Algorithm In Molecular Biology Fall Semester, 2001

Lecture 15: January 31, 2002

Lecturer: Ron Shamir Scribe: Tamir Tuller and Yair Sade

15.1 Preface

In most organisms, genetic investigation can be carried out simply by breeding a pair of
parents, and examining the offspring. Of course, parent selection for experimental breeding
is not practical in humans. Therefore, humans genetics involves retrospective analysis of
inheritance, and statistical analysis of hereditary pattern. Genetics analysis in human, will
mostly serve as a low resolution method for localizing genes, but it is the only method
available if the only prior information about the gene is some hypothesis about its function,
or some presumed phenotype that results from a particular DNA sequence (allele) of that

gene.

15.1.1 Diploids and Haploids

Humans and other mammals are diploid organisms, which means they contain two copies of
each homologous chromosome in contrast to haploids, which contains only single copy of each
chromosome. Sperm and egg cells are haploids called gametes, and created by a particular
cell division process called meiosis. When a sperm and an egg combine, a diploid cell is

created. The offspring inherits one copy of the genome from each parent.

15.1.2 Biology terms

e A locus is a site along the chromosome.
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Figure 15.1: Source:[1] Basic scheme for chromosome segregation in the genetics of diploid
organisms. (a) Parental genome. (b) Possible gametes. (c) Possible offspring (all equally
probable).
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e An allele is a particular DNA sequence variant at the locus of interest.

e When two homologous chromosomes in a diploid cell have the same allele at the locus
of interest, the cell is said to be homozygote for that locus. Otherwise it is called

heterozygote.

e The set of observable inherited characteristics of an individual (what we see) is called

phenotype.

e The genetic constitution, which is the particular set of alleles inherited by the individual

(what it inherits) is its genotype.

e Whenever a single allele determines the phenotype (even if present in one homologous

chromosome), this allele is called dominant. Dominant disease alleles are rare.

e In contrast recessive allele is one that produces a particular phenotype only if it is

present in both homologous chromosomes.
e The chance of an allele to produce the expected phenotype is called penetrance.

e The configuration of particular alleles on homologous chromosomes is called phase. For

example, in figure 15.1 the phase is AB/ab.

15.1.3 Mendel’s Laws

First Law: Segregation

Two alleles segregate from each other in gametes. Each gamete takes each allele with prob-
ability of 0.5.

Second Law: Independent Assortment

Genes of different traits are inherited independently.
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Third Law:“The Third Law”

In heterozygote, one allele will dominate.

Mendel published the above laws in 1865. These laws were the basis of modern genetics.
Today we know the Third Law fails on codominant, non bi-allelic traits. For example, let
A be the dominant allele and a recessive one. In non bi-allelic traits, Aa and AA would be

different, in contrast to regular traits.

15.2 describes basic mendelian pedigree patterns.
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Figure 15.2: A sample pedigree. The squares describe the males and the circles the females.
The shaded shapes describes a phenotype of hearing loss.
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15.1.4 Linkage

Observable genomic traits are called Markers.
in population and each form is called allele. Markers on different chromosomes have 50%
chance to be passed to offspring together. Linkage is the tendency of two markers on the

same chromosome to be coinherited. Linkage and genetic analysis can help find a connection

Markers must have more than one form

between known observable markers to a phenotypes such as a lethal disease.

15.1.5 Hardy — Weinberg equilibrium

Given random pedigrees, we would like to know the probability of a dominant trait eventually

taking over. For simplicity, we shall make the following assumptions:

e No emigration (a close system).

e No cross generation breeding.

e No mutations.

e No natural selection that favors any trait.
Given two traits A,a and genotype probabilities Py(AA) = u Py(Aa) = v Pylaa) =w

the probabilities for each possible first generation genotype are given in the table 15.1

Parents Probability Genotype

AAAA AA
u?

AA Aa $(AA) + 3(Aa)
2uv

AA aa Aa
2uw

Aa,Aa 1(AA) + 1(Aa) +
v? (aa)
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(Aa) + 3(aa)

N|—

1
Aa,aa 3

20w

aa,aa aa

w2

Table 15.1: Probabilities for first generation genotypes

The corollaries are:

Pi(AA) = u? + uv + v? /4
Py(Aa) = 2uw + vw + uv + v?/2
Pi(aa) = w? + wv + v?/4

Let p=u+v/2,g=1—p=w+v/2, then probabilities can be written as:

