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Relationships in obesity

Triglycerids
in low-

density 

lipoproteins 

(LDLs)

Cholesterol 
in low-

density 

lipoproteins 

(LDLs)

Heart 

rate

Example I



Example II

The currently accepted consensus network of human 

primary CD4 T cells, downstream of CD3, CD28, and LFA-

1 activation

Causal Protein-Signaling Networks Derived from Multiparameter
Single-Cell Data. Karen Sachs, et al. 2005.

10 
Perturbations 

by small 

molecules

11 Colored 
nodes: 

Measured 

signaling 
proteins



Bayesian network results

• PKC->PKA was validated experimentally.

• Akt was not affected by Erk in additional experiments



Example III: Bayesian network models for a transcription 

factor-DNA binding motif with 5 positions

PSSM

Bayesian 

network



Example IV: Diagnostic Bayesian network model



Basic Probability Definitions

� Product Rule: P(A,B)=P(A | B)*P(B)= P(B | A)*P(A)

� Independence between A and B: P(A,B)=P(A)*P(B),

or alternatively: P(A|B)=P(A), P(B|A)=P(B).

�Total probability theorem:
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�Bayes Rule:

�Chain Rule:
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Exploiting Independence Property
�G: whether the woman is pregnant

�D: whether the doctor’s test is positive

The joint distribution representation P(g,d):

Factorial representation

Using conditional probability: P(g,d)=P(g)*P(d|g).

The distribution of P(g), P(d|g):

Example:  P(g0,d1)=0.06 vs. P(g0)*P(d1|g0)=0.6*0.1=0.06
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Exploiting Independence Property

�H: home test

�Independence assumption: Ind(H;D|G) (i.e., given G, H is independent of D).

0.80.2g1

0.10.9g0

h1h0

G

DH

P(d,h,g)=P(d,h|g)*P(g)=P(d|g)* P(h|g)*P(g)

Product rule

Ind(H;D|G)

0.4g1

0.6g0

0.950.05g1

0.10.9g0

d1d0

Factorial 

representation

Joint 

distribution



Exploiting Independence Property

0.80.2g1

0.10.9g0

h1h0

G

DH

0.4g1

0.6g0

0.950.05g1

0.10.9g0

d1d0

Modularity: reuse the local 

probability model. (Only new 

local probability model for H.)

changing the distribution 

entirely
Adding new 
variable H

57

No. of 
parameters

factored distribution joint distribution 

representation  of  P(d,g,h)

Local 

probability

=> Bayesian networks: Exploiting independence properties of the 
distribution in order to allow a compact and natural representation.
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Representing the Uncertainty

�A story with five random variables:

� Burglary, Earthquake, Alarm, Neighbor Call, 

Radio Announcement 

� Specify joint distribution with 25=32 parameters

maybe…

�An expert system for monitoring intensive care patients

� Specify joint distribution over 37 variables with
(at least) 237 parameters

no way!!!

Earthquake

Radio

Burglary

Alarm

Call



Probabilistic Independence: a Key 

for Representation and Reasoning

�Recall that if X and Y are independent given Z then

�In our story…if

� burglary and earthquake are independent

� alarm sound and radio are independent given earthquake

� burglary and radio are independent given earthquake

�then instead of 15 parameters we need 8

)()|(),|(),,|(),,,( BPBEPBERPBERAPBERAP ⋅⋅⋅=
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Need a language to represent independence statements



Markov Assumption

Generalizing:

�A child is conditionally 

independent from its 
non-descendents, given the 

value of its parents.

Ind(Xi ; NonDescendantXi | PaXi)

�It is a natural assumption for 
many causal processes

X

Y1 Y2

Descendent

Ancestor

Parent

Non-descendentNon-descendentNon-descendentNon-descendent

Descendent



Markov Assumption (cont.)

