
Algorithms for Molecular Biology Fall Semester, 2001

Lecture 8: December 27, 2001
Lecturer: Ron Shamir Scribe: Orly Stettiner and Ron Gabor1

8.1 Preface: Phylogenetics and Phylogenetic Trees

Phylogeny - The ancestral relationship of a set of species.

8.1.1 What is Phylogenetics?

Phylogenetics is the area of research concerned with finding the genetic relationships between
species. The basic idea is to compare specific characters (features) of the species, under the
natural assumption that similar species (i.e., species with similar characters) are genetically
close. The term phylogeny refers to these relationships, usually presented as a phylogenetic
tree2 (see Figures 8.1 and 8.2).

Classic phylogenetics dealt mainly with physical, or morphological features – size, color,
number of legs, etc. Modern phylogeny uses information extracted from genetic material –
mainly DNA and protein sequences. The characters used are usually the DNA or protein
sites (a site means a single position in the sequence). The relationships between species are
then deduced from well conserved blocks in the alignment of several sequences, one from
each examined species.

An interesting example is a research project that used phylogenetics in order to trace the
origins of the human population on earth. Researchers investigated the mitochondrial DNA
of 182 people all over earth (the mitochondrial DNA is especially good for phylogenetic
research since it is copied completely from mother to son, without recombining with the
father’s DNA). The phylogenetic analysis provided evidence that all humans have a common
female ancestor who lived in Africa (”African Eve”, see Figure 8.4).

When studying phylogeny using nuclear genes, we encounter several difficulties. During
evolution, it is very common for a gene to be duplicated. The copies continue to evolve
separately, resulting in two (or more) similar instances of the same gene along the genome
of a species.

1Based on a scribe of Yuval Inbar and Tzvika Hartman, December 18, 2000
2The terms phylogenetic tree and phylogeny will be used synonymously throughout this lecture.
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Figure 8.1: (Source [1]) Phylogeny in a nut shell. A: The most recent common ancestor of
the bird and the jellyfish. At this point the two lineages diverged or split. X: The portion
of history the bird and the jellyfish share. Their linages were one during that time. B: The
most recent common ancestor of the bird, jellyfish and fern. Y: The portion of history the
bird, jellyfish and fern share. The bird and jellyfish share a more recent common ancestor
(A) then either does with fern (B). Therefore, they are more closely related to each other
than either is to the fern.

When discussing matching genes in different species, several types of matches may exist:

Orthologous both genes are “the same” gene in the strong sense – they are connected
directly, and not through a duplication. This usually means common ancestral species.

Paralogous matches of genes that are duplication of what used to be the same gene (in
ancestral species). This kind of match is usually the result of some duplication along
the evolutionary line.

Xenologs (horizontal transfers) matches of genes that were transferred between organ-
isms in other ways, such as injection by a virus.

Example of phylogenic trees based on orthologous and paralogous are shown in Figure
8.3.

In order to simplify the analysis of ancestral relationships, we shall limit gene matches
to ortholog matches only, as if paralogs or xenologs do not exist. Needless to point, wrong
identification of orthologous will result in trees that have little to do with the real evolutionary
species relationships (see Figure 8.5).
Note: In this lecture we shall refer to the objects whose phylogeny is in question as species.
However, the discussion is valid not only to the phylogeny of different species, but also
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Figure 8.2: A phylogenic tree based on data obtained from modern molecular genetic meth-
ods places the giant panda in the Ursidae, bear family. The red panda is left in the Procy-
onidae, or racoon family. Molecular analysis of the chromosomes of these pandas suggests
that the racoon and bear families diverged from a common carnivorous ancestor about 35
to 40 million years ago.
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Figure 8.3: (Source [20]) Above: a tree of orthologues based on a set of alpha haemoglobins.
Below: a tree of paralogues, the alpha, beta, gamma, delta, epsilon, zeta and theta chains
of human haemoglobins, and human myoglobin.
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Figure 8.4: (Source: [24]) African origin for all modern human is indicated by the genetic
evidence. The arrows on the maps (center) indicate the minimum number of unrelated
females who colonized major geographic areas, as inferred from the branching pattern.
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Figure 8.5: A phylogenic tree based on wrong identification of ortholog matches. An ancestral
species, had a gene duplication event, which resulted in two copies of the same gene (copies
are marked as A and B), which continued to evolve independently. A speciaition event
caused three species to evolve (denoted as 1, 2 and 3). Using genes 1A, 2B and 3C as a basis
for constructing a phylogenic tree would most probably result in the tree denoted by bold
edges, which marks species 2 as distant from 1 and 3, which are close to each other (which
is clearly not correct).
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to other objects, e.g., duplicated genes of the same species. We shall also often refer to
characters as sites, because this is the most common case.

8.1.2 Phylogenetic Trees

The most convenient way of presenting phylogenetic information is using a phylogenetic tree.
In a phylogenetic tree, every node represents a species. Nodes are labeled, either with species
names or the values (also referred to as states) of their characters, and the edges represent the
genetic connections. It is important to note that there is usually a big difference between the
leaf nodes, that represent real species, and the internal nodes, that in most cases represent
the hypothetical evolutionary ancestors of the species in the data.

Phylogenetic trees take several forms: They can be rooted or unrooted, binary or general,
and may show, or not show, edge lengths. A rooted tree is a tree in which one of the nodes
is stipulated to be the root, and thus the direction of ancestral relationships is determined.
An unrooted tree, shows how close (or distant) the species are, and has no pre-determined
root and therefore induces no hierarchy. Therefore, in this case, the distance between the
nodes should be symmetric (since the tree edges are not directed). Rooting an unrooted tree
involves inserting a new node, which will function as the root node. This can be done by
introducing an outgroup, a species that is definitely distant from all the species of interest.
The proposed root will be the direct predecessor of the outgroup. Figures 8.6 and 8.7 show
a rooted tree and its unrooted counterpart, respectively.

