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7.1 RNA Basics

7.1.1 Introduction - RNA Base Pairing

The RNA (RiboNucleic Acid) is a biological polymer similar to DNA, except for three main
differences: (a) its sugar-phosphate backbone contains ribose rather than deoxyribose; (b)
RNA is usually found as a single strand rather than double strand; (c) it contains the base
Uracil(U) rather than Thymine(T), in addition to Adenine (A), Cytosine (C) and Guanine
(G). As for DNA bases, RNA bases can also bond and form pairs. The canonical pairs are
A-U, G-C, G-U, where A-U, G-U are based on two hydrogen bonds and G-C is based on
three hydrogen bonds (as seen in Figure 7.1). For simplicity, we will only discuss A-U, G-C
pairing, since G-U is highly unstable (referred to as a “wobble” pair) and thus quite rare.

Figure 7.1: The three possible base pairs form two or three hydrogen bonds

7.1.2 Roles of RNA

There are several types of RNA, each with its own structural and functional characteristics:

• Messenger RNA (mRNA): Encodes for the primary sequence of a protein through the
genetic code.
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Figure 7.2: Typical motifs of RNA secondary structure (taken from Wuchty)

• Transfer RNA (tRNA): Binds an amino acid with its anti-sense codon in order to
perform translation at the ribosome.

• Ribosomal RNA (rRNA): Binds with proteins to form the ribosome - a complex which
translates an mRNA strand to the suitable protein.

• Small Nuclear RNA (snRNA): Short RNA sequences which perform ”maintenance” on
RNA (such as splicing and regulation of transcription factors) within the nucleus.

• MicroRNA (miRNA): Short RNAs which can inhibit the translation of mRNA or
increase its RNA structure degradation.

7.1.3 RNA Structure

We consider three levels of description for the RNA structure degradation:

• Primary structure - the sequence of RNA bases

• Secondary structure - a two dimensional folding containing an annotation of which
base pairs are formed.

• Tertiary structure - a three dimensional folding containing a base sequence with base
pair annotation and we describe the spatial location of every atom
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The method will focus on predicting the secondary structure for a given primary structure.
The secondary structure consists of the following base-pairing patterns: Single Strand

(unpaired bases), stem, hairpin loop, bulge loop, interior loop, junction (multiloop) and pseu-
doknot, as shown in Figure 7.2. It is easy to see that if we know the primary structure and
the stem positions, we can determine all the other characteristics of the secondary structure,
except for the pseudoknots. Fortunately, the common belief is that pseudoknots contribute
very little to the energy balance of the RNA molecule. For that reason, and for another
computational reason (which will be discussed later in 7.3.1), it is a common practice to
ignore their locations when predicting RNA folding.

7.2 RNA secondary structure prediction

7.2.1 Formal definition of RNA secondary structure

In the most general definition, given a single stranded RNA sequence of length N , R =
r1, ..., rN , a secondary structure of R is defined to be a set S of disjoint base pair indices,
(i, j) s.t. 1 ≤ i < j ≤ N and ri and rj form a valid base pair.

This definition can be further restricted so that adjacent bases cannot be paired by adding
the following restriction over all pairs (i, j): j − i > 3

The biochemical justification for this restriction is that the minimal hairpin loop size is
empirically known to be greater than 3.

7.2.2 Nested Edges Graph representation

The secondary structure can be described as a graph G = (V, E) where V is the set of bases
in R and E is defined as E = {(vi, vj)|i = j − 1}

⋃
{(i, j) ∈ S} (see Figure 7.3).

Recall that S is the set of base pair indices defined in 7.2.1
This defines a graph with two types of edges: edges between subsequent bases, and edges

between base pairs defined by the secondary structure.
If we restrict the secondary structure, so that it cannot contain Pseudoknots, the graph

representation of the secondary structure would be a Nested Edges Graph, formally:

∀(vi, vj), (vk, vl) ∈ E, k ∈ [i, j] ⇔ l ∈ [i, j]

7.2.3 Optimal RNA secondary structure

The optimal secondary structure of RNA is commonly viewed as the most energetically
stable RNA secondary structure. Thus, in order to predict the optimal structure, we first
need to define a stability score for a given secondary structure.
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Figure 7.3: The base pair matching problem represented as a Nested Edges Graph Problem - image by Sean Eddy

Intuitively, a greater number of valid pairs (A-U and C-G) corresponds to a more stable
secondary structure. This definition is not complete, and there are other methods that give
more refined predictions: predictions that allow also the loose pair G-U, and others that also
take into account different weights for different motifs in the secondary structure (see [7])

Figure 7.4: Matrix initialization for the DP algorithm on RNA sequence GGGAAAUCC

7.3 Algorithm for maximizing the number of base pairs

The problem of finding the optimal base pair matching of a given primary RNA sequence is
an NPC problem, since the number of possible pairs is exponential regarding to the sequence
length (as explained in [3]). Therefore, even though the base pair maximization is not truly
optimal, it has a major advantage, as it suits a well established algorithmic approach for
predicting the RNA secondary structure, using sequence alignment.