�Examples:

� R is independent of A, B, C, 

given E
� A is independent of R, 

given B and E
� C is independent of B, E, R,

given A

Earthquake

Radio

Burglary

Alarm

Call



Bayesian Network Semantics

�Compact & efficient representation:

� nodes have ≤ k parents  ⇒ O(2 kn) vs. O(2 n) params

� parameters pertain to local interactions

Qualitative part
conditional
independence 
statements
in BN structure

+

Quantitative part
local

probability
Models

(e.g., multinomial, 
linear Gaussian )

Unique joint
distribution
over domain

=

P(C,A,R,E,B) = P(B)*P(E|B)*P(R|E,B)*P(A|R,B,E)*P(C|A,R,B,E)

versus

P(C,A,R,E,B) = P(B)*P(E)  * P(R|E)  * P(A|B,E)  * P(C|A)

���� In general:
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Bayesian networks

Qualitative part: statistical 
independence statements 

Directed acyclic graph (DAG)

�Nodes - random variables 
of interest (exhaustive and 
mutually exclusive states)

�Edges - direct influence

Efficient representation of probability distributions via 
conditional independence

�Quantitative part: Local 
probability models. Set 
of conditional probability 
distributions.
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Inference in Bayesian networks

�A Bayesian network represents a probability distribution.

�Can we answer queries about this distribution?

Examples:

�P(Y|Z=z)

�Most probable estimation

�Maximum a posteriori

( | ) arg max ( , )
w

MPE W Z z P w z= =
( | ) arg max ( | )

y
MAP Y Z z P y z= =



Inference in Bayesian networks

� Goal: compute P(E=e,A=a) in the following Bayesian network:

� Using definition of probability, we have
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� Eliminating d, we get
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Inference in Bayesian networks
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� Eliminating c, we get
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� Finally, we eliminate b
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Inference in Bayesian networks
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Variable Elimination Algorithm

General idea:

� Write query in the form

� Iteratively

� Move all irrelevant terms outside of innermost sum

� Perform innermost sum, getting a new term

� Insert the new term into the product

� In case of evidence P(x1|evidence xj), use:

3 2
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Complexity of inference

Naïve exact inference

�exponential in the number of variables in the network

Variable elimination complexity

�exponential in the size of largest factor

�polynomial in the number of variables in the network

�Variable elimination computation depend on order of 

elimination (many heuristics, e.g., clique tree algorithm).
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Learning

�Process

� Input: dataset and prior information

� Output: Bayesian network

LearningLearningData + 
Prior information

E

R

B

A

C



The Learning Problem

Known Structure Unknown Structure

Complete Data Statistical
parametric
estimation

(closed-form eq.)

Discrete optimization
over structures
(discrete search)

Incomplete Data Parametric
optimization
(EM, gradient

descent...)

Combined
(Structural EM, mixture

models…)

�We will focus on complete data for the rest of the talk

� The situation with incomplete data is more involved



Outline

�Introduction

�Bayesian Networks

� Representation & Semantics

� Inference in Bayesian networks

� Learning Bayesian networks

»Parameter Learning

�Structure Learning



Learning Parameters

�Key concept: the likelihood function

� measures how the probability of the data changes 

when we change parameters

�Estimation:

� MLE: choose parameters that maximize likelihood

� Bayesian: treat parameters as an unknown quantity, 
and marginalize over it

∏ θ=θ=θ
m

mxPDPDL )|][()|():(
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MLE principle for Binomial Data

�Data: H, H, T, H, H. Θ is the unknown probability P(H).

�Likelihood function:

�Estimation task: Given a sequence of samples x[1], 
x[2]…x[M], we want to estimate the probability P(H)= θ

and P(T)=1-θ.

�MLE principle: choose parameter that maximize the 
likelihood function.

�Applying the MLE principle we get

�MLE for P(X = H ) is 4/5 = 0.8 
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MLE principle for Multinomial Data

� Suppose X can have the values 1,2,…,k.

� We want to learn the parameters θ1,…, θk.

