Algorithms for Molecular Biology Fall Semester, 2001
Lecture 10: January 10, 2002

Lecturer: Ron Shamir Scribe: Flad Verbin and Inon Azel*

10.1 Genome Rearrangements

10.1.1 Preface

It has been long known that during mitosis, a phenomenon of chromosomes repeated doubling
in thickness occurs in the salivary glands of Drosophila. These appear to be the result of
two homologs (identical copies of a chromosome segment created during cell division) that
have been glued together somehow.

In general, chromosomes have an observable pattern of bands perpendicular to their
length. This was studied since the 1920’s, and is characteristic of a species. However, at
times one can find two individuals of the species who show different patterns of these bands;
usually the differences appear to be segment reversals along the pattern of bands.

This phenomenon suggests that the genome undergoes rearrangements, or what seems
to be a general scrambling of its order, during evolution.

10.1.2 Operations on Chromosomes

What kind of genome rearrangement events (also called operations) take place?

1. Operations on a single chromosome:

e Deletions (a certain part is lost, abc — ac (a, b, ¢ are subsequences))
e Insertions (a part is added, ac — abc)
e Duplications (can be tandem, abc — abbe, or not, abed — abebd or abed — acbed)

e Reversals, or inversions (a part is turned around, head to tail, for example
abcycacgeqde — abeyezeacyde).

e Transpositions (two adjacent parts switch places, for example abed — acbd) - this
operation is believed to be the most rare since it requires 3 points of breakage
along the chromosome.

e Transversals (two parts change places and one is reversed).

!Based partially on notes taken by Yaniv Nahum and Sonny Ben-Shimon, fall 2000.



2 Algorithms for Molecular Biology (©)Tel Aviv Univ.

How do these operations take place?

It is not exactly known when and why the above operations occur though there are
several reasonable hypotheses for some of them. If two regions along a chromosome are
very similar, they might hybridize just like two different strands of the double helix.
Once they are attached, a loop forms. This loop might be discarded (deletion), or its
direction might switch (inversion) - see Figure 10.1.

An Insertion might happen when a foreign DNA segment enters the cell and combines
itself with the cell’s DNA, for example, during a virus infection or by horizontal
transfer.

Duplication sometimes happen when some error occurs during cell mitosis.

Transpositions are rare, and it is not exactly clear how they take place.
2. Operations on two chromosomes:

e Translocation: two chromosomes swap their ”tails”. It is important to note that
not all translocations are possible. A chromosome contains a part called a cen-
tromere which is crucial to cell division; the centromere usually lies somewhere in
the middle of the chromosome, and if upon translocation it will be lost from one
of the chromosomes, the cell may die.

e Fusion: two chromosomes merge.

e Fission: one chromosome splits up into two chromosomes.
It is not known what exactly happens to the centromere in the latter two cases.

10.1.3 Genome Rearrangements and Evolution

There are several factors that make the study of genome rearrangements useful for studying
evolution:

e Since the operations described above are much more rare than point mutations, one
can track the genome rearrangements through the evolutionary history of the species
much further back than regular mutations allow.

e There is a very small chance that reverse mutations will affect the exact same location
on the genome, so we have less ambiguity in interpreting the mutations.

e Since rearrangements are easily noticeable mutations, we can locate them simultane-
ously in large portions of the genome, and therefore can inspect them in a larger scale
of data. This allows us to look at a more comprehensive picture of the evolutionary
process.
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Figure 10.1: Illustration of a hypothetical model for reversal and deletion operations on a
DNA strand.
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For example, one can compare human and mouse. There are about 80 million years of
evolutionary distance between them, but only about 140-150 operations of rearrangements.
See Figure 10.2.
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Figure 10.2: Source:[19]. Mouse and human genetic comparison.

10.2 Unsigned Permutations

In the following section we discuss the study of reversals on unsigned permutations. The
sequence segments will be represented by the elements of the permutation. This formalism
ignores the directionality of each segment. We discuss a single chromosome and work under
two basic (not biologically exact) assumptions:

e It is possible to identify genes uniquely along the chromosome and their homologues
in other species.

e All of the genes are different.
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The order of the genes (or gene homologues), which might be different in different species, is
a permutation of these, unique, genes (or homologues thereof). Thus we will be discussing
sequences of unsigned, different integers, where each permutation = = (7 ...m,) represents
a different order of genes.

Definition A reversal transformation on a sequence is the operation of taking a subsequence
and reversing the order of elements within it. For example 12345 — 14325.

Definition The reversal distance between two sequences is the minimum number of reversals
needed to transform one of them into the other (see Figure 10.3).

™ = (LM@@
m = (1,4,3,2,5,6)
73 = (1,4,6,5,2,3)
T = (6,4,1,5,2,3)

Figure 10.3: Examples of reversals; the underlined segments show where the reversals took
place. The reversal distance between m and 7, is 3.

Problem 10.1 Sorting by reversals.
INPUT: A permutation .
QUESTION: Find d(7), the reversal distance between 7 and the identity permutation (id).

This problem has been investigated in the last few years with the following results:

1. 2-approximation algorithm [18].

[\

. 1.75-approximation algorithm [2].
3. NP Completeness proof [7].