The algorithm we describe is a dynamic programming algorithm, that dynamically builds
the optimal secondary structure of all subsequences of the given RNA ([6]).



Algorithm for maximizing the number of base pairs 5

S(i, j) is defined to be the number of base pairs in the folding of the subsequence ri...rj

of R which results in the highest number of base pairs.
Base condition:
S(i, j) = 0 for each i, j s.t. i = j, i = j + 1 (see Figure 7.4)
The four recurrence options:

1. Adding another base pair: ri, rj are a valid base pair, and we add it to the best folding
of subsequence ri+1...rj−1 (see Figure 7.5)

2. Adding another base at the beginning of the sequence ri+1...rj (see Figure 7.6)

3. Adding another base to the end of the sequence ri...rj−1 (see Figure 7.7)

4. Finding the best cut point k of the sequence ri...rj (a bifurcation) (see Figure 7.8)

Recurrence relation:

S(i, j) = max


S(i + 1, j − 1) + 1 (if i,j is a base pair)
S(i + 1, j)
S(i, j − 1)
maxi<k<jS(i, k) + S(k + 1, j)

Thus, we can compute an optimal folding for ri...rj if we already have all optimal foldings
for all subsequences of ri...rj (see Figure 7.9)

Figure 7.5: Adding another base pair: ri, rj are a valid base pair, and we add it to the best folding of subsequence
ri+1...rj−1.

7.3.1 The Pseudoknots pitfall

A most important notion, which allows us to use the dynamic programming algorithm is
that each score S(i, j) is independent of the overall structure, and relies only on the local
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Figure 7.6: Adding another base to at the beginning of the sequence ri+1...rj (if ri and rj are not a valid base pair) images
- Sean Eddy.

Figure 7.7: Adding another base to to the end of the sequence ri+1...rj (if ri and rj are not a valid base pair).

structure of ri...rj. However, we know that it is possible to have Pseudoknots, which are
base pairs between distant hairpin loop motifs. Two distant hairpin loops are found in the
middle of two different subsequences, and although not changing the local score of the two
subsequences, a pseudoknot increases the overall score of the fold. The trivial solution takes
us back to enumerating all potential structures, which is exponential with the number of
bases.

The base pair maximization dynamic programming algorithm avoids this pitfall by simply
not allowing pseudoknots. This has been found to be a reasonable assumption[2] due to two
reasons:

1. Close pseudoknots contribute very little to the overall stability of the fold.

2. Distant pseudoknots are very rare.

This approach is implied in both [3] and [4] for obtaining the optimal base pair matching
of RNA sequences. For other purposes, such as three-dimensional modeling of the RNA
structure, Pseudoknots cannot be ignored, since they actually affect the spatial position of
atoms.
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Figure 7.8: Finding the best cut point k of the sequence ri...rj (a bifurcation).

Figure 7.9: Final matrix. Secondary structure score in the upper-right corner.



8 Computational Genomics c©Tel Aviv Univ.

7.3.2 Time and space complexity of the algorithm

The algorithm requires the computation of a two dimensional matrix of size N ×N . At each
recurrence step, calculating the first three options take a constant time, but going over at
most N values of k at each cell of the matrix takes O(N). Total time complexity is then
O(N3). Space complexity, storing the matrix is O(N2)

7.4 Criticism on the base pair maximization algorithm

The first two drawbacks of this algorithm are:

1. It ignores Pseudoknots.

2. The score incompletely reflects the stability model of the secondary structure obtained.

As the first drawback can be excused from a biochemical perspective, the second was
addressed and amended by other algorithms that model the stability of the secondary struc-
ture better. The basic DP (Dynamic Programming) algorithm[9] only takes the number of
base pairs into account, while other algorithms like mFOLD[8] and Vienna[5] are based on
a scoring system that takes the different motifs into account.

The score of each motif is drawn from laboratory experiments[2] that measured the
stability of the different motifs.

Still, the dogma ”more stable → more likely” holds, but the definition of ”more stable”
is improved. Also, like in the basic algorithm, these algorithms run under the assumption
that the stability of a given subsequence, is independent from the rest of the sequence, and
only depends on the subsequence itself and its subsequences. This allows using DP, albeit
with more sophisticated recurrence rules.

However, not that in reality the equation ”more stable=more likely” does not always
hold. In fact, algorithms based on thermodynamics predict only 50-70% of the base pairs
correctly. In addition, a large number of RNA structures lie within 5-10% of the predicted
global energy minimum[1]. There is still a lot of room for research regarding the reasons for
getting a specific fold for a given RNA sequence, and for algorithms for prediction of the
right secondary structure.
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