Pl(AA) = p2
Pi(Aa) = 2pq
Pi(aa) = ¢*

Probabilities for possible genotypes in generation 2:
Py(AA) = ui + wor + vi/4 = p' + 2p°q + p*¢* = p?
Py(Aa) = 2uywy + viwy + uyvy + 0?2 /2 = 2pq
Py(aa) = w? + wiv; +v}/2 = ¢
Equilibrium is achieved after one generation. This equilibrium is called Hardy- Weinberg

equilibrium. Note that the assumptions made are not realistic, especially the one that ignor-

ing natural selection, although natural selection is slow.
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15.2 Recombination

During meiosis, homologous chromosomes pair up and align to each other, physically at-
tached at several random locations called Holiday junctions. Each junction can inflict a

swap of chromosome segments. This phenomenon is called meiotic recombination (see figure

15.3).
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Figure 15.3: Source: [1] Meiotic recombination in a single pair of homolouges chromosomes.
Formations and resolutions of a Holiday junction.

Meiotic recombination occurs at least once for each pair of homologous chromosomes.
Recombination is important for evolution since it enables the expression of alleles that reside
beside a dominant lethal mutation. Meiotic recombination in human occurs within a sequence
of 1IMB with probability of 1%. In different organisms, this probability varies. That low
probability of recombination, and the small size of human families make genetic analysis
more difficult in human. The closer two markers are, the larger the chances of coinheritance,
since the chance of recombination occurring between them is lower. The probability that
two markers were on the same haploid before meiosis, but on different ones after it called
recombination fraction. Recombination fraction is denoted by 6.

In Figure 15.4, A is a marker for a disease allele D. Squares represent the males and circles
the females. Shaded shapes represent disease affected offsprings. We first compute the
recombination fraction without prior knowledge of the parental (first generation) )genotypes
and phenotypes. The likelihood of the recombination fraction assuming phase DA/da for the

father is the probability of selecting the 3 affected offsprings out of the 10 offsprings that



8 Algorithm In Molecular Biology (©) Tel Aviv Univ.

Linkage analysis: a simple example

[- male, o- female
O . gray: affected

Aa aa Aa o [iominant disease,

_ D: disease allele d:
() normal

Want to know phase

Aa aa
T TT T T T T T 1 of affected father
1 (2 |3 5 [6 |7 |8 |9 |10 from generations
. 2,3: DA/daor
Aa aa Aa AaAa Aaaa aa aa aa 9A/Da?
10 )
DA/da: 3 recombinations out of 10 (2.4 7): (1=

Da/dA: 7 recombinations out of 10 . -y
2l

Figure 15.4: Recombination Fraction Calculation

match DA/da (Offsprings number 2,4,7):

10
L) = 3 ( \ ) [67(1 = 6)* +6°(1 — 6)]

The value of # maximizing L(6) is § = 0.318.

Considering the first generation of the family we see that the affected father must be

DA/da because the dominant disease was inherited from the Aa father. The likelihood be-

comes therefore,

And the value for optimal L(6) is = 0.3.
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15.3 Pedigree Analysis

The following section is based on [5]. Define L(0) = Pr(Datalf) as the likelihood of 8 given
the data .The problem we study is the following :

Problem 15.1 (Maximum likelihood problem)
INPUT: Given two alleles in two loci A,a and B,b.

GOAL: Estimate 6 the recombination fraction , maximizing L(0).

15.3.1 The Bayesian Approach

In this section we show how to solve the maximum likelihood problem using Bayesian Ap-

proach .Let the prior distribution for 6 be :

1/2 with probability 21/22
h(0) = (15.1)
uniform[0,1/2] = u(f) with probability 1/22

Explanation:the probability that the loci of the two alleles are on two different chromo-
somes is 21/22 (human have 22 pairs of chromosomes ignoring the sex chromosomes).The
probability for recombination in this case is 1/2 . If the loci of the two alleles lie on the same

chromosome , the the recombination fraction is uniform distributed between 0 and 1/2 .
Given a pedigree F' we calculate p(6|F) as follow , according to Bayes theorem :
p(F,0) = p(F|©)-p(©) = L(F|©) - h(O)

p(F) = [p(F.©)d® = [ L(F|6)-u(0) + L(F|1/2)- h(6 = 1/2)

0<0<1/2
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L(F|0) - h(0)
[ L(F|0)-u(f) + L(F|1/2) - h(0 = 1/2) (15.2)

0<0<1/2

p(O|F) =

We next calculate the distribution of 6 in the range : 0 < 6 < 1/2 | i.e when the two

alleles are on the same chromosome.The prior density function in this range , based on (15.1)

is :

M®={1ﬁ10<9<u2

Denote L(0) = L(F|0), L*(0) = % , equation (15.2) becomes :

B L(6) - h(0) _220*(0)h(9)
p(0|F) = 1—11fL(9)d9+L(1/2) . g_; - 2 [ L*(t)dt + 21

1/2
Denoting A =2 [ L*(t)dt ,we derive the following formula for p(6 < 1/2|F):
0

1/2
1/2 22 [ L*(t) - dt A
pw<1pmv=/}wwww= 1A+m_ T A+21

0
Bayesian inference : examples

Now we demonstrate the use of the relations and formulas we developed .

