
Computational Genomics Fall Semester, 2010

Lecture 12: January 6, 2011
Lecturer: Ron Shamir Scribe: Anat Gluzman and Eran Mick

12.1 Algorithms for Next Generation Sequencing Data

12.1.1 Introduction

Ever since Watson and Crick elucidated the structure of the DNA molecule in 1953, thus
proving that it carried the genetic information, the challenge of reading the DNA sequence
became central to biological research. The earliest chemical methods for DNA sequencing
were extremely inefficient, laborious and costly. For example, reliably sequencing the yeast
gene for tRNAAla (Holley, 1965) required the equivalent of a full year’s work per person per
basepair (bp) sequenced.1

Over the next few decades, sequencing became more efficient by orders of magnitude. In
the 1970s, two classical methods for sequencing DNA fragments were developed by Sanger
and Gilbert. In the 1980s these methods were augmented by the advent of partial automation
as well as the cloning method, which allowed fast and exponential replication of a DNA
fragment. By the time the human genome project was started in the 1990s, sequencing
efficiency had already reached 200,000 bp/person/year, and when it concluded in 2002 this
figure had gone up to 50,000,000 bp/person/year.

Over the past couple of years, new sequencing technologies - termed next generation
sequencing (NGS) or deep sequencing - have emerged, which now allow the reliable sequenc-
ing of 100·109 bp/person/year. At the same time, the cost of sequencing has also sharply
declined. While sequencing a single human genome cost $3 billion as part of the human
genome project, NGS now allows compiling the full DNA sequence of a person for as little as
$10,000 and efforts are underway to bring this down to $1000 within the next 3-5 years. Such
diminished costs herald the age of personalized medicine, in which doctors will diagnose and
treat each patient based on his or her unique genetic characteristics.

12.1.2 Principles of NGS Technology

Below we sketch the sequencing technology of Illumina, one of the leading companies in
the field. Bear in mind that other available technologies are different and quite a few are
currently under development.

1This lecture is based in part on lectures by Itsik Pe’er, Dept of CS, Columbia University.

2 Computational Genomics c©Tel Aviv Univ.

First, the DNA is replicated, yielding millions of copies. Then, all the copies are randomly
shredded using restriction enzymes or mechanical means into various fragments. These
fragments form the input for the sequencing phase.

Hundreds of copies of each fragment are generated in one spot (cluster) on the surface
of a huge matrix, though it is not initially known which fragment sits where. Then, the
following stages are repeated:

1. A DNA replication enzyme is added to the matrix along with the 4 nucleotides. The
nucleotides are slightly modified chemically so that each would emit a unique color
when excited by laser, and so that each one would terminate the replication. Hence,
the growing complementary DNA strand on each fragment in each cluster is extended
by one nucleotide at a time.

2. The laser is used to obtain a read of the nucleotide now added in each cluster. The
multiple copies in a cluster provide an amplified signal.

3. The solution is washed away, and with it the chemical modification on the last
nucleotide which prevented further elongation and emitted the unique signal.

Figure 12.1: (1) A modified nucleotide is added to the complemntary DNA strand by a DNA
polymerase enzyme. (2) A laser is used to obtain a read of the nucleotide just added. (3)
The full sequence of a fragment thus determined through successive iterations of the process.
(4) A visualization of the matrix where fragment clusters are attached to flow cells.

In this way, we can sequence millions of fragments efficiently and in parallel. These
fragment sequences are now called reads, and they form the input for the computational
problems presented in the next sections.

Mapping 3

12.2 Mapping

We first focus on the problem of aligning the reads to the genome.

Problem 12.1 Short read mapping problem
INPUT: m l -long reads S1, . . . , Sm and an approximate reference genome R.
QUESTION: What are the positions x1, . . . , xm along R where each read matches?

An example of this problem is when we sequence the genome of a person and wish
to map it to an existing sequence of the human genome. The new sample will not be
100% identical to the reference genome due to the natural variation in the population, and
so some reads may align to their position in the reference with mismatches or gaps. In
diploid organisms, such as human beings, different alleles on the maternal and paternal
chromosomes can lead to two slightly different reads mapping to the same location (some
perhaps with mismatches). Additional complications may arise due to sequencing errors or
repetitive regions in the genome which make it difficult to decide where to map the read.