4. 1.5-approximation algorithm [8].

5. 1.375-approximation algorithm [12].

Definition A breakpoint is any place in the sequence where two adjacent numbers are not
consecutive (|m; — miy1] # 1) (For example, in the sequence 123654 there is a breakpoint
between 3 and 6).

We denote the number of breakpoints in m by b(7). When performing a reversal, trans-
forming 7 into 7', we denote b(n’) — b(w) by Ab.
The following theorem gives lower and upper bounds for d(7)
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Theorem 10.1 ([18]) Y7 < [%0] < g(7) <n —1

Proof: The lower bound holds since a reversal can cancel at most two breakpoints, and
d(r) is an integer. On the other hand, the upper bound follows, since it will take us at most
n — 1 reversals to create any sequence. For example, a sequence that does that is one that
at each step operates on the positions (i...771(i)). m

Definition A strip is a maximal subsequence without breakpoints. For example, in the
sequence 0 76419823510, 776" is a strip. A strip can be either increasing or
decreasing; A strip of size 1 is defined as decreasing. In the above example the strip 72 3” is
increasing, whereas the strip ”7 6” is decreasing.

Lemma 10.2 If © # id contains a decreasing strip, there is a reversal that decreases b(m)

by k, k> 1. Such a reversal is called a good reversal.

Proof:

1. Find the decreasing strip with the minimal number, let K be this number. K will be
at the right end of the strip.

2. Find (K — 1) in 7; it will have to be in an increasing strip of length 1 or more, and
therefore will also be at its right end.

3. Reverse the entire sequence between these two numbers, so that K and (K — 1) will
be adjacent. Having joined these two numbers, a breakpoint is eliminated (see Figure
10.4).

—7654...... 23 —>=—=+«T765432...
OR:
23— ...... —T7654=—234567— ...

Figure 10.4: Two possible cases to eliminate a breakpoint using a decreasing strip (K = 4).

Lemma 10.2 gives rise to the following approximation algorithm: If there exists a decreas-
ing strip, find and perform a good reversal (Ab = —1). Otherwise, reverse an increasing strip,
thus creating a decreasing strip (Ab = 0). This algorithm 4-approximates the algorithm,
since there are at most 2b(7) reversals.
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Lemma 10.3 ([18]) If there exists a decreasing strip and every reversal that removes a
breakpoint results in a permutation without any decreasing strip, then there exists a reversal
that removes 2 breakpoints.

Proof: Let m =m...m, be a permutation such that every reversal which removes a break-
point results in a permutation without a decreasing strip. We use the following notation:

7; - the smallest element in a decreasing strip

7; - the greatest element in a decreasing strip

(m; —1) has to be to the left of m;, otherwise we can reverse the strip that includes (m; —1),
thus removing a breakpoint and still maintaining a decreasing strip - the one that includes
7; (see Figure 10.5, top). Similarly, (7; + 1) has to be to the right of 7; (see Figure 10.5,
bottom).

Figure 10.5: Two impossible scenarios.

Consider the interval p; between 7; and (7; + 1) along 7 (including 7; but not including
(mj41)) ; and the interval p; between (m; —1) and 7; (including 7; but not including (7; — 1))
(see Figure 10.6).
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Figure 10.6: A situation where the two strips do not overlap.

p; and p; must overlap, otherwise we can reverse just one of them, leaving a decreasing
strip in the other. Similarly, neither p; nor p; contains the other, and 7; must be to the right
of (m; —1). The only remaining case is (see Figure 10.7):

(mj+1) ¢ pi Tj € pi (10.1)
(m = 1) & p; i € pj (10.2)
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Figure 10.7: The remaining case where the two strips overlap.

If p; \ p; contains a decreasing strip, then reversing p; leaves us a decreasing strip (and
removes a breakpoint). Furthermore, if p; \ p; contains an increasing strip, then reversing p;
leaves us a decreasing strip (and one breakpoint less). Hence, p;\p; = 0. Similarly, p;\p; = 0,
implying that p; = p;. Therefore, the reversal on p; = p; removes two breakpoints.

|

Lemma 10.3 gives rise to the following algorithm:
For as long as possible, either:

1. Perform a good reversal using a decreasing strip, resulting in a permutation with a
decreasing strip (Ab = —1).

Or, if no such reversal exists:

2. Perform a reversal with Ab = —2, and then reverse any strip.
This algorithm leads 2-approximates sorting by reversals, since Ab = —1 on the aver-
age.

10.3 Examples of Genome Rearrangements

A few years ago, the genome of yeast has been fully mapped and sequenced. An interesting
fact that was discovered is that almost every DNA subsequence happens to have a twin
subsequence almost identical to it in the genome. This appears to be due to a doubling of the
entire genome at some point during the course of evolution, and since that doubling, various
genome rearrangements took place, mixing the genome into the shape we know today. This
specific case poses a different computational problem in which each gene (number) appears
twice and can be either in one direction (positive) or reversed (negative). In this chapter we
will not relate to this problem.
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A comparison of the DNA of mice and men shows that any specific mouse chromosome
contains various parts that can be found in different human chromosomes. The explanation
for this is also genome rearrangements that took place both in the mouse genome and in
human genome, ever since the two split apart in the evolutionary tree, some 80 million years
ago (see Figure 10.8).