A binary, or bifurcating, tree is a tree in which a node may have only 0 to 2 children, that
is, in an unrooted tree, up to three neighbors. It is sometimes useful to allow more than 2
children (multifurcation), but the discussion in this lecture will be limited to binary trees.

A tree can show edge lengths, indicating the genetic distance between the connected
nodes. We sometimes assume the existence of a molecular clock, a constant pace of the
evolutionary processes. If this is the case, we could theoretically produce a phylogenetic
distance-preserving tree which can be presented along a time-axis – assigning to each node
the time in which it “occurred” in the history of evolution. In such a “perfect” tree, the
length of each edge would be the difference in time between the parent node and the child
node.

There are two types of data used for building phylogenetic trees:

Character Based Examine each character (e.g., a base in a specific position in a DNA
sequence or amino acid in a protein) separately.

Distance Based The input is a matrix of distances between the species (e.g., the alignment
score between them or the fraction of residues they disagree on).
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8.2 Character Based Methods

We will discuss the following problem:

Problem 8.1 Optimal Phylogenetic Tree.
INPUT:

• A set of n species.

• A set of m characters pertaining to all of these species.

• For each species, the values of each of the characters.

• Optional parameters which are problem dependent.

GOAL: Find a the fully-labeled phylogenetic tree that best explains the data, i.e., maximizes
some target function.

The process of solving this problem is called inferring the phylogeny. The input is usually
given as an n × m matrix M , where Mi,j represents the value of the j-th character of the
i-th species. The state (value) of each character j is taken from a known set Aj.

The input may also include other relevant parameters – e.g., the distribution of changes
(mutations) in each character, weights representing relative importance of characters, etc.
The goal will be to maximize some score over the possible phylogenetic trees and produce
the best one.

We will make the following assumptions in attempting to infer phylogenies:

• Characters are mutually independent – that is, a change in one character has no effect
on the distribution of another character.

• After two species diverge in the tree, they continue to evolve independently.

None of these assumptions is necessarily (or even probably) correct, but they make our life
much easier, simplifying the discussion considerably.

A Simple Solution?

The trivial solution to the phylogeny problem would be to enumerate over all possible trees
and calculate the target function for each one.

Assume that in evolution, each split is a two-way split, giving rise to bifurcating trees.
We can either consider the space consisting of rooted or unrooted tree because it can be
shown that the number of rooted trees with n leaves is equal to the number of unrooted
trees with n + 1 leaves. Consider a rooted tree with 2 leaves. There is only one such tree.
There are 3 possible branches where we can add an extra leaf, giving a rooted tree with 3
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leaves. Given a rooted tree with 3 leaves, there are 5 branches where we can add the fourth
leaf. Proceeding in this way, it can be shown that the number of non-isomorphic, labeled,
binary, rooted trees containing n leaves is:

1 ∗ 3 ∗ 5 ∗ ... ∗ (2n− 3) =
n∏

i=2

(2i− 3) = (2n− 3)!! (8.1)

The number of rooted trees is of course super-exponential – for n = 20, for instance,
there are about 1021 such trees. This means that exhaustive enumeration is infeasible even
for a relatively small number of species. The same holds for the number of unrooted trees,
which is (2n− 5)!!3 (equals to the number of rooted trees with n− 1 leaves).

The next sections will present several approaches towards defining a target function, and
attempting to solve the problem for that target function.

C C TTC

C
C

T

C / T

or

Figure 8.6: A most parsimonious 5-species phylogeny for a single DNA site (3 species have
C character and two have T ). The bars mark the two possible edges along which a mutation
might have occurred.

8.2.1 Parsimony

One intuitive score for a phylogenetic tree is the number of changes (mutations/mismatches)
along edges. The approach of minimizing this score is called parsimony. The logic is the
basic philosophy of Okham’s razor – finding the simplest explanation that works.

3Proving this is simply by observing that a new node (leaf) can be added to every edge, and will result
in the addition of two edges and one node (junction).
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Figure 8.7: The unrooted counterpart of the phylogeny in Figure 8.6. Notice that there is
now no ambiguity about the placement of the mutation.

The algorithm assigns a cost to a given tree, and searches through selected topologies to
identify the ”best” tree, which can explain the observed sequences with a minimal number
of substitutes.

Let us mark the vertices of a tree by V (T ), and its edges by E(T ). Denote the value of
the j-th character of vertex v ∈ V (T ) by vj.

Definition Given a phylogenetic tree T , its parsimony score can be defined as:

S(T ) ≡ ∑

(v,u)∈E(T )

|{j : vj 6= uj}| (8.2)

That is – the total number of times the value of some character changes along some edge.

Example Figure 8.6 shows a most parsimonious phylogeny for 5 species with a single char-
acter. The parsimony score of this tree is 1 – with the change being either from T to C or
vice-versa. Note that this tree can be unrooted, yielding the tree in Figure 8.7. The unrooted
tree has the same parsimony score as the rooted one. In fact, no matter how we choose to
root it, the score will remain the same. Figure 8.8 illustrates a more complex parsimony
tree, in which the species have 6 characters each.

There are two levels of problems in parsimony, small parsimony problem and large parsi-
mony problem.
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Figure 8.8: A most parsimonious 5-species phylogeny for 6 characters, reconstructed from
the data in table 8.1. The numbers by the mutation bars indicate the changed character.

1 2 3 4 5 6
Aardvark C A G G T A
Bison C A G A C A
Chimp C G G G T A
Dog T G C A C T
Elephant T G C G T A

Table 8.1: 6 DNA site values for 5 species. This data was used to infer the phylogeny in
Figure 8.8.

8.2.2 Small Parsimony and Fitch’s Algorithm

Problem 8.2 Small Parsimony
INPUT: The topology of a rooted phylogenetic tree T with labeled leaves (i.e., all leaves
have known sequences).
GOAL: Find a labeling of ancestral sequences implying minimum number of changes (most
parsimonous) along the tree edges.