12.2.1 Possible Solutions for the Mapping Problem

At face value, the problem of aligning a short read to a long genome sequence is exactly the
problem of local alignment. However, the large parameters involved make such an approach
impractical. In the human genome example, the number of reads m is usually 107-108, the
length of a read l is 50-200 bp and the length of the genome |R| is 3·109 bp (or twice, for
the diploid genome).

Let us consider some other possible solutions:

1. The most naive algorithm would scan R for each Si, matching the read at each position
p and picking the best match. Time complexity: O(ml |R|) for exact or inexact
matching. Considering the parameters mentioned above, this is clearly impractical.

2. A less naive solution uses the Knuth-Morris-Pratt algorithm to match each Si to R.
Time complexity: O(m(l+|R|)) = O(ml + m|R|) for exact matching. This is a
substantial improvement but still not enough.

3. Building a suffix tree for R provides another solution. Then, for each Si we can
find matches by traversing the tree from the root. Time complexity: O(ml+|R|),
assuming the tree is built using Ukkonen’s linear-time algorithm. This time complexity
is certainly practical, and it has the additional advantage that we only need to build
the tree for the reference genome once. It can then be saved and used repeatedly for
mapping new sequences, at least until an updated version of the genome is issued.

4 Computational Genomics c©Tel Aviv Univ.

However, space complexity now becomes the obstacle. Since the leaves of the
suffix tree also hold the indices where the suffixes begin, saving the tree requires
O(|R|log|R|) bits just for the binary coding of the indices, compared with |R|log|Σ|
bits for the original text. The constants are also large due to the additional layers
of information required for the tree (such as suffix links, etc.). Thus, we can store
the text of the human genome using ∼750MB, but we’d need ∼64GB for the tree!
The resultant size is much greater than the cache memory of most of today’s desktop
computers. Another problem is that suffix trees allow only for exact matching.

4. A fourth solution is to preprocess the reference genome into a hash table H. The keys
of the hash are all the substrings of length l in R, and the value of each key is the
position p in R where the substring ends. Then, given Si the algorithm returns H (Si).
Time complexity: O(ml+l |R|), which is pretty good.

The space complexity, however, remains too high at O(l |R| + |R|log|R|) since
we must also hold the binary representation of each substring’s position. A practical
improvement which can be applied is packing the substrings into bit-vectors, that is
representing each nucleotide as a 2-bit code. This reduces the space complexity by a
factor of four. Further improvement can be achieved by partitioning the genome into
several chunks, each of the size of the cache memory, and running the algorithm on
each chunk in turn. Again, this approach only allows exact matching.

12.3 The MAQ Algorithm

The MAQ (Mapping and Alignment with Qualities) algorithm, presented in 2008 by Li,
Ruan and Durbin[5], provides an efficient solution to the short read mapping problem which
allows for inexact matching, up to a predetermined maximum number of mismatches, while
taking into account practical cache memory limitations. It also accounts for base and read
quality (and for identifying sequence variants, which will not be discussed here).

12.3.1 Algorithm Outline

The key insight is that if a read has, for example, one mismatch vis-à-vis its correct position
in the reference genome, then partitioning that read into two makes sure one part is still
exactly matched. Hence, if we perform an exact match twice, each time checking only a
subset of the read bases, one subset is enough to find the match. We call such a subset a
template.

Similarly, for two mismatches, it is possible to create six templates, some of which are
noncontiguous, so that each template covers half the read and has a partner template that
complements it to form the full read. If the read has no more than two mismatches, at

The MAQ Algorithm 5

least one template will not be affected by any mismatch. Twenty such templates guarantee
a fully matched template for any 3-mismatched read, etc. Figure 12.2 below demonstrates
this property on an 8-bp read.

Figure 12.2: A and B represent reads, with purple boxes signifying positions of mismatches
with respect to the reference. The numbered templates have blue boxes in the positions
they cover. When comparing the genomic segment and read A through template 1, they
will not match. However, template 2 must still be fully matched. Similalry, read B has two
mismatches, but we see template 6 is fully matched despite this. Any combination of up to
two mismatched positions will be avoided by at least one of the six templates. In fact, six
templates guarantee 57% of all 3 mismatches will also have at least one unaffected template.