A comparison of human X-chromosome to cow and mouse X-chromosomes is also shown.
Sites which are conserved between the species are shown (see Figure 10.9). Note that since
most of the X chromosome does not undergo recombination, its overall content is rather
conserved among mammals.

Palmer et al. [23] have shown that the evolution of the chloroplast genome of the pea
can be modeled as a series of rearrangements of a soybean-like ancestor (see Figure 10.10).

10.4 An Algorithm for Sorting Signed Permutations

10.4.1 Introduction

We shall introduce the problem of sorting signed permutations by reversals. A signed per-
mutation is a permutation © = (7y,...,m,) on the integers {1,...,n}, where each number is
also assigned a sign. A reversal, p(i,j) on 7 transforms 7 into

= p(%]) = (7{17 sy Ty T Ty =M1y e e ey T T Tjgpd,y - o 77Tn)-

This conforms with the usual definition of the product (i.e., composition) between per-
mutations, defining p(i,5) = (1,2,...,i — 1,—j,—(j — 1),...,—i,7+ 1....,n). As in the
case of unsigned permutations, the minimum number of reversals needed to transform one
permutation to another is called the reversal distance between them. The problem of sorting
signed permutations by reversals is defined as follows:

Problem 10.2 (Sorting Signed Permutation by Reversals)

INPUT: A signed permutation 7.

QUESTION: What is the reversal distance between 7 and the signed identity permutation
(+1,4+2,...,4n)?

A simple upper bound for the reversal distance would be 2n, since we can create the
correct sequence (disregarding signs) by n reversals (see Theorem 10.1) and then another n
(at most) for sign flipping (a reversal of length one).

Our motivation for studying this problem comes from genome comparison problems. Due
to the fast progress in the Human Genome Project, genetic and DNA data is accumulating
rapidly, and consequently the ability to compare genomes of different species has grown dra-
matically. One of the most promising ways of checking large scale similarity between genomes
is to compare the order of appearance of identical genes in the two species. Dobzhansky and
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Figure 10.8: Man-mouse pairs of homologous genes were examined for their chromosomal
location. The (7, ) entry in the table registers the number of such pairs mapped to human

chromosome ¢ and mouse chromosome j. UN stand for

drial DNA.

¢

unknown”’ and M'T for mitochon-
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Figure 10.9: Source:[5]. A Comparison of cow and mouse to human X chromosome.
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Figure 10.10: Source:[23]. A model for the evolution of the pea chloroplast genome. The
horizontal arrows represent conserved sequence blocks.
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Sturtevant have shown in 1938 [9] evidence of inversions in chromosomes of Drosophila. In
the 1980’s, Palmer [20, 21, 22, 23, 15| has demonstrated that different species may have
essentially the same genes, but the gene order may differ between species.

A mathematical description of this problem suggests that genes along a chromosome can
be thought of as points along a line. Numbers identify the particular genes, and as genes
have directionality, signs indicate to their orientation. The difference in gene order between
genomes can be explained by some reversals between them. These reversals correspond
to evolutionary changes throughout history between the two genomes, so the number of
reversals represents the evolutionary distance between the species. Hence, given two such
permutations, their reversal distance measures their evolutionary distance.

In contrast to problem 10.1, in 1995, Hannenhalli and Pevzner [14] have shown that the
problem of sorting a signed permutation by reversals is polynomial, and can be solved in
O(n*) time. In 1996, Berman and Hannenhalli [4] described a faster implementation that
finds a minimum sequence of reversals in O(n?a(n)) time, where « is the inverse Ackerman’s
function [1].

In this lecture we present an algorithm developed by Kaplan, Shamir and Tarjan for
sorting a signed permutation of n elements that is partly based on Berman and Hannenhalli’s
algorithm but is simpler and runs in O(n?) time, thereby improving upon the previous bound.
In fact, if the reversal distance is 7, the algorithm requires O(n - r + na(n)) time [17].

10.4.2 Group Theory Viewpoint

From a group theory point of view, sorting signed permutations can be viewed as follows:
Consider S,,, the symmetric group of order n (group of all permutations on n elements). The
set {p(i,j)} of all possible reversals is a set of generators of S,. Therefore, from the group
theory point of view, problem 10.2 is a special case of the following general problem:

Problem 10.3

INPUT: Two permutations 7y, Ty € Sy, and a set {g1, ..., gy} of generators.
QUESTION: What is their distance, i.e.,what is the shortest product of generators that
transforms 7y into my?

Even and Goldreich showed that this problem is NP-Hard [10]. Jerrum generalized this
result by proving it is PSPACE-complete [16]. Another related problem is:

Problem 10.4

INPUT: A set {g1,...,9x} of generators.

QUESTION: What is the diameter of S,,, where the diameter is the longest distance be-
tween two permutations?