This problem is relatively easy to solve. First of all, it is clear that we can solve it for
each character separately, characters being mutually independent. For a single character, we
present Fitch’s algorithm [8] in the next section.
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Fitch’s algorithm

The algorithm considers each site in a given DNA sequence separately. It computes the min-
imum number of changes required to explain the evolution of a given phylogeny representing
a site in a DNA sequence. It is a dynamic programming style algorithm.

The algorithm constructs a set of possible states (possible nucleotides) for each internal
node, which is computed from the states of its children. We start at the leaves of the phy-
logeny. Each leaf is labeled with the singleton set containing the nucleotide at that particular
site. Then the tree is traversed in a postorder manner (such that all of the children of the
current node have been visited before the current node). Following is a formal description.

Input: A phylogenetic tree T , with n nodes, and a single character c with a set A of k
possible values. Denote the value of the character for node v by vc.

Step 1: Assign to each node v a set Sv ⊆ A in the following manner:

For each leaf v : Sv = {vc}.
For any internal node v, with children u,w : Sv =

{
Su ∩ Sw Su ∩ Sw 6= ∅
Su ∪ Sw otherwise

To compute Sv we traverse the tree in postorder – starting with the leaves and working
our way down to the root (this is actually a dynamic programming algorithm).

Step 2: Given the sets Sv, we now determine the value vc to assign to the character c in
each internal node v. This time, we traverse the tree in preorder, i.e., from the root up. For
each internal node v, if its parent u satisfies uc ∈ Sv, set vc ← uc; Otherwise, (including the
root node), arbitrarily assign any t ∈ Sv to vc.

The result of this algorithm is a fully-labeled tree. The number of changes in this tree is
equal to the number of times Su ∩ Sw was empty, in step 1.

Complexity: For each node v we work O(k) time to compute Sv, and again O(k) to compute
vc. In total we spend O(n · k) time (step 2 can be performed in only O(n) total time in the
average case).

The above algorithm works with a single character. To obtain the optimal score and
labeling for the entire data, simply apply the algorithm once for each character. This leads
to an overall complexity of O(m · n · k).

Example In Figure 8.9 we have the result of performing step 1 of Fitch’s algorithm on a
5-species phylogeny showing a single character. The asterisks mark the nodes where Su∩Sw

was empty, which means that the minimum total cost of the tree is 3.

It is not very clear at first sight why this algorithm works. We will next present a
generalization of the Fitch algorithm, that is perhaps easier to understand.



Character Based Methods 13

{AC}*

{ACG}*

A C G GC

{CG}*

{CG}

Figure 8.9: An example of step 1 of Fitch’s algorithm for a 5-species phylogeny. Nodes
marked by an asterisk (*) require a change along one of the edges to their children, adding
1 to the parsimony score.

8.2.3 Weighted Parsimony and Sankoff’s Algorithm

In this version of the problem, the price of a change is not constant. Instead, the cost of the
character c changing from state i to state j is denoted by Cc

ij . The problem is to minimize
the total cost of the tree given the topology and the leaf labels.

Problem 8.3 Weighted Small Parsimony.
INPUT:

• K states, S1...Sk.

• The topology of a rooted phylogenetic tree with labeled leaves.

• The costs Cc
ij for changing from state i to state j.

GOAL: Find ancestral sequences and alignments of them to the leaf sequences, that
together minimize a tree-based parsimonious type cost.

Following is an algorithm by Sankoff [22] which generalizes4 Fitch’s algorithm:
Step 1: Compute for each node v and each state t a quantity St(v) which is the minimum

4Fitch’s algorithm is really no more than a discrete version of this one – using costs of 1 for a change and
0 for no change.
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cost of the subtree whose root is v, given vc = t (state of character c at v is t).
For each leaf v:

Sc
t (x) =

{
0 vc = t,
∞ otherwise.

(8.3)

For an internal node v, with children u and w, it is easy to see that:

Sc
t (v) = min

i
{Cc

ti + Sc
i (u)}+ min

j

{
Cc

tj + Sc
j (w)

}
(8.4)

The minimum total cost of a tree with root node r is:

S(T ) =
m∑

c=1

min
t

Sc
t (r) (8.5)

Step 2: Based on the numbers Sc
t (v) calculated in step 1, we determine the optimal values

for each character c in the internal nodes. We traverse the tree in preorder this time: for the
root node r, we choose rc = arg mint S

c
t (r), for any other node v, with parent node u, set:

vc = arg min
t

(Cc
uct + Sc

t (v))

Complexity: For every node we do O(k) work in each step, meaning O(n · k) per
character. The algorithm should be applied once for each character, with a total complexity
of O(m · n · k).

An illustration of Sankoff’s algorithm can be seen in Figure 8.10.

Weighted Characters

It is possible to assign weights not only to state changes, but also to the characters themselves.
Technically, this means assigning a number Wc to each character, and rewriting equation 8.5
to read:

S(T ) =
m∑

c=1

Wc ·min
i

Si(r) (8.6)

Where do we get the weights Wc? For instance, if we are working with a DNA sequence,
and we know the reading frame, we can make use of the fact that changes in the third codon
position are more frequent, since in many cases they don’t change the amino acid coded.

In section 8.2.7 we will see another possible source for weights – compatible characters.
In short, we will give more weight to characters which seem to fit the tree well than to
characters which fit it poorly.
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Figure 8.10: An example illustrating Sankoff’s algorithm.

8.2.4 Large Parsimony Problem

Given that we have a way of determining the cost or score of a given tree, we now consider
the combinatorial problem of finding the best tree that explains the given data. In the large
parsimony problem, we have to search through the space of all possible trees to find the best
tree.

Problem 8.4 Large Parsimony Problem.
INPUT: A matrix M describing m characters of a set of n species:
Mij = state of the j-th character of the species i
Mi = label of i (all labels are distinct).
GOAL: Find a most parsimonious tree (topology, leaf labeling and internal sequences).