The algorithm can then generate the number of templates required to guarantee at least
one full match for the desired maximal number of mismatches, and use that exact match as a
seed for extending across the full read. Identifying the exact matches is done by hashing the
read templates into template-specific hash tables, and then scanning the reference genome
against each table.

In fact, it is not even necessary to generate templates and hash tables for the full read,
since the initial seed will undergo extension, e.g. using the Smith-Waterman algorithm.
Rather, the algorithm initially processes only the first 28 bases of each read. The first bases
are chosen since they are the most accurately read ones.

Algorithm summary (for the case of up to two mismatches):

1. Index the first 28 bases of each read with complementary templates 1, 2; generate hash
tables H1, H2.

2. Scan the reference: for each position and each orientation, query a 28-bp window
through templates 1, 2 against the appropriate tables. If hit, extend and score the

6 Computational Genomics c©Tel Aviv Univ.

complete read based on mismatches. For each read, keep the two best scoring hits and
the number of mismatches therein.

3. Repeat steps 1+2 with complementary templates 3, 4, then 5, 6.

Remark The reason for indexing against a pair of complementary templates each time has
to do with a feature of the algorithm regarding paired-end reads (covered in section 12.3.3
below), which we will not discuss.

Complexity:

• Time Complexity: O(ml) for generating the hash tables in step 1, and O(l |R|)
for scanning the genome in step 2. We repeat steps 1+2 three times in this
implementation but that does not affect the asymptotic complexity, using O notation.

• Space Complexity: O(ml) for holding the hash tables in step 1, and O(ml+|R|)
total space for step 2. However, we only hold O(ml) space in cache at any one time.

More accurately, we are not dealing with the full read length l, but rather just a
window of length l’ ≤ l (28-bp in the implementation presented above). The size of each
key in a template hash table is only l’/2, since each template covers half the window. We
therefore can provide a more precise term for the time and space complexity of step 1:
O(2·m·l’/2) = O(ml’). This reduction in space makes running the algorithm with the cache
memory of a desktop computer feasible.

Note also that we did not take into account the time and space required for extending a
match in step 2 using the Smith-Waterman algorithm. Let p be the probability of a hit, then
the time complexity for this step becomes O(l’ |R| + p|R|l 2). The space complexity becomes
O(ml’ + l 2). The value of p is small, and decreases drastically the longer l’ is, since most
l’ -long windows in the reference genome will likely not capture the exact coordinates of a
true read.

12.3.2 Read Mapping Qualities

Another feature of the MAQ algorithm is that it provides a measure of the confidence level
for the mapping of each read, denoted by QS and defined as:

QS = −10 log10(Pr{read S is wrongly mapped}) (12.1)

For example, QS = 30 if the probability of incorrect mapping of read S is 1/1000.
This confidence measure is called phred -scaled quality, following the scaling scheme
originally introduced by Phil Green and colleagues[3] for the human genome project.

The MAQ Algorithm 7

We now present a simplified statistical model for inferring QS. In this simple case,
we know the reads are supposed to match the reference precisely, and so any mismatches
must be the result of sequencing errors. Assuming that sequencing errors along a read are
independent, we can define the probability p(z |x,u) of obtaining the read z given that its
position in reference x is u as the product of the error probabilities of the observed mismatches
in the alignment of the read at that position. These base error probabilities, which can also
be presented on the phred scale, are empirically determined during the sequencing phase
based on the characteristics of the emitted signal at each step.

Example If read z aligned at position u yields 2 mismatches that have a phred -scaled base
quality of 10 and 20, then:

p(z|x, u) = 10−(20+10)/10 = 0.001

We now wish to calculate the posterior probability ps(u|x, z) of position u being the
correct mapping for an observed read z. Applying Bayes’ theorem, we get:

ps(u|x, z) =
P (z|x, u)P (u)

P (x, z)
=

P (z|x, u)P (u)∑|R|−l+1
v=1 P (z|x, v)P (v)

=
P (z|x, u)∑|R|−l+1

v=1 P (z|x, v)
(12.2)

The denominator was expanded to the sum of probabilities of seeing read z at any position
along x, and we cancelled the probabilities of the positions since we assume all positions are
equiprobable.