Gates and Papadimitriou [11] have shown that by using only prefix reversals as generators,
the diameter can be bounded by %n < diameter < gn + %
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10.4.3 Transforming to unsigned permutations

Let us define a one-to-one mapping u from the set of signed permutations of order n into
the set of unsigned permutations of order 2n + 2. Let m be a signed permutation. To obtain
u(m) replace each positive element z in 7 by 2z — 1 and 2z, and each negative element —z
by 2z and 2x — 1. Also, augment the permutation by setting mp = 0 and 7,11 = 2n + 1.
For example:

(4,-3,1,—-5,-2,7,6) — (0,7,8,6,5,1,2,10,9,4, 3,13, 14, 11,12, 15).

Recall from section 10.4.1 that a reversal, p(, j), on a permutation 7 transforms it to

/ ..
™ =T" P(Za]) = (71'1, sy Ty TGy =Ty e ey T T Ty e e ey 7Tn)

It can be easily seen that we may now limit our discussion to the aforementioned kind
of unsigned permutations, given that the reversals we perform on them have a one-to-one
correspondence to reversals in signed permutations.

Definition A reversal p(i,j) such that ¢ is odd and j even is called an even reversal. An
even reversal p(2i + 1,27) on u(m) mimics the reversal p(i + 1, 7) on 7.

For example, in the permutation (0,7,8,6,5,1,2,10,9,4,3,13,14,11,12,15), p(1,6) is an
even (legal) reversal, while p(3,5) and p(2,5) aren’t.

Thus, sorting m by reversals is equivalent to sorting the unsigned permutation u(m) by
even reversals. From now on we will consider the latter problem and by a reversal we will
always mean an even reversal. We shall also identify the signed permutation with its un-
signed counterpart.

10.4.4 Definitions

Let 1 = (0,7,...,m,n + 1) denote an unsigned permutation of the above type. A pair
(i, miv1), 0 <@ < nis called a gap.

Gaps are classified into two types: A gap (m;, m;11) is called a breakpoint of 7 if |m; —m 1| > 1;
otherwise, it is called an adjacency of m. We denote by b(7) the number of breakpoints in 7.
We say that a reversal p(i, j) acts on the gaps (m;—1,m;) and (75, 7j41).

10.4.5 The Breakpoint Graph

Definition The breakpoint graph B(7) of a permutation 7 = (0, 7y, ..., 7T,, n+ 1) is an edge
colored graph on n + 2 vertices {0, m,...,m,, n + 1}. We join vertices m; and 7; by a black
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edge if (m;, ;) is a breakpoint in 7 and by a gray edge if (i, j) is a breakpoint in 7=*. (For
an example see Figure 10.11(a)).

Note that in B(7) every vertex has either exactly one black edge and one gray edge in-
cident on it, or no incident edges at all. Therefore, there is a unique decomposition of B(r)
into disjoint cycles. The edges of each cycle are alternating gray and black. Our goal is to
remove all edges from a given graph B(w). Let ¢(m) be the number of cycles in B(r).

Figure 10.11(a) shows the breakpoint graph of # = (0,7,8,6,5,1,2,10,9,4,3,13,14,11, 12, 15),
which results from the permutation (4, —3,1, —5, —2,7,6). It has eight breakpoints and de-
composes into two alternating cycles, i.e. b(w) =8, and ¢(7) = 2. The two cycles are shown
in Figure 10.11(b).

For an arbitrary reversal p on a permutation 7, define Ab(w, p) = b(7 - p) — b(7) and
Ac(rm, p) = c(m- p) —c(m). When the reversal p and the permutation 7 will be clear from the
context we will abbreviate Ab(w, p) to Ab and Ac(w, p) to Ac.

Bafna and Pevzner[2] observed that:

Claim 10.4 ([2]) [The following values are taken by Ab and Ac depending on the types
of the gaps p(i,j) acts on. Case analysis shows that only these values are possible (see
Figure 10.12):

1. Two adjacencies: Ac =1 and Ab = 2.

2. A breakpoint and an adjacency: Ac =0 and Ab= 1.

3. Two breakpoints each belonging to a different cycle: Ab =0, Ac = —1.

4. Two breakpoints of the same cycle C':
a. (mi,mj1) and (mi—1,7;) are gray edges: Ac = —1, Ab = —2.
b. Ezxactly one of (m;, mj41) and (mi_q1, ;) is a gray edge: Ac =0, Ab= —1.
c. Neither (m;, mj+1) nor (w1, ;) is a gray edge, and when breaking C' at i and j vertices
i—1 and j+ 1 end up in the same path: Ab =10, Ac=0.
d. Neither (m;, wj+1) nor (mi—1, ;) is a gray edge, and when breaking C' at i and j vertices
i—1 and j+ 1 end up in different paths: Ab =0, Ac=1.

Theorem 10.5 ([2]) d(7) > b(7) — c(7).

Proof: From the last observation we see that, for any reversal, the best improvement we
can get is decreasing Ab(m) — Ac(w) by 1 (this happens in cases 4a, 4b and 4d), and since
Ab(id) — Ac(id) = 0, we need at least as many steps to get to the identity permutation. m
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Figure 10.11: Source:[17].

(4,-3,1,—5,—2,7,6). Black edges are solid; gray edges are dashed; oriented edges are bold.

(b) B(m) decomposes into two disjoint alternating cycles (c¢) The overlap graph OV (7). Black
vertices correspond to oriented edges.