It can be shown (Gusfield [12]) that the Large Parsimony problem is equal to the un-
weighted Steiner tree problem on an m-dimenstional hypercube. It was established in the
literature that this problem is NP-hard, both for the unweighted case (Foulds [9]) and for
the weighted case (Gusfield [11]). However, we will present several efficient search strategies
and algorithms attempting to solve the problem of large parsimony.
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8.2.5 Branch and Bound

The general paradigm of Branch-and-Bound (B&B) deals with optimization problems over
a search space that can be presented as the leaves of a search tree. It was first used for
parsimony by Hendy and Penny [13] in 1989. It works when the search tree is monotonous
– the score of each node in the search tree is at least as bad as that of any of its ancestors.
B&B is guaranteed to find the optimal solution, but its complexity in the worst case is as
high as that of exhaustive search.

In the simplest form of the algorithm, the search tree is traversed in some order, and
the score of the best leaf found so far is kept as a bound B. Whenever a node is reached
whose score is worse than B, the search tree is pruned at that node, i.e., its subtree will
not be searched, since it is guaranteed not to contain a leaf with a score better than B.
The algorithm can be improved by using some other method to come up with a relatively
good candidate, which will yield a good bound before the search has even begun. It is also
possible to heuristically improve the traversal order.

Let us, therefore, present our search-space as a search tree. This is not difficult: in the k-
th level of the search tree, we will have nodes representing all possible phylogenetic trees with
k leaves for the first k species (the order does not matter, as long as it is pre-determined).
The children of a node in that level will be all the phylogenetic trees created by adding the
(k + 1)-th species to the phylogenetic tree, at each possible place. There are exactly 2k − 1
such places, and therefore this is the number of such children.

This search tree clearly upholds the requirement of monotony, since adding a node to a
given phylogenetic tree can never reduce its parsimony score. Therefore, the B&B algorithm
can be used to help us prune the search tree. The enumeration and pruning can be done in
O(1) time per visited node in the search tree. Although it is better than simple brute-force
exhaustive search, it does not lower the worst-case time complexity, and it is difficult to
predict its exact effect in the average case. However, in real-life test cases it proved to speed
up the search considerably.

8.2.6 Nearest Neighbor Interchanges (NNI)

The idea of NNI is to rearrange a tree by dissolving the connections between subtrees to
form different trees. It defines a neighborhood relation for the search-space, and given such
a relation, traverses points in the search space by moving from one point to its neighbors.
One can thus use several well-known heuristic algorithms – such as the greedy algorithm,
simulated annealing, hill-climbing, etc. – to find a local optimum, which will hopefully be
also the global optimum.

There are many ways to define neighborhood relationship among trees. For instance,
we can use the notion of quartets -trees with four leaves. We can say that two unrooted5

5In this section we deal with unrooted trees only.
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Figure 8.11: Neighbor interchange options referred to as (left to right) AC|BD, AB|CD,
AD|BC, of an unrooted tree with 4 subtrees A,B, C, and D.

trees are neighbors, if they can be presented as quartets joining the same four subtrees, only
with a different pairing within the quartet (see Figure 8.11). This relation is called Nearest
Neighbor Interchange. For trees of 5 species, its neighborhod graph is known as Peterson’s
graph. This is also referred to as Branch Swapping.

Another way to define neighborhood relationship is to define neighbors of a tree to be
those trees created by detaching any subtree and attaching it in some place other than its
original location.

8.2.7 Compatibility

Compatibility is another attempt to define a target function for the phylogeny problem:
the number of characters which are compatible with the given tree. We will try finding the
phylogeny which is compatible with as many characters as possible.

The compatibility criterion is a simplification of parsimony, which is most useful when
all of the characters used to build a phylogeny are binary.

Definition A binary character c is compatible with a tree T iff there exists an assignment
of the states of the character to nodes of T , such that a change occurs only along a single
edge.

This definition clearly states that the assignment of a compatible character must group
each state into a single connected graph component in the tree. The general case for character
with any number of states is:

Definition A character c with k possible states is said to be compatible with a tree T with
labeled leaves, iff there is a labeling of the internal nodes such that the total number of
changes of c is exactly k − 1.

Note that when we say that a character c has k states, that means that there are k
different values of c in the input. For instance, if for a given DNA site all the species in the
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Figure 8.12: compatible and incompatible binary characters defined on a tree over four
species. The character on the left is compatible with the tree because only a single edge
change (indicated by the heavy line) is required to evolve a single, ancestral state at the root
into the states at the leaves. In contrast, the character on the right requires two changes.

input have either ‘T’ or ‘C’, this site has only 2 states, and not 4. It is clear then, that a
k-state character can have no less than k − 1 changes.

In the following discussion, we will assume that all characters are binary, i.e., have exactly
two possible states, 0 and 1. An example of compatibility is shown in Figure 8.12.

8.2.8 Compatibility and Parsimony

Compatibility, in the binary case at least, is easily shown to be a special case of parsimony.
To solve the compatibility problem, we will use a slightly modified, thresholded version
of parsimony, where for each character that changes at least twice we “charge” exactly
2 (instead of the real total number of changes). This problem is not more difficult than
regular parsimony.

To prove this equivalence between thresholded parsimony and compatibility, let us now
define ni to be the number of characters that need i changes. The total score in that case is
clearly S(T ) = n1 + 2(n − n0 − n1) = 2n − 2n0 − n1. The numbers n and n0 are fixed for
the given data, and so minimizing the score S means maximizing n1, which is exactly the
number of compatible characters.

Hence we can use the methods described for solving large parsimony, to solve the problem
of compatibility. However, this is not of much help, since parsimony is an NP-hard problem.

8.2.9 Pairwise Compatibility (compatibility of binary characters)

The first step in working with compatibility, is parallel to the small parsimony problem
(see 8.2.2): Given a tree T with labeled leaves, find the best compatibility score that can
be achieved for that tree, i.e., the maximum number, over all possible labelings of internal
nodes, of characters compatible with the fully-labeled tree. This can be done easily using
Fitch’s algorithm (see 8.2.2).