We have already seen how to calculate the nominator P (z|x, u). However, the
exact calculation of the denominator would require summing over all positions in R, which
is impractical. Instead, it is estimated from the best hit, the second best and all other hits
(we will not present an exact derivation of this). Having calculated the posterior probability,
we can now give our confidence measure as:

Qs(u|x, z) = −10 log10(1− ps(u|x, z)) (12.3)

Obviously, MAQ uses a more sophisticated statistical model to deal with the issues we
neglected in this simplification, such as true mismatches that are not the result of sequencing
errors (SNPs = single nucleotide polymorphisms).

12.3.3 Paired-End Reads

Paired-end sequencing is a technology which provides additional infor-
mation on the reads and allows for an even more reliable confidence
measure of read mapping. The approach is based on circularization of genomic DNA

8 Computational Genomics c©Tel Aviv Univ.

Figure 12.3: Paired-end sequencing. In this example, L = 3000 and l = 100. Source:
http://www.lifesequencing.com/pages/estrategia-paired-end.

fragments of length ∼L, and sequencing two reads, each of length l, centered around the
site of circularization (see Figure 12.3).

The two reads are called mate-pairs in the sense that we know they are supposed to
be mapped to positions in the genome approximately L − 2l apart. In the case of paired-
end sequencing, MAQ jointly aligns the two reads in a pair. Sequences that fail to reach a
mismatch score threshold but whose mate is mapped are searched with a gapped alignment
algorithm in the region defined by the mate pair.

Paired-end mapping qualities are derived from single end mapping qualities. In MAQ,
if there is a unique pair mapping in which both ends hit consistently (i.e., in the right
orientation within the proper distance), we give the mapping quality QP = QS1 + QS2 to
both reads since we are now more certain of the correct mapping and we assume errors are
independent. If there are multiple consistent hit pairs, we cannot know (based on the read
pair alone) which pair is correct, so we take their single end mapping qualities as the final
mapping qualities.

12.4 The Bowtie Algorithm

We have seen that one way to map reads to a reference genome is to index into a hash table
either all l-long windows of the genome or of the reads. Holding these indices in memory
requires a great deal of space, as discussed in section 12.2.1.

The Bowtie algorithm, presented in 2009 by Langmead et al.[1], solves problem 12.1
through a more space-efficient indexing scheme. This scheme is called the Burrows-Wheeler
transform[2] and was originally developed for data compression purposes. In the following
section, we will describe the transform and its uses by following a specific example.

The Bowtie Algorithm 9

12.4.1 Burrows-Wheeler Transform

To demonstrate the process, we shall apply the transform BW(T) to
T = ”the next text that i index.”:

1. First, we generate all cyclic shifts of T .

2. Next, we sort these shifts lexicographically. In this example we define the character
’.’ as the minimum and we assume that it appears exactly once, as the last symbol in
the text. It is followed lexicogrpahically by ’ ’, which is followed by the English letters
according to their natural ordering. We call the resulting matrix M.

3. We now define the transform BW(T) as the sequence of the last characters in the rows
of M. Figure 12.4 shows an example for the first few shifts. Note that this last column
is a permutation of all characters in the text since each character appears in the last
position in exactly one cyclic shift.

Figure 12.4: Some of the cyclic shifts of T sorted lexicographically and indexed by the last
character.

Saving BW(T) requires the same space as the size of the text T since it is simply a
permutation of T . In the case of the human genome, we saw that each character can be
represented by 2 bits, so we require ∼ 2 · 3 · 109 bits for storing the permutation instead of
∼ 30 · 3 · 109 for storing all indices of T .

Thus far, we have seen how to transform a text T into BW(T). Let us now consider what
information can be gleaned from BW(T), assuming we do not see T or M:

10 Computational Genomics c©Tel Aviv Univ.

1. The first question we can ask is: given BW(T), how many occurrences in T of the
character ’e’? We can easily answer this by counting the number of occurrences of ’e’
in BW(T) since we have shown that this is simply a permutation of the text.

2. Can we also recover the first column of the matrix M? Certainly! All we have to do is
sort BW(T) since the first column is also a permutation of all characters in the text,
sorted lexicographically. Figure 12.5 demonstrates this.