(a) The breakpoint graph B(w) for the permutation 7 =
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Figure 10.12: All possible cases of changes to Ab and Ac by applying a reversal (see Sec-
tion 10.4.5).
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Definition We call a reversal properif Ab— Ac = —1, i.e. it is either of type 4a, 4b, or 4d.
We say that a reversal p acts on a gray edge e if it acts on the breakpoints which correspond
to the black edges incident on e. A gray edge is oriented if a reversal acting on it is proper,
otherwise it is unoriented. Notice that a gray edge (m,m;) is oriented if and only if
k+1 is even. For example, the gray edge (0, 1) in the graph of Figure 10.11(a) is unoriented,
while the gray edge (7,6) is oriented.

NO NO

YES YES

Figure 10.13: A gray edge (g, m;) is oriented iff k+1 is even.

10.4.6 The Overlap Graph

Definition Two intervals on the real line overlap if their intersection is nonempty but neither
one of them properly contains the other.

Definition An interval overlap graph is a graph G(N, A), for which there is an assignment
of an interval to each node in NV, with an arc in A between two nodes iff their corresponding
intervals overlap.

SYERLAFPING EDGES

A AN Y S
A @

JES Ae

Figure 10.14: Two edges are said to overlap when their corresponding intervals overlap.
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Definition The overlap graph of a permutation 7, denoted by OV (), is the interval overlap
graph of the gray edges of B(w), where we associate with each gray edge (m;, 7;) the interval
[i,7]. (We use the terms vertex and edge for B(r), reserving the names node and arc for

oV (n)).

In other words, the node set of OV () is the set of gray edges in B(w), and two nodes are
connected by an arc if the intervals associated with their gray edges overlap. We shall identify
a node in OV (7) with the edge it represents and with its interval in the representation.
Thus, the endpoints of a gray edge are actually the endpoints of the interval representing
the corresponding node in OV(w). A connected component of OV (w) that contains an
oriented edge is called an oriented component, otherwise, it is called an unoriented component.
Figure 10.11(c) shows the interval overlap graph for 7 = (4,—3,1,—5,—2,7,6). It has
only one oriented component. Figure 10.15(b) shows the overlap graph of the permutation
' = (4,-3,1,2,5,7,6), which has two connected components, one oriented and the other
unoriented.

e m = - DTN - T TETSIETSI O~
a o—@ o—»° o—o ) e o—o o—eo o—eo e —°
0 7 8 6 5 1 2 3 4 9 10 13 14 11 12 15
12,13 4,5 0,1
e
b
D ®
14,15 10,11 8,9 6,7

Figure 10.15: (a) The breakpoint graph B(7n’) of ' = (4,-3,1,2,5,7,6). 7' was obtained
from 7 of Figure 10.11 by the reversal p(7,10); or, equivalently, by the reversal defined by
the gray edge (2,3). (b) The overlap graph of 7’

10.4.7 The Algorithm
In ’95 Hannenhalli and Pevzner [13] proved:

Theorem 10.6 ([13]) For a signed permutation 7, d(w) = b(w) —c(mw)+h(r)+ f(7), where:

e h is a function of the unoriented components of the overlap graph.
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e fis either 1 or 0 depending on whether the unoriented components have a particular
structure. If there are no unoriented components then f is always 0.

Corollary 10.7 If there are no unoriented components in OV (w) then d(m) = b(m) — ().

Hannenhalli and Pevzner [13] gave a constructive proof of this fact that gives us a O(n?)
algorithm. Berman and Hannenhalli [4] improved the implementation of this to O(n?a(n))

We will show how to solve the problem in O(n?) in the case where h = 0 (so that d = b—c).
The general case can quite easily be reduced to this by the method for clearing hurdles
described in [17]. Our key idea is to prove (constructively) that the following condition is
fulfilled for every step of the algorithm:

Condition 10.8 There exists a reversal r, such that b(nr) — ¢(nr) = b(7) — ¢(m) — 1, and
the overlap graph of mr does not contain unoriented components.

The first part holds for the oriented reversals. Therefore, we want to find an oriented
reversal r for which the second part holds. First, let us look at what effect performing an
oriented reversal has on the overlap graph: A node in the overlap graph, i.e., a gray edge
e in the breakpoint graph, defines the reversal acting on the two black edges adjacent to e.
We can formulate effect of such a reversal r on the overlap graph:

Claim 10.9 The effect of an oriented reversal r represented by node n on the overlap graph
15 as follows:

e Delete any node whose corresponding oriented gray edge defines r. This includes n
and sometimes another node.

o Complement the subgraph induced by n’s neighbors.

e switch the orientation of n’s neighbors - edges that were oriented are now unoriented,
and vice versa.

For example - see what happens when we move from Figure 10.11 to Figure 10.15 - by
executing reversal p(7,10). To get an optimal sequence, the choice of a reversal needs to be
a good one, e.g., one that maintains condition 10.8. We must therefore make sure that no
unoriented components are generated when applying the reversals. Such reversals are called
safe.

