio prediction? 

 ab initio gene prediction has limited accuracy 

 High false positive rates for most predictors 

 Exon prediction sensitivity can be good 

 Rarely used as a final product 

 Human annotators run multiple algorithms and 
score exon predicted by multiple predictors. 

 Used as a starting point for refinement / 
verification 

 Prediction need correction and validation 

  build gene models by comparative means! 
CG © Ron Shamir 
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Scenario 
• We have the coding sequence T of a 

protein from species A, and the DNA 
sequence G of species B.  

• We think that a homolog of T appears 
somewhere in G,  possibly interrupted 
by introns 

• Want to find the best alignment of T 
to G  

67 
CG © Ron Shamir 
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Spliced Alignment 
Gelfand, Mironov, Pevzner PNAS ’93 9061-6 

• Need to identify alignment and splicing 
pattern. 

 

       

 

 

 

 

 

 

 

 

  

• Given G genomic seq, T reference seq 
(DNA seq of a related protein) 

• Want to find the best match of T to G, 
skipping  introns in G when necessary 

CG © Ron Shamir 
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Spliced alignment: defs 
• G=g1,…,gn : underlying sequence 
• B=gi,…,gj    B’= gi’,…,gj’ blocks (candidate 

exons) 
• B ≤ B’ if j ≤ i’ 
• C={B1,…Bk} is a chain if B1≤…≤Bk 

• C* - concatenation of B1*B2*…Bk 

• S(A,B) – score of opt. global alignment of 
sequences A,B 
 

            

CG © Ron Shamir 
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Spliced Alignment Problem 
• G=g1,…,gn genomic seq 
• T=t1,…,tm reference seq  
• B={B1,…Bb} set of blocks in  G 
• Goal: Find a chain C of blocks from B 

such that S(C,T) is maximum 
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• j-prefix of gi,…gj,…,gn: A(j) = gi,…gj 

• In block B= gi,…gj first(B) =i, last(B) =j 

• Chain F= B1*…*Bk ends at last(Bk),  

• F ends before position i if last(Bk)<i 

• If Bk contains the position i, i-prefix of 

C= B1*…*Bk is C*(i) = B1*…*Bk(i)  
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Network formulation 
• Blocks=paths 
• connect block B to B’ if B ≤ B’  
• seek best alignment of T to a path 
in the network 
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• i: position contained in block Bk 
• B[i] = set of blocks ending before i 
• S(i,j,k) = max S(C*(i),T(j)) over all   

chains C containing block Bk.  
(Best score matching t1,…,tj to a chain B1*…*Bk(i) where i 

belongs to block Bk) 
• S(i,j,k) = Max { 
S(i-1,j-1,k) +δ(gi,tj)    if i ≠ first(k) 
S(i-1,j,k) +δindel          if i ≠ first(k) 
Max l∈B[i] S(last(l),j-1,l)+δ(gi,tj) if i=first(k) 

Max l∈B[i] S(last(l),j,l) +δindel   if i=first(k) 

S(i,j-1,k) +δindel } 
• Final score: Max k S(last(k),m,k) 

|T|=m, |G|=L,  
N blocks 

Complexity:  
time: O(mLN2) 
space: O(mLN) 
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Improvement: Reducing the Number of Edges 

• P(i,j) = max l∈B[i] S(last(l),j,l) 
(Best score matching t1,…,tj to a chain of  

  full blocks that ends before i) 
• S(i,j,k) =max { 

– S(i-1,j-1,k) +δ(gi,tj)          if i ≠ first(k) 
– S(i-1,j,k) + δindel               if i ≠ first(k) 
– P(first(k),j-1) + δ(gi,tj)   if i=first(k) 
– P(first(k),j) +δindel                 if i=first(k) 
– S(i,j-1,k) +δindel } 

• P(i,j)= max {P(i-1,j), P(i,j-1) + δindel ,   
    max k: last(k)=i-1 S(i-1,j,k)} 
 

|T|=m, |G|=L,  
N blocks 

time: O(mLN) 
space: O(mLN) 
 much smaller  

in practice 
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Transcript based prediction 
(1995-2008 style) 

• sources: 
– ESTs (short mRNA fragments, must be 

assembled first)  
– cDNAs (longer fragments, up to full 

transcript length) 
• Idea: align transcripts to genome, 

jumping over introns 
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 Transcript-based prediction: How it works 

EST 

   

      
     

   

 

cDNA      

   

 Align transcript data to genomic sequence using pair-wise 
sequence comparison 

     

   
Gene 
Model: 
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Transcript based prediction using NGS   
(2009+ style) 

• Extract mRNA; break randomly 
into short segments (20-100bp) 
 

• Sequence 100K-1M segments 
• Map segments to the known gene 

sequences ( suffix trees here!) 
• Obtain counts how many copies of 

each gene were found 
 79 

  
100M 
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80 

Roche 454 

ABI SOLID 3  

Illumina Genome Analyzer II CG © Ron Shamir 
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NGS transcript based gene prediction 

Yassour M, et al. Ab initio Construction of a Eukaryotic Transcriptome 
 by Massively Parallel mRNA Sequencing. PNAS 09 CG © Ron Shamir 
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Detecting splice sites 
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Correcting gene annotations 
 

CG © Ron Shamir 
83 

http://www.tau.ac.il/�


FIN 
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