The more interesting problem here is of course that of “large compatibility” – finding
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Species Character X Character Y
Species 1 0 1
Species 2 1 0
Species 3 0 0
Species 4 0 1
Species 5 1 0

Table 8.2: An example of 5 Species with two characters (X and Y). Character X and Y
have only three of the four possible pairing ({1, 1} does not exist), and hence are compatible
according to the pairwise compatibility test.

the best phylogeny given only the data matrix M . We shall tackle this problem through the
notions of pairwise compatibility and joint compatibility.

Definition Two binary characters c1 and c2 in a set S of species, are said to be pairwise com-
patible (written PC(c1, c2)), if there exists a tree T such that both c1 and c2 are compatible
with T .

Definition Characters c1, . . . , ck are said to be mutually compatible if there exists a tree T
such that for every i, ci is compatible with T .

Theorem 8.1 (Wilson [25]) Pairwise Compatibility Test:
For characters i, j define the set Sij := {(x, y) : ∃species k such that Mki = x and Mkj = y},

where M is the input matrix described in problem 8.1; then PC(c, c′) iff Scc′ 6= {0, 1}2.

Proof: Assume Scc′ 6= {0, 1}2. Then the set Scc′ has at most 3 members. First of all,
if Scc′ has only a single member, then c and c′ each have a single possible state, which is
impossible – since they are both binary characters. If Scc′ has only 2 members, then we
can in fact treat the two characters as a single binary character. Let us assume then that
{0, 1}2\Scc′ = {(x, y)}. Figure 8.13 illustrates the basic structure of a tree that is compatible
with two characters, having 3 combined values – (~x, ~y), (~x, y), and (x, ~y). Each triangle
represents a subtree in which the values of both characters remain constant. The only
mutations are along the two edges marked with bars, proving this part of the theorem. The
other direction is simple, and is left as an exercise to the reader.

The next, somewhat surprising, theorem by Estabrook et al. identifies jointly compatible
sets of binary characters:

Theorem 8.2 (Estabrook et al. [10]) Pairwise Compatibility Theorem:
All binary characters in a set S are jointly compatible iff ∀c, c′ ∈ S, PC(c, c′).
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Figure 8.13: A schematic description of a tree that is compatible with two characters, having
3 combined values (see proof of theorem 8.1).

That is, a set of characters is mutually compatible iff they are pairwise compatible.
Note that the theorem does not hold for characters that are not binary. We will not present
a proof for this theorem.

From the above discussion, the problem of “large compatibility” is reduced to the prob-
lem of finding the largest jointly compatible set of characters, which amounts to finding a
maximum clique in the pairwise-compatibility graph, defined as:

G = (V,E); V = {v1, . . . , vm} ; E = {(vi, vj) : PC(ci, cj)} (8.7)

This seems to be of no great help, because as we know, finding a maximum clique in a
graph is NP-hard. However, there are algorithms, such as Bron and Kerbosch’s [3] Branch-
and-Bound clique-finding algorithm, which seem to work very well with biological data. All
in all, compatibility methods usually run faster than parsimony methods for the same data.

8.2.10 Perfect Phylogeny - Large Compatibility Problem

Problem 8.5 Large Compatibility Problem.
INPUT: Matrix M of binary character states.
GOAL: Find a maximum number of mutually compatible characters, and the corresponding
tree.

The problem of perfect phylogeny (also called full compatibility) is to decide if all the
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characters are jointly compatible. For binary characters the problem is easy: it is solved by
checking if the pairwise-compatibility graph is a complete graph. For non-binary characters,
it was established (Kannan and Warnow [15]) that if the number of states that can be taken
by each character equals 3 or 4, the problem has a polynomial-time solution in terms of n and
m (the matrix dimensions). However, if the number of states is a variable, it can be shown
(Bodlaender [2] , Steel [23]) that the generalized perfect phylogeny problem is NP-complete.

Finding the Tree

After finding the maximal clique in the compatibility graph, which means finding the largest
set S∗ of jointly compatible characters, we still have to construct the phylogeny itself. This
is performed simply by successively splitting the set of species according to each of the
characters in S∗. At each step of the algorithm, one of the characters in S∗ is used to
extend the tree T . The set S holds the characters not yet used. Each node in T will be
either unlabeled, or labeled with a set Lv ⊆ {1, . . . , n}, representing species. Define, for each
character and labeled node v: Li

v(c) ≡ Lv ∩ {k : kc = i}.

• Initialization:

1. T ← a tree containing a single node r, labeled with the set Lr = {1 . . . n}.
2. S ← S∗.

• Iteration:

1. Choose any character c ∈ S.

2. Find a labeled node v ∈ V (T ) such that |Li
v(c)| 6= 0 for i = 0, 1.

3. Add two new vertices, v0 and v1 to T , labeling vi with Li
v.

4. Add two edges connecting each vi to v.

5. Remove the label from v.

6. S ← S \ {c}.
7. Go back to step 1 while S 6= ∅.

The resulting tree T is an unrooted phylogeny with labeled leaves. Finding the labeling
of the internal nodes is simple and can be done using Fitch’s algorithm described in section
8.2.2.
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8.3 Distance Based Methods

Phylogenies based on parsimony and compatibility both try to minimize the number of
changes required to explain observed phenotype differences among a set of species. The
”distance” between species, which is the number of character changes postulated to mutate
one species into another, is unknown until a particular tree is chosen. An alternative approach
to phylogeny is to define interspecies distances a priori, and then search for a tree which
is consistent with these distances. This approach is at the core of all the distance-based
phylogeny methods.

Formally, a distance-based method defines a distance function d(i, j) on pairs of species
(i, j).The distance function is inferred from the species according to some model of character
change. The distance-based phylogeny problem is to find an edge-weighted tree in which the
path joining species i and j has total weight d(i, j) for every species pair (i, j).