Figure 12.5: Recovering the first column (left) by sorting the last column.

3. How many occurrences of the substring ’xt’ do we have in T? Remember that BW(T)
is the last column of the lexicographical sorting of the shifts. Hence, the character at
the last position of a row appears in the text T immediately prior to the first character
in the same row (each row is a cyclical shift). So, to answer this question, we consider
the interval of ’t’ in the first column, and check whether any of these rows have an ’x’
at the last position. In Figure 12.5, we can see that there are two such occurrences.

4. Now we can recover the second column as well. We know that ’xt’ appears twice in
the text, and we see that 3 rows start with an ’x’. Two of those must be followed by a
’t’, but which ones? The lexicographical sorting determines this as well. In the above
example, another ’x’ is followed by a ’.’ (see first row). Therefore, ’.’ must follow the
first ’x’ in the first column since ’.’ is smaller lexicographically than ’t’. The second
and third occurrences of ’x’ in the first column are therefore followed by ’t’. We can

The Bowtie Algorithm 11

use the same process to recover the characters at the second column for each interval,
and then the third, etc.

We have thus shown two central properties of the transform, which we now state formally
following a formulation by Ferragina and Manzini[4].

Lemma 12.1 (Last-First Mapping): Let M be the matrix whose rows are all cyclical shifts
of T sorted lexicographically, and let L(i) be the character at the last column of row i and
F(i) be the first character in that row. Then:

1. In row i of M, L(i) precedes F(i) in the original text: T =. . .L(i) F(i). . . .

2. The j-th occurrence of character X in L corresponds to the same text character as the
j-th occurrence of X in F.

Proof:

1. Follows directly from the fact that each row in M is a cyclical shift.

2. Let Xj denote the j-th occurrence of char X in L, and let α be the character following
Xj in the text and β the character following Xj+1. Then, since Xj appears above Xj+1

in L, α must be equal or lexicographically smaller than β. This is true since the order
is determined by lexicographical sorting of the full row and the character in F follows
the one in L (property 1). Hence, when character Xj appears in F, it will again be
above Xj+1, since α and β now appear in the second column and Xα ≤ Xβ (Figure
12.6 demonstrates this).

12.4.2 Reconstructing the Text

We now present an algorithm for reconstructing a text T from its Burrows-Wheeler transform
BW(T) utilizing lemma 12.1[4]. In this formulation, we assume the actual text is of length u
and we append a unique $ character at the end, which is the smallest lexicographically (the
’.’ character played the role of $ in our example above):

12 Computational Genomics c©Tel Aviv Univ.

Figure 12.6: Last-first mapping. Each ’t’ character in L is linked to its position in F and no
crossed links are possible.

UNPERMUTE[BW(T)]

1. Compute the array C[1, . . . , |Σ|] : C(c) is the no. of characters {$, 1, . . . , c− 1} in T .

2. Construct the last-first mapping, tracing every character in L to its corresponding
position in F:

LF[i] = C(L[i]) + r(L[i], i) + 1, where r(c, i) is the number of occurrences of
character c in the prefix L[1, i− 1].

3. Reconstruct T backwards:

• s = 1, T (u) = L[1];

• for i = u− 1, . . . , 1
s = LF[s], T [i] = L[s];

The Bowtie Algorithm 13

Figure 12.7: Example of running UNPERMUTE to recover the original text. Source: [1].

In the above example, T = acaacg$ (u = 6) was transformed to BW(T) = gc$aaac, and
we now wish to reconstruct T from BW(T) using UNPERMUTE:

1. First, the array C is computed. For example, C(c) = 4 since there are 4 occurrences of
characters smaller than ’c’ in T (in this case, the ’$’ and 3 occurrences of ’a’). Notice,
that C(c) + 1 = 5 is the position of the first occurrence of ’c’ in F.

2. Second, we perform the LF mapping. For example, LF [c2] = C(c) + r(c, 7) + 1 = 6,
and indeed the second occurrence of ’c’ in F sits at F[6].

3. Now, we determine the last character in T : T (6) = L(1) = ’g’.

4. We iterate backwards over all positions using the LF mapping. For example, to recover
the character T (5), we use the LF mapping to trace L(1) to F(7), and then T (5) =
L(7) = ’c’.