� N1,…,Nk - The number of times each outcome is 

observed.

� Likelihood function:

� The MLE is:

∏
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MLE principle for Bayesian networks

� Training data has the form:

� Assume i.i.d. samples
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� Generalizing for any Bayesian network:
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• The likelihood decomposes according to the network structure.

• Decomposition  ⇒⇒⇒⇒ Independent estimation problems
(If the parameters for each family are not related)

• For each value pai of the parent of Xi we get independent 
multinomial problem.

• The MLE is 

MLE principle for Bayesian networks
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Continuous (Gaussian) variables
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• The likelihood decomposes according to the network structure.

• Decomposition  ⇒⇒⇒⇒ Independent estimation problems
(If the parameters for each family are not related)

• For each value pai of the parent of Xi we get independent 
maximization problem.

• The MLE is 
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Continuous (Gaussian) variables
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• The likelihood decomposes ⇒⇒⇒⇒ Independent estimation problems
The MLE is 
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Statistical background - regression
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Continuous (Gaussian) variables

  

)1()|(

)()|E(

22

xyy

x

x

yxy

y

XYVar

XXY

ρσ

µ
σ

σρ
µ

−=

−+=

),(~| 2σbpaaNPaX iii +⋅

X Y),(~ 2

XNX σµ

  

)1()|(

)()|E(

22

iii

i

i

iii

i

XPaXii

Pai

Pa

XXPa

Xii

PaXVar

PaPaX

ρσ

µ
σ

σρ
µ

−=

−+=

),(~| 2σbaxNXY +

Pai Xi
  

),(~ 2

ii PaPai NPa σµ



Learning Parameters

�Key concept: the likelihood function

� measures how the probability of the data changes 

when we change parameters

�Estimation:

� MLE: choose parameters that maximize likelihood

� Bayesian: treat parameters as an unknown quantity, 
and marginalize over it

∏ θ=θ=θ
m

mxPDPDL )|][()|():(



The Bayesian Approach to learning

� Find the posterior!
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Bayesian approach  for Binomial Data

� P(H)= θ.
� Prior: uniform for θ in [0,1]. (therefore, P(θ)=1)

� Data: (NH,NT ) = (4,1)

� MLE for P(X = H ) is NH/(NH+NT )=4/5 = 0.8 

� Bayesian prediction is:
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� Recall that the likelihood function is 

� Dirichlet prior with hyperparameters  α1,…,αK

⇒ the posterior: Dirichlet with hyperparameters  α1+N 1,…,αK +N K 

∏
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Data



� If P(Θ) is Dirichlet with hyperparameters α1,…,αK

� The posterior is also Dirichlet:

P(Θ|D) is Dirichlet with hyperparameters α1+N1 …,αK + Nk

and thus we get
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Bayesian approach  for Multinomial 

Data



Learning Parameters for Bayesian 
networks : Summary

� For multinomials: counts N(xi,pai)
� Parameter estimation

� Both can be implemented in an on-line manner by 
accumulating counts.
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Learning Structure: Motivation

Earthquake Alarm Set

Sound

BurglaryEarthquake Alarm Set

Sound

Burglary

Earthquake Alarm Set

Sound

Burglary

Adding an arc Missing an arc



Optimization Problem

Input:

� Training data

� Scoring function (including priors)

� Set of possible structures

Output:

� A network (or networks) that maximize the score

Key Property:

� Decomposability: the score of a network is a sum of terms.



Scores
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When the data is complete, the score is decomposable:

For example. The BDE score:



Heuristic Search (cont.)

�Typical operations: 

S C

E

D

S C

E

D

S C

E

D

S C

E

D

Add C →D

Reverse C →E
Remove C →E



Heuristic Search

�We address the problem by using heuristic search

�Traverse the space of possible networks, looking for 

high-scoring structures

�Search techniques:

� Greedy hill-climbing

� Simulated Annealing

� ...
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