10.4.8 Happy Cliques

Definition Let G(N, A) be an interval overlap graph. A happy clique C' C N is a clique
of oriented nodes so that for all oriented y ¢ C, if (z,y) € A and x € C, there exists an
oriented node z ¢ C' where (z,y) € A and (z,2) € A.
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For example, in the overlap graph shown in Figure 10.11(c) {(2,3),(10,11)} and {(6,7)}
are both happy cliques, but {(2,3), (10, 11), (8,9)} is not. There are, typically, many happy
cliques in a permutation’s overlap graph.

Claim 10.10 The reversal defined by a node x with maximum unoriented degree (mazximum
number of unoriented neighbors) in a happy clique C' creates no new unoriented components
(and therefore is safe and fulfills Condition 10.8).

Proof: Suppose that such a reversal created an unoriented component M. Consider OV ()
before applying the reversal.

e M contains a neighbor y of x:
It is obvious - otherwise M, an unoriented component, would have been present be-
forehand, since a reversal changes only it’s neighborhood.

e M contains no neighbor of z outside C'. Therefore y € C"
Suppose to the contrary that there exist e € M\ C' such that (e, z) is an arc in OV (7)).
There are two cases to examine: Either e was unoriented before applying the reversal
r, hence e is oriented and so is M - a contradiction (see Figure 10.16(a)). Otherwise, e
was oriented, and by the definition of the happy clique C, e has an oriented neighbor
g, non-adjacent to x. Therefore g € M, and its orientation remains unchanged by
applying r, thus M is oriented - a contradiction (see Figure 10.16(b))

Figure 10.16: Two impossible scenarios for Claim 10.10

e Every unoriented neighbor of x is adjacent to y:
Suppose to the contrary that z is an unoriented neighbor of z, nonadjacent to y. Then
after applying r, z is oriented, and adjacent to y, hence z € M, contradicting M being
unoriented.

o |M|>1:
Every unoriented edge my;, mo;_; has a neighbor. Otherwise, suppose ¢ < j and my; is
odd (the other cases are analogous). Then 7y, appears between my; and 71, and
S0 is ;4o for all k, by induction - a contradiction. Therefore, y has, after applying 7,
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an unoriented neighbor z. Then 2z ¢ C' and z is not adjacent to z. Hence y has more
unoriented neighbors than z, a contradiction to the choice of x.

Claim 10.10 implies, for example, that the reversal defined by the gray edge (10,11) is
a safe proper reversal for the permutation of figure 10.11 (a), since it corresponds to the
node with maximum unoriented degree in the happy clique {(2,3), (10,11)}. On the other
hand, the reversal defined by (2,3) creates a new unoriented component, as it yields the
permutation shown in figure 10.15.

10.4.9 Implicit Representation of the Overlap Graph

Note that an explicit representation of the overlap graph uses ©(n?) space, and since the
neighborhood of a node may be of size Q(n) nodes (and Q(n?) arcs), it seems we need to
perform 2(n?) operations per reversal, finally reaching a time bound of Q(n?).

We shall therefore use an implicit representation of the overlap graph, constructed as
follows: We assume that the input is given as a sequence of n signed integers representing
70, Initially the permutation m = u(7°) is constructed as described in Section 10.4.5 and
stored in an array. The array holds n intervals and 2n endpoints, thus it is linear in size.
We also construct an array representing 7~ !. It is straightforward to verify that with these
two arrays we can determine, in constant time, for each element in = whether it is a left or a
right endpoint of a gray edge. In case the element is an endpoint of a gray edge we can also
find the other endpoint and check whether the edge is oriented in constant time. Finding
whether two edges overlap is also trivial in constant time.

Thus the arrays m and 7! comprise a representation of OV (7). The algorithm will
maintain these two arrays while carrying out the reversals that it finds. The time to update
the arrays is proportional to the length of the interval being reversed, which is O(n).

It is easy to produce a list of the intervals in the representation of OV (w) sorted by
either left or right endpoint from the arrays 7 and 7—!. It is also possible to maintain them
without increasing the asymptotic time bound of the algorithm. In practice it may be faster
to maintain such lists instead of, or in addition to 7 and 7~ 1.

10.4.10 Finding a Happy Clique

How do we even know that there is always a happy clique, let alone find one? In their paper,
Kaplan, Shamir and Tarjan [17] have proven a general result about the existence of happy
cliques:
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Theorem 10.11 ([17]) The oriented neighborhood of every oriented node contains a happy
clique.

We will not prove it here. The interested reader is referred to [17]. Here, we will show
an algorithm for finding one, specific, happy clique (and therefore give an alternative proof
to a weaker version of the non-constructive Theorem 10.11):

Theorem 10.12 Given OV (n) in its implicit representation, One can find a Happy Clique
in O(n) time.

Let nq, ..., ng be the oriented nodes in OV (7) in increasing left endpoint order (we ignore
unoriented nodes at this stage). To locate a happy clique in OV (7), the algorithm traverses
the oriented nodes in OV () according to this order. Let L(e) and R(e) be the left and right
endpoints, respectively, of the interval corresponding to a node e in the realization of OV (7).
After traversing nq,...,n; for 1 < i < k, the algorithm maintains a happy clique C; in the
subgraph of OV () induced by these vertices. Assume |C;| = j, j < i and let n;,...,n; be
the vertices in C; where i; < iy < ... < ¢;. The vertices of C; are maintained in a linked
list ordered in increasing left endpoint order. If there exists an interval that contains all the
intervals in C; then the algorithm maintains a minimal such interval ¢;. The clique C; and
the node t; (if exists) satisfy the following invariant:

Invariant 10.13

1) Every node n; & C;, | <, such that L(n;,) < L(n;) must be adjacent to t;.