Problem 8.6 Distance Based Phylogeny.
INPUT: Matrix d of distances between species.
GOAL: Find a tree, which is consistent with the distances given in d; the edges of the tree
will have weights equal to the distances, and the species will be the leaves..

8.3.1 Pairwise Distances

Given a measure of the distance between each pair of species, a simple approach to the
phylogeny problem would be to find a tree that predicts the observed set of distances as
closely as possible. This leaves out some of the information in the data matrix M , reducing
it to a simple table of pairwise distances. However, it seems that in many cases most of the
evolutionary information is conveyed in these distances.

For the analysis in this section, we shall first need to define an additive continuous distance
function, so that the distance between two species would be expected to be proportional to
the total branch lengths between the species. Thus if species a and b are connected via two
edges in the tree, with lengths da,v and db,v (see Figure 8.14), the distance between them
would be da,v + db,v. Furthermore, given the distances between three species – da,b, da,c, and
db,c, we could easily calculate the inner distances – da,v, db,v, and dc,v, by solving a system of
linear equations. Figure 8.14 illustrates a small tree, and table 8.3 contains the distances it
predicts.

We will give some examples of how distances may be computed to make them comply
with our requirements – one for proteins, and another for DNA sequences.
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Figure 8.14: A small tree with 3 species – a, b, and c. The branch lengths correspond to the
pairwise distances in table 8.3.

a b c
a 0 0.08 0.45
b 0.08 0 0.43
c 0.45 0.43 0

Table 8.3: Distances di,j predicted by the tree in Figure 8.14.
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8.3.2 Distance between Proteins – PAM matrices

We have already defined the PAM matrices, when we discussed heuristics for sequence align-
ment (in lecture #3). The PAMn matrix is designed to compare two amino-acid sequences
which are n PAM units apart. Its calculation involves raising M , the mutation probabilities
matrix for one PAM unit, to the power of n. For a continuous distance function, we need
to define PAM matrices for non-integer units, as well.

Let M = U−1λU be the diagonalization of M , where λ is a diagonal matrix, whose entries
are M ’s eigen-values, and U is an orthonormal matrix, which consists of the corresponding
eigen-vectors. Given a real x, the PAMx distance matrix is simply:

PAMx(i, j) = log
Mx(i, j)

f(i)

where f(i) is the frequency of the i-th amino-acid, and Mx = U−1λxU .

8.3.3 Distance between DNA Sequences – Jukes-Cantor Model

According to the model of Jukes and Cantor [14] each base in the DNA sequence has an equal
chance of mutating, and when it does, it is replaced by some other nucleotide uniformly. For a
mutation probability of 3α∆t during each infinitesimally small period of time ∆t (frequency),
the chance of a nucleotide x remaining unchanged over a period of T time units is (see Figure
8.15):

Px→x =
1

4
(1 + 3e−4αT )

Given a branch in the tree, the probability that the site is different at the two endpoints is
therefore:

Pu6=v = 1− Px→x =
3

4
(1− e−4αT )

Other Related Models

• Kimura’s 2-parameters model [16]
Very similar to Jukes-Cantor model only there are two different rates

– purine-purine (A,G) or pyrmidine-pyrmidine (C,T)

– purine-pyrmidine or pyrmidine-purine

• Extensions of the Kimura’s model to asymmetric base frequencies [6, 18].
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Figure 8.15: The Markov process version of the Jukes/Cantor model. a is the rate of
mutation, and dt is the time interval per step of the process.

8.3.4 Computing Distance-Based Phylogencies: Least Squares Meth-
ods

One of the more statistically justified methods to approximate a distance matrix is the least
squares approach. In this formulation we are giving, for each pair of species, the measured
distance Di, j between them, and the weight wi, j that intuitively quantifies the accuracy
of this measure .Our goal is to find a tree T , whose leaves are the n given species, and that
predicts distances dij between the species, so that the following expression is minimized:

SSQ(T ) ≡
n∑

i=1

∑

j 6=i

wij(Dij − dij)
2 (8.8)

The SSQ is a measure of the discrepancy between the observed distances Di,j and the
distances di,j predicted by T . The weights wi,j are usually all 1, or wi,j = 1

D2
i,j

.

Problem 8.7 Least Squares Tree.
INPUT: The distance Di,j between species i and j, for each 1 ≤ i, j ≤ n, and a correspond-
ing set of weights wi,j.
GOAL: Find the phylogenetic tree T and its branch length, with the species as its leaves,
that minimize SSQ(T ).

Again, a ”small” version of this problem is formulated for a given tree, only trying
to minimize SSQ by determining the branch lengths. In general, the ”large” problem of
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finding the least squares tree is NP-complete [4]. We will discuss two polynomial heuristics
– UPGMA and Neighbor-Joining. We have already studied these algorithms in lecture #5,
where we used them to iteratively add one additional string to a growing multiple alignment,
thus obtaining a progressive alignment.

8.3.5 UPGMA

UPGMA, or Unweighted Pair Group Method with Arithmetic mean [19], is a clustering
procedure, which is simple and intuitive. It works by clustering the sequences, at each stage
amalgamating two clusters, and at the same time creating a new node on a tree. The tree
can be imagined as being assembled upwards, each node being added above the others and
the edge lengths being determined by the difference in the heights of the nodes at the top
and bottom of an edge.

Being able to assign branch lengths to a given tree, as we have demonstrated, we need
to minimize SSQ(T ) over the possible tree topologies. UPGMA is a heuristic algorithm
that usually generates satisfactory results. Basically, the algorithm iteratively joins the two
nearest clusters (or groups of species), until one cluster is left.[12pt]

UPGMA algorithm:
Let d be the distance function between species, we define the distance Di, j between two
clusters of species Ci and Cj as follows:

Di,j =
1

ni + nj

∑

p∈Ci

∑

q∈Cj

d(p, q)

where ni = |Ci| and nj = |Cj|.

• Initialization:

1. Initialize n clusters with the given species, one species per cluster.

2. Set the size of each cluster to 1: ni ← 1.

3. In the output tree T , assign a leaf for each species.

• Iteration: combine two clusters to form a new cluster.