Remark We do not actually need to hold F in memory, which would double the space we
use. Instead, we only keep the array C defined above, of size |Σ|, which we can easily obtain
by looking at L alone.

12.4.3 Exact Matching

Next, we present an algorithm for exact matching of a query string P to T , given BW(T)[4].
The principle is very similar to UNPERMUTE, and we use the same definitions presented
above for C and r(c, i). We denote by sp the position of the first row in the interval of
rows in M we are currently considering, and by ep the position of the first row beyond this
interval. So, the interval is defined by the rows sp, . . . , ep− 1.

EXACTMATCH[P [1, . . . , p], BW(T)]

1. c = P [p]; sp = C[c] + 1; ep = C[c+1] + 1; i = p− 1;

14 Computational Genomics c©Tel Aviv Univ.

2. while sp < ep and i ≥ 1
c = P [i];
sp = C[c] + r(c, sp) + 1;
ep = C[c] + r(c, ep) + 1;
i = i− 1;

3. if(sp == ep) return ”no match”;
else return sp, ep;

Figure 12.8: Example of running EXACTMATCH to find a query string in the text. Source:
[1].

In the above example we use the same text as in Figure 12.7, while searching for
P = ’aac’:

1. First, we initialize sp and ep to define the interval of rows beginning with the last
character in P , which is ’c’:

• sp = C(c) + 1 = 5.

• ep = C(g) + 1 = 7.

2. Next, we consider the preceding character in P , namely ’a’. We redefine the interval
as the rows that begin with ’ac’ utilizing the LF mapping. Specifically:

• sp = C(a) + r(a, 5) + 1 = 1 + 1 + 1 = 3.

• ep = C(a) + r(a, 7) + 1 = 1 + 3 + 1 = 5.

3. Now, we consider the preceding character, namely ’a’. We now redefine the interval as
the rows that begin with ’aac’. Specifically:

• sp = C(a) + r(a, 3) + 1 = 1 + 0 + 1 = 2.

• ep = C(a) + r(a, 5) + 1 = 1 + 1 + 1 = 3.

4. Having thus covered all positions of P , we return the final interval calculated (whose
size equals the number of occurrences of P in T).

The Bowtie Algorithm 15

Note that EXACTMATCH returns the indices of rows in M that begin with the query, but
it does not provide the offset of each match in T . If we kept the position in T corresponding
to the start of each row we would waste a lot of space. Instead, we can mark only some rows
with pre-calculated offsets. Then, if the row where EXACTMATCH found the query has
this offset, we can return it immediately. Otherwise, we can successively use LF mapping to
find a row that has a precalculated offset, and then we simply need to add the number of
times we applied this procedure to obtain the position in which we are interested. There is
a simple time-space tradeoff associated with this process.

Example In figure 12.8 we found the row beginning with ’aac’. Assuming that row has no
offset, we can use LF mapping to reach row 5. If that row has the offset 2, then the desired
offset of ’aac’ is 2 + 1 = 3.

Note also that we did not describe how to efficiently compute r(c, i), which is an operation
we repeat many times while running the algorithm. Again, it would be wasteful to save the
value for each occurence of every character in the text. Instead, we can use a similar solution
to that used above for finding the exact index of a match. We store only a subset of the values
and locally compute back from an unkown value to a stored one. Ferragina and Manzini
provide a more efficient (and complicated) solution for this issue[4].

12.4.4 Inexact Matching

So far, we have seen how to find exact matches of a query using BW(T). However, to map
reads to the genome we must allow for mismatches. Recall (section 12.3.2) that each character
in a read has a numeric quality value, with lower values indicating a higher likelihood of
a sequencing error. Bowtie defines an alignment policy that allows a limited number of
mismatches and prefers alignments where the sum of the quality values at all mismatched
positions is low.

The search proceeds similarly to EXACTMATCH, calculating matrix intervals for
successively longer query suffixes. If the range becomes empty (a suffix does not
occur in the text), then the algorithm may select an already-matched query position and
substitute a different base there, introducing a mismatch into the alignment. The
EXACTMATCH search resumes from just after the substituted position. The algorithm
selects only those substitutions that are consistent with the alignment policy and that yield
a modified suffix that occurs at least once in the text. If there are multiple candidate sub-
stitution positions, then the algorithm greedily selects a position with a maximal quality
value. Figure 12.9 demonstrates this. In the full Bowtie algorithm, backtracking can allow
more than one mismatch, but the size of the backtracking stack is bounded by a parameter
for efficiency.