2) Every node n; & C;, L(n;) < L(n;,) that is adjacent to a node in C; is either adjacent to
an interval v, such that R(n,) < L(n;,) or adjacent to ;.

We prove the correctness of this invariant by induction: Initially ¢ = {n;} and t; is
undefined. If R(n;;) < L(ny1) then C; is guaranteed to be happy in OV/(w) (see Figure
10.17(a)), therefore we need to focus only on cases with L(n;y1) < R(n;,). The induction
step: We assume correctness up until ¢ and show how to obtain Cjyq and ¢;,1 if L(ng) <
R(n;;). We have to consider the following cases:

Case 1. The interval ¢; is defined and R(t;) < R(n;y1). Continue with C;11 = C; and ;11 = ;.
See Figure 10.17(b).

Case 2. The interval t; is not defined or R(n;11) < R(t;).

a) R(ng;) < R(niy1) and L(ng1) < R(ng). Ciyy is obtained by adding niy1 to € and
tit1 = t;. See Figure 10.17(c).

b) R(n;,) < R(niy1) and L(ni1) > R(ng). The clique Cjpy consists of v alone and
tiy1 = ti. See Figure 10.17(d).

c) R(niy1) < R(ng;). As in the previous case Cjy1 = {n;y1}. In this case #;;, is set to n,
the last interval in C;. See Figure 10.17(e).
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Figure 10.17: The various cases of the algorithm for finding a happy clique. The topmost
interval is always ¢;. The three thick intervals comprise C;. The dotted interval corresponds
to g1

The fact that C}; is happy in the subgraph induced by nq, . .., n; follows from this invariant.
It is straightforward to see that the clique C} that the algorithm stops with, is happy. The
running time of the algorithm is proportional to the number of oriented nodes traversed since
a constant amount of work is performed for each oriented node it encounters.

10.4.11 Computing the Unoriented Degrees

After locating a happy clique C' in OV (7) we need to search it for a node with a maximum
number of unoriented neighbors. In this section we give an algorithm that performs this task
in linear time.

Let eq,...,e; be the intervals in C' ordered in increasing left endpoint order. Clearly,
L(1) < L(2) <...< L(j) < R(1) < R(2) < ... < R(j). Thus the endpoints of the j vertices
in C' partition the line into 2j + 1 disjoint intervals Iy, ..., I5;, where Iy = (—oo, L(1)],
Iy = (L), L(I+1) for 1 <l <j, I; = (L(j), R(V)], [, = (R(I—7), R(I—j5+1)] for j < 1 < 25
and I; = (R(j),00). The algorithm consists of the following three stages.

Stage 1: Let e be an unoriented node that has a non-empty intersection with the interval
[L(1), R(j)]. Mark each of e’s endpoints with the index of the interval that contains it.

Stage 2: Let o be an array of j counters, each corresponding to a node in C'. The intention
is to assign values to o such that the sum !, o[i] is the unoriented degree of the node
e; € C. The counters are initialized to zero. For each unoriented node e that overlaps with
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the interval [L(1), R(j)] we change at most four of the counters as follows. Let [; and I, be
the intervals in which L(e) and R(e) occur, respectively. We may assume | < r as otherwise
e is not adjacent to any node in C' and we can ignore it. We continue according to one of
the following cases.

Case 1: r < j. All the vertices from e;,1 to e, are adjacent to e: we increment o[l 4+ 1] and
decrement o[r + 1] (if r < 7).

Case 2: j <. All the vertices from e;_;;; to e,_; are adjacent to e: we increment o[l — j +1]
and decrement o[r — j + 1] (if r < 2j).

Case 3: 1 < jand j < r. Let m = min{l,r — j}. If m > 0 then all the vertices from e; to e,,
are adjacent to e: we increment o[1] and decrement o[m+1]. Similarly let M = max{l,r—j}.
If M < j then the vertices from e, to e; are adjacent to e: we increment the counter o[l +1].
Stage 3: Compute f = argmax;{>._, o[i]|l <1< j}. Return e;.

The following theorem summarizes the result of this section.

Theorem 10.14 Given a clique C, the node ey € C' computed by the algorithm above has
maximum unoriented degree among the nodes in C'.

The complexity of the algorithm is proportional to the size of C' plus the number of
unoriented nodes in OV (7), and hence, it is O(n).

10.4.12 Algorithm Summary

Figure 10.18 gives a schematic description of the algorithm.

Theorem 10.15 Algorithm SIGNED REVERSALS finds the reversal distance r in O(na(n)+
r-n) time, and in particular in O(n?) time.

Proof: Step 1 takes O(na(n)) time by the algorithm of Berman and Hannenhalli [4]. Step
2 takes O(n) time. Step 3 takes O(n) time per reversal, by the previous discussion. This
sums up to O(n?) because r < n. m

This algorithm presents improvements over previous algorithms in both the asymptotic
running time, the constants, and the simplicity of the code (because the theory is simpler).