1. Find the i and j that have the smallest distance Dij.

2. Create a new cluster – (ij), which has n(ij) = ni + nj members.

3. Connect i and j on the tree to a new node, which corresponds to the new cluster
(ij), and give the two branches connecting i and j to (ij) length Di,j

2
each.
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4. Compute the distance from the new cluster to all other clusters (except for i and
j, which are no longer relevant) as a weighted average of the distances from its
components:

D(ij),k = (
ni

ni + nj

)Di,k + (
nj

ni + nj

)Dj,k

5. Delete the columns and rows in D that correspond to clusters i and j, and add a
column and row for cluster (ij), with D(ij),k computed as above.

6. Return to 1 until there is only one cluster left.

Complexity: The time and space complexity of UPGMA is O(n2), since there are n − 1
iterations, with O(n) work in each one.

Molecular Clocks and Ultrametric Property of distances

UPGMA produces a rooted tree of a special kind - a clocklike, or ultrametric, in which the
total branch length from the root to any leaf is equal. In other words, there is a “molecular
clock” that ticks in a constant pace (i.e., the mutation rate is identical for all species), and
all the observed species are at an equal number of ticks from the root (see also page 7). If the
solution to the least squares problem is 0, and there is a molecular clock (i.e., the solution
is a clocklike tree), then UPGMA is guaranteed to return the optimal solution. Actually,
UPGMA implicitly assumes the existence of an ultrametric tree, which explains why the new
node, (ij), is the mean of the two nodes that were joined to create it, as shown in Figure
8.16. It is therefore not surprising that for substantially non-clocklike trees, the algorithm
might give seriously misleading results.

Another assumption that UPGMA does is additivity: In the ”real” tree, distances be-
tween species are the sum of distances along the path between the corresponding leaves.

There are two corollaries of additivity that the next algorithm will use

• For every three nodes i,j,k connected through an internal node m with the distances:
D(i,m) = a, D(j,m) = b, D(k, m) = c then D(m, k) = 1/2(D(i, k)+D(j, k)−D(i, j))
(see Figure 8.17).

• For every four nodes i,j,k,l connected through an two internal nodes m,n where m is
connected with i, k and n, and n is connected with j, l and m the following holds:
D(i, k) + D(j, l) ≤ D(i, j) + D(k, l) = D(i, l) + D(k, j)
(see Figure 8.17).
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Figure 8.16: A clocklike tree, showing the clustering (ab) of the two nodes a and b by UPGMA
and by the Neighbor-Joining algorithm.
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Figure 8.17: D(i, j) + D(k, l) ≤ D(i, j) + D(k, l) = D(i, j) + D(k, l).
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8.3.6 Neighbor Joining

The Neighbor-Joining algorithm is another quick clustering technique, which attempts to
approximate the least squares tree, this time relying strongly on the additivity (and its im-
plied corollaries) but without resorting to the assumption of a molecular clock. The idea
here is to join clusters that are not only close to one another, but are also far from the rest.
In each iteration, the algorithm attempts to find the direct ancestor of two species in the
tree. For node i, its distance ui from the rest of the tree is estimated using the formula:
ui =

∑
k 6=i

Di,k

(n−2)
. In order to minimize the sum of all branch lengths, also known as the

minimum-evolution criterion, the nodes i and j that are clustered next are those for which
Di,j − ui − uj is smallest as can be seen in Figure 8.18 (the reader is referred to [17] for
a more elaborate explanation on this issue). The lengths dk,(ij) of the new branches are
calculated by solving the same system of linear equations mentioned earlier in section 8.3.1.
The solutions are written below, in equations 8.9 and 8.10. Neighbor-Joining has a running
time of O(n2), like UPGMA.

Neighbor-Joining algorithm [21]:

• Initialization: same as in UPGMA (see 8.3.5).

• Iteration:

1. For each species, compute ui =
∑

k 6=i
Di,k

(n−2)
.

2. Choose the i and j for which Di,j − ui − uj is smallest.

3. Join clusters i and j to a new cluster – (ij), with a corresponding node in T .
Calculate the branch lengths from i and j to the new node as:

di,(ij) =
1

2
Di,j +

1

2
(ui − uj) , dj,(ij) =

1

2
Di,j +

1

2
(uj − ui) (8.9)

4. Compute the distances between the new cluster and each other cluster:

D(ij),k =
Di,k + Dj,k −Di,j

2
(8.10)

5. Delete clusters i and j from the tables, and replace them by (ij).

6. If more than two nodes (clusters) remain, go back to 1. Otherwise, connect the
two remaining nodes by a branch of length Di,j.

The time complexity of the algorithm is O(n2).
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i

j

rest
of tree

Figure 8.18: Di,j−ui−uj is the smallest, which means they are close to one another and far
from the rest of the tree, therefore the neighbor-joining algorithm will cluster them together.

8.4 Probabilistic Approaches

Given a tree, we often wish to have a statistical measure of how well it describes our data. As
we have seen earlier in the course, we can use the likelihood score to estimate our hypothesis,
which is in this case a phylogenetic tree T . For a set of species with observed values M , we
would choose the tree that maximizes P (M |T ). In the following section, we shall assume
that the tree topology is known, and show how to find the optimal branch lengths. To this
end, we will first demonstrate how to calculate the likelihood of a tree efficiently. We will not
discuss the issue of searching among tree topologies, which suffers from the same difficulties
we mentioned in the previous sections, although is not proven to be NP-complete.

8.4.1 Likelihood of a Tree

For the analysis below, we shall use the following terms:

Definition Labels, or states, are the vectors of m character values associated with each
species, or node in the tree (we will refer to a node and to its label interchangeably). A
reconstruction is a full labeling of the tree’s internal nodes. A branch length tvu is the length
of the edge between nodes v and u, and it measures the biological time, or genetic distance,
between the species associated with these nodes.