Example 1 : In this example we want to calculate the probability that § < 1/2 (the two

alleles are on the same chromosome ), when we observe 1 recombination out of 12 meioses:
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L(0) = 120(1 — )1
1/2 12
A=2 g‘ L*(t)dt = 2 - mofl%(l —t)Hdt =

= 21%.0.0064 = 52.043

p(0 <1/2) = 575y = 0.714

Example 2: In this example we calculate how many meioses without recombination we
need to observe if we want p(f < 1/2) ~ 0.95 :
Let n denote the number of meioses , we get : L(0) = (1 — )"

1/2
A — 2n—|—1 j/“ (1 _ ¢9>nd¢9 — 2n+1 1—2—(n+1) ~ on+1
0

n+1 n+1

n+1 n
= p(© < 1/2|F) = 5t = 0.95
In this case : n = 11 = p(© < 1/2|F) = 0942 , n = 12 = p(© < 1/2|F) = 0.968 .
Hence We need >11 meioses even for p(© < 1/2|F) ~ 0.95 .

15.3.2 Likelihood Ratio Inference

Suppose we wish to test the following two hypotheses :
Hy:0=1/2, two alleles are not on the same chromosome.

Hy:0 < 1/2, two alleles are on the same chromosome.

Define the likelihood ratio A = rﬁf(ile/(?) and let Q = —2In A\ .

The distribution of @ is : 1/2- x* + 1/2{0} Where x? denotes chi-square density , and
{0} denotes delta function at the point 0 which is due to the delta in equation (15.1) . Hence
p{—2InA> x5} =1/2-p{x* > z0}.

Define LOD(logodds) = logyy + = —0.4343In X\ = 0.2171- Q = %.

Typically need LOD > 3 for rejecting Hy: 1/2 - pr{x* > 4.6 -3} =~ 0.0001 . We need

about 20 markers per chromosome , total 440 . And by Bonferroni inequality , bound false
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alarm rate by 440 - 10~* = 0.044.

Alternatively , we can get the same results by using the following relations :

Let Z(0) = logy, % ;we need Zyax = maxg Z(0) = LOD. For independent families
Fi,..F,: Z(0) = ﬁ;Z(Qi) ,and in our case we have n = 440.

15.4 Inference of Haplotypes

15.4.1 SNP and Haplotypes

The follow section is based on [4].

SNP , Single Nucleotide Polymorphism ,is a single nucleotide sites where at least 2 (out of 4)
different nucleotides occur in a large percentage of the population. There is a hope that SNP
screens will help identify genetic elements of complex diseases. In diploids , as mentioned
before, there are 2 copies of each chromosomes. Those copies are not completely identical,
each copy of it called haplotype and the combination of them is called Genotype.

In complex diseases (diseases that are affected by more than single gene), haplotype
data is more informative than Genotype data. Obtaining the haplotype out of the genotype
data by experiments is hard to be done and expensive, therefore we would like to have
an algorithm that inputs genotypes (i.e. haplotype pairs) from individuals and infer the

population’s haplotypes.

15.4.2 Clark’s method

Given n vectors each of length m where each value is either 0,1,2. Each position in the
vector is associated with locus in the chromosome. The state of the chromosome can be
either 0 or 1. The associated vector position is 0 or 1 if the chromosome site has that state
in both copies, and the value of 2 of both states are present (in heterozygous site).Values of

0,1 called “resolved’ and values of 2 called “ambiguous’. A vector, which all its values are
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resolved is called a resolved vector and otherwise called ambiguous. Given two non-identical
ambiguous vectors N and R, the conflation of the two vectors creates a an ambiguous vector
A, with 0 (respectively 1) values of both NR had 0 in that index, and 2 in each site the
values differs.

The idea of Clark’s method [2] is to find few haplotypes to explain data justified by
population genetics arguments and by simulations.

Let S be the current collection of vectors. Find a € S ambiguous with A heterozygous
sites and r € S resolved vector that equals to one of the 2" potential resolutions of a.