10.4.13 An Additional Improvement

In [3] Anne Bergeron significantly simplified the theory for sorting signed permutations, and
made it much more intuitive. She disposed of the concept of breakpoint graphs and overlap
graphs, and made the concepts of oriented reversals and hurdles more intuitively appealing.
She also gave a very simple O(n?) algorithm for the hurdle-free case. Here are some of her
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algorithm SIGNED REVERSALS(7);
/* 7 is a signed permutation */
1. Compute the connected components of OV (7).
2. Perform h reversals (h + 1 in the fortress case)
leading to 7" with d’' = d — h(—1)
and no unoriented components.
3. while 7 is not sorted do :
/* iteration */
begin
a. Find a happy clique C in OV (7).
b. Find a node e; € C' with maximum unoriented
degree, and perform a reversal on ey.
c. Update 7 and the representation of OV ().
end
4. Output the sequence of reversals.
end

Figure 10.18: Sorting signed permutations.

results, working on the original, signed, permutation, only augmenting it with 7o = 40 and
Tpe1 =n+ 1:

Definition ([3]) Let 7 = 0,7,..., 7, n + 1 be a signed permutation. An oriented pair is
a pair of consecutive numbers with opposite signs, that is a pair (m;, ;) so that:

® ;< J
e 7; and m; have opposite signs (0 is considered positive)
o ||mj| = Iml| =1

For example, in the permutation 7 = (0, 3,4, —2,—5,1,6) the oriented pairs are (1,-2),
(-2,3), (4,-5) and (-5,6). It is easily seen that there is a one-to-one correspondence between
oriented pairs and oriented gray edge, and that they are, essentially, the same thing.

Each oriented pair induces a reversal that eliminates a positive number of breakpoints.
For example, in 7 = (0,3,4,—2,—5,1,6) the oriented pairs induce the reversals p(4,5),
p(1,2), p(3,4) and p(4,5), respectively. Note that the first and last oriented pairs induce the
same reversal. This is because each oriented pair induces the oriented reversal that matches
its oriented gray edge, and, as we have seen in Section 10.4.5, two oriented gray edges may
define the same oriented reversal.
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We observe that:

Claim 10.16 If there is a sequence of oriented reversals that sorts a permutation than it is
an optimal sorting sequence.

This holds because we could never have created a hurdle (because there is no way to
remove a hurdle using oriented reversals), and therefore all our oriented reversals were safe
oriented reversals - giving us an optimal sorting. Hence, we would like to have at least one
oriented pair at all times. Therefore, intuition suggests that we try a heuristic that maintains
the maximal number of oriented pairs at all times.

Bergeron defined the score of a permutation, and provided the subsequent algorithm:

Definition The score of an oriented reversal p in a permutation 7 is the number of oriented
pairs in the resulting permutation m - p.

algorithm BERGERONSBR(7);
/* 7 is a signed permutation without hurdles*/
while 7 has an oriented pair,
choose the oriented reversal that has maximal score and execute it.

Figure 10.19: Bergeron’s Method for Sorting a Signed Permutation.

Surprisingly, Bergeron proves that this algorithm ends when it gets the identity permu-
tation - that is, it always sorts the permutation (and, according to Claim 10.16, does so
optimally). See Figure 10.20 for an example.

This algorithm can be trivially implemented in time O(n?) (it is possible to do better),
and Bergeron shows in [3] how to implement it on a vector-machine (which is a RAM that
operates on size-n vectors) in time O(n?).

10.4.14 Open Problems

e [s there a faster algorithm for sorting signed permutations using reversals?

e Given 3 signed permutations 7, mo, 73, find an efficient approximation algorithm to
find 7 that minimizes 3, d(m, 7;) (finding an exact solution is NP-hard [6]).

e Find the reversal distance between two signed digit sequences with equal number of
occurrences of each digit.

e Find how many sequences of reversals realize d.
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7 = (4+0,4+3,+1,46,4+5-2,4+4,+7)

score(+1,-2)=2 score(+3,-2)=4.
7y = (4+0,-5,-6,-1,-3,-2,4+4,+7)

score(+0,-1)=2, score(-3,+4)=4, score(-5,+4)=2, score(-6,+7)=2.
73 = (4+0,-5,-6,-1,+2,4+3,+4,+7)

score(+0,-1)=0, score(-1,+2)=2, score(-5,+4)=2, score(-6,47)=2.
g = (+0,-5,-6,4+1,4+2,+3,+4,+7)

score(-b,4+4)=2, score(-6,+7)=2.
5 = (+0,-5,4,-3,-2,-1,4+6,+7)

score(+0,-1)=0, score(-5,+7)=0.
id = (4+0,+1,42,43,+4,+5,+6,47).

Figure 10.20: Example run of Bergeron’s Algorithm. Note that in 73, if we had executed

the reversal (+0,-1), it would have produced a permutation with no oriented pairs, and the
algorithm would have stopped unsuccessfully.

e Find among the minimum sequences one that has some additional properties.
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