As always, we assume that the characters are pairwise independent, and that the branch-
ing is a Markov process, that is, the probability of a node having a given label is a function
only of the state of the parent node and the branch length, t, between them. Our model also
includes a distance function to compute the latter probability, i.e.: Px→y(tvu), the probabil-
ity that state x will transform into state y within the time tvu. We further assume that the
character frequencies are fixed throughout the evolutionary history, and that they are given
as P (x).
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Figure 8.19: A simple tree with branch lengths. The likelihood of this tree is calculated in
equation 8.11.

Problem 8.8 Calculating the Likelihood of a tree.
INPUT:

• A matrix M describing a set of m characters for each one of n given species.

• A tree T with the above species as its leaves and with known branch lengths tvu.

GOAL: Maximize probability of P (M |T ) by finding an optimal reconstruction T , its internal
nodes labeling and branch lengths.
Assumptions:

• Characters are independent of each other.

• Markov model - probability of a label is depends only on its parent.

First, let us deal with a simple case, where there is only one character identifying each
species. Since the labels of the internal nodes are unknown, we need to sum over all possible
reconstructions. For example, for the tree illustrated in Figure 8.19, we can immediately
write down the following formula:

L = P (M |T ) =
∑
r

∑
v

P (r) · Pr→s(trs) · Pr→v(trv) · Pv→u(tvu) · Pv→w(tvw) (8.11)

where r and v are possible labels (character values) for the corresponding nodes.
To expand the formula for multiple characters, we simply need to repeat the above

calculation for each character separately, and then multiply the results (recall the assumption
that the characters are pairwise independent). The general equation is now:
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L = P (M |T ) =
∏

character j

P (Mj|T )

=
∏

character j

{ ∑

reconstruction R

P (Mj, R|T )

}

=
∏

character j

{ ∑

reconstruction R


P (root) · ∏

edge u→v

Pu→v(tuv)


 } (8.12)

Note: The trees inferred by maximum likelihood appear from this description to be rooted
trees. However, if the model of character substitution is reversible, i.e., P (x)Px→y(t) =
P (y)Py→x(t), then the tree is actually unrooted – the root can be chosen arbitrarily, without
any change is the likelihood of the tree.

It now remains to show how this calculation can be performed efficiently. The following
dynamic-programming “pruning” algorithm was introduced by Felsenstein [5].

We can take this approach because of the tree likelihood properties in the Markov’s
model:

Additivity -
∏

x→y(t + s) =
∑

y Px→y(t)Py→z(s)
Reversibility- P (x)Px→y(t) = P (y)Py→x(t)

8.4.2 Efficient Likelihood Calculation

Efficient likelihood calculating is done using dynamic programming. For a character j,
denote:

Cj(x, v) = P (subtree whose root is v | vj = x)

Cj(x, v) is the conditional likelihood of v’s subtree, i.e., the probability of everything that is
observed from node v on the tree down to the leaves, at character position j, given that v
has the label x at this position.

• Initialization:
For each leaf v and state x:

Cj(x, v) =

{
1 vj = x
0 otherwise

(8.13)

• Recursion:
Traverse the tree in postorder; for an internal node v with children u and w, compute
for each possible state x:

Cj(x, v) =

[ ∑
y

Cj(y, u) · Px→y(tvu)

]
·
[ ∑

y

Cj(y, w) · Px→y(tvw)

]
(8.14)
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• The final solution is:

L =
m∏

j=1

[ ∑
x

Cj(x, root) · P (x)

]
(8.15)

Complexity: For n species, m characters, and k possible states for each character, we
perform O(m · k2) work in O(n) nodes, so the running time of the algorithm is O(n ·m · k2).

8.4.3 Finding the Optimal Branch Lengths

We are now ready to tackle the more difficult task of finding the optimal branch lengths for
a given tree topology. First, let us assume that all the lengths are known except for trv. If
r is the root (as in Figure 8.19), then we get:

log L =
m∑

j=1

log

[ ∑
x,y

P (x) · Cv
j (x, r) · Px→y(trv) · Cr

j (y, v)

]
(8.16)

Here Cu
j (x, y) means Cu

j (x, y) in a tree where u is the root, which is an elementary function
of trv and some constants.

We now need to maximize log L with respect to trv. This can be done by many standard
methods, e.g., Newton-Raphson, or EM. The same process we have just demonstrated can
also be applied when r is not the original root. As explained earlier, assuming reversibility,
for any x, y, and t, then the root can be set at any node, without affecting L. In other
words, in order to find an optimal branch length between nodes r and v, we simply need to
hang the tree from r, so that the previous analysis holds.

Our next step is to find optimal branch lengths, when none of them are known apriori.
The main problem is that once one branch has changed length, there is no guarantee that the
others are still at their optimal lengths. On the contrary, the branches are clearly not pairwise
independent. In practice, however, locally improving the likelihood by optimizing the length
of one branch at a time works quite well, as there are not very strong interactions between
branch lengths. After a few sweeps through the tree, calculating the optimal length of each
edge separately, the likelihood converges, and the result is a near-optimal phylogenetic tree.

8.5 Phylogenetics related resources on the Internet

• List of phylogenetic resources –
http://www.ucmp.berkeley.edu/subway/phylogen.html.

• List of phylogeny software packages available on the web –
http://evolution.genetics.washington.edu/phylip/software.html.
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• Detailed information on phylogentic algorithms –
http://www.icp.ucl.ac.be/~opperd/private/phylogeny.html#anchor2824426.

– UPGMA – http://www.icp.ucl.ac.be/~opperd/private/upgma.html.

– Neighbor-joining – http://www.icp.ucl.ac.be/~opperd/private/neighbor.html.

– Parsimony – http://www.icp.ucl.ac.be/~opperd/private/parsimony.html.

• Database of phylogenetic knowledge –
http://herbaria.harvard.edu/treebase/

• Additional figures, scribes and information –
http://www.cs.washington.edu/education/courses/590bi/98wi/
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