The method consists of the following steps :

1. Define @ as r; for all resolved i, and as 7; for each unresolved position i.

2. S=5\{a}U{a}

3. Goto 1 unless all the vectors are resolved .

when we stop the resolved vectors are the wanted haplotypes.

Example for step 1: if a = 0212 and r = 0110 we will choose :

a = 0011. Clark’s method presents the following problem:

Problem 15.2 (Maximum Resolution Problem (MR))
INPUT: A Set of given vectors.
QUESTION: What is the maximum number of ambiguous vectors that can be resolved by

applying Clark’s inference rule?

The MR problem is known to be NP hard [3], and in fact Max-SNP complete [3].

15.4.3 Graph-Theoretic view of the MR problem

Given the input of n vectors of length m, we will create the following directed graph G
containing a set of nodes N(A), for each ambiguous node, and a set of nodes, I, containing

one node for each resolved vector in the input. In details, a node r in I for each resolved
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r € S; a set of nodes for each unresolved a € S, where N(a) is all possible resolutions of a
(2"); and an edge v — v iff :
1. v" in some N(A) (not in I).

/

2. Applying Clark’s rule to a and v gives v'.

Figure 15.5 demonstrate such a graph.
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Figure 15.5: MR Problem - Graph example.

Maximum Resolution on Graphs (MRG).

The following example show that the order of choices of a,r affects the number of resolved

ambiguous vectors:

S: 000 100 200 112

L 000 112
first possibility : — 110, — 111, — 000, 100, 110, 111.
220 110

100
second possibility : — 010,112 can not be resolved by 010,000,100.
220

This gives rise to the following problem:

Problem 15.3 Maximum Resolution on Graphs (MRG)
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INPUT: A graph G from the input vectors.
PROBLEM: Find the largest number of nodes reachable by vertex-disjoint directed trees

rooted at nodes in I, and for each ambiguous a at most one node in N(a) is reached.

Unfortunately MRG problem is NP hard, even the input to the problem is exponential (N (a)

consists of 2" possible resolutions).

15.4.4 Integer Programming Formulation of MRG

Since solving MRG takes exponential time, we would like to show more realistic methods to
solve the MRG problem. Define G as subgraph of (7 in which nodes not reachable from I
are removed along with the incident edges.

G can be built using mathematical integer programming in O(mn*+|E(G) |) time. Even
though G edges number is still exponential, practice shows that it is much more efficient than

the naive approach (of building G from G.

15.4.5 Network Flow Formulation

Following [4] we shall formalize the MRG problem as a network flow problem with non-linear
constraints. Define G edges with capacity of co. Add source node and sink node to Gi. Define
directed edges entering I node from source node with capacity oo. Define all edges from each
node not in I to the sink node with capacity 1.

Clearly, a feasible solution of MRG that reaches q nodes (and hence resolve ¢ ambiguous
vectors) defines a source-sink flow with value of ¢ exactly. However the converse does not
hold, since we have not excluded the possibility of reaching more than one node from any set
N(A). To solve that we use linear programming formulation of the flow problem described
above.

Let z, denote the variable flow on edge e. Then for every pair of edges e, ¢’ entering

nodes in same set N(A), we add a non-linear constraint z, - o < 1 to the network flow
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formulation. An integer solution to that mathematic formulation exactly solves the MRG

problem, but solving formulation with non-linear constraints is hard to solve in practice.

15.4.6 An Alternative Formulation

We create a binary variable y, for each node in G. We’ll add inequalities to insure that the
variable set to 1 corresponding to nodes that are reached in a solution of the MRG problem,
hence corresponding to haplotypes that are inferred by application of Clark’s inference rule.

For each set N(A) we add the inequality:

> oy <1
vEN(A)

These inequalities assure that at most one node in N(A) will be reached. For each node
w ¢ I let P(w) be the set of nodes with an edge directed into w, which means node v is in
P(w) iff there is a directed edge v — w in G.

For each node w ¢ I we add inequality

Yo <X Yo
veEP(w)

These inequalities are called “predecessor” constraints. These constraints assure that a node
w not in I cannot be reached without reaching at least one node acting as a predecessor of
w, i.e., leading to w. The objective function is: Maximize > vy,

It is simple to see that the optimal solution to the MRG pr(;)blem defines a feasible solution
to this integer programming formulation. However if G contains directed cycles, the integer
programming formulation is not guaranteed to solve the MRG problem. But usually the
input date does not contain directed cycles, and if there are ones, and there are ways of
obtaining solution to MRG by modifying solution found with directed cycles. Linear pro-

gramming is a NP-hard problem but with relaxation of the problem, good results can be

found in reasonable time.
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