16 Computational Genomics c©Tel Aviv Univ.

Figure 12.9: Example of running the inexact match variant of the Bowtie algorithm. In this
example, we try to map the string ’ggta’ to the genome, but we only succeed at mapping
’ggtg’. The array at each level of the backtracking shows the row intervals corresponding to
suffixes with the 4 nucleotides at that position (in the order a, c, g, t). Source: [1].

12.5 Assembly

The next problem we wish to discuss breifly is how to assemble an unknown genome based
on many highly overlapping short reads from it.

Problem 12.2 Sequence assembly
INPUT: m l -long reads S1, . . . , Sm.
QUESTION: What is the sequence of the full genome?

The crucial difference between the problems of mapping and assembly is that now
we do not have a reference genome, and we must assemble the full sequence directly from
the reads. To solve this problem, we first introduce a graph-theoretical concept.

Definition A k-dimensional de Bruijn graph of n symbols is a directed graph representing
overlaps between sequences of symbols. It has nk vertices, consisting of all possible k-tuples
of the given symbols. The same symbol may appear multiple times in a tuple. If we have

Assembly 17

the set of symbols A = {a1, . . . , an} then the set of vertices is:

V = {(a1, ..., a1, a1), (a1, ..., a1, a2), . . . , (a1, ..., a1, an), (a1, ..., a2, a1), . . . , (an, ..., an, an)}

If one of the vertices can be expressed by shifting all symbols of another vertex by one
place to the left and adding a new symbol at the end, then the latter has a directed edge to
the former vertex. Thus the set of directed edges is:

E = {((v1, v2, ..., vk), (w1, w2, ..., wk))|v2 = w1, v3 = w2, ..., vk = wk−1}

Figure 12.10: In this portion of a 4-dimensional de Bruijn graph, the vertex CAAA (in red)
has a directed edge to vertex AAAC (in green) because if we shift the label of the former to
the left and add the symbol C we get the label of the latter.

Given a read, every contiguous (k+1)-long word in it corresponds to an edge in the de
Bruijn graph. We form a subgraph of the full de Bruijn graph by introducing only the edges
that correspond to (k+1)-long words in some read. This is the graph we shall be working
with. A path in this graph defines a potential subsequence in the genome. Hence, we can
convert a read to its corresponding path:

Figure 12.11: Using the same graph as in 12.10, we construct the path corresponding to
CCAACAAAAC. We form it by shifting the sequence one position to the left each time, and
marking the vertex with the label of the 4 first nucleotides.

After forming paths for all the reads, we now attempt to merge them through common
vertices into one long sequence. For example:

18 Computational Genomics c©Tel Aviv Univ.

Figure 12.12: The two reads in (a) are converted to paths in the graph, and the common
vertex TGAG is identified. Then, we can combine these two paths into (b).

Velvet, presented in 2008 by Zerbino and Birney[6], is an algorithm which utilizes de
Bruijn graphs to assemble reads in this way. However, this assembly process can encounter
some difficulties. For instance, repeats in the genome will manifest themselves as cycles
in the merged path that we form. It is impossible then to tell how many times we must
traverse each cycle in order to form the full sequence of the genome. Even worse, if we have
two cycles starting at the same vertex, we cannot tell which one to traverse first. Velvet
attempts to address this issue by utilizing the extra information we have in the case of
paired-ends sequencing. However, we will not discuss the resolution of these issues here.

Bibliography

[1] Ben Langmead, Cole Trapnell, Mihai Pop and Steven L. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009.

[2] Michael Burrows and David Wheeler. A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, 1994.

[3] Brent Ewing and Phil Green. Base-calling of automated sequencer traces using phred. II.
Error probabilities. Genome Research, 1998.

[4] Paulo Ferragina and Giovani Manzini. Opportunistic data structures with
applications. FOCS ’00 Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, 2000.

[5] Heng Li, Jue Ruan and Richard Durbin. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Research, 2008.

[6] Daniel R. Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 2008.

19

