Algorithms for Molecular Biology Fall Semester, 2001
Lecture 3: December 29, 2001

Lecturer: Ron Shamir Scribe: Nelly Bluvshtein and Jenny Sannikov *

3.1 Introduction - Sequence Alignment Heuristics

In the second lecture we presented dynamic programming algorithms to calculate the best
alignment of two strings. When we are searching a database of size 10° — 10*° for the closest
match to a query string of length 200-500, we cannot use these algorithms because they
require too much time. There are several approaches to overcome this problem:

1. Implementing the dynamic programming algorithms in hardware, thus executing them
much faster. The major disadvantage of this method is its high cost and so it is not
available to most researchers.

2. Using parallel hardware, the problem can be distributed efficiently to a number (thou-
sands) of processors, and the results can be integrated later. Like the previous method,
this approach is very expensive.

3. Using different heuristics that work much faster than the original dynamic program-
ming algorithm.

A heuristic method is an algorithm that gives only approximate solution to a given prob-
lem. Sometimes we are not able to formally prove that this solution actually solves the
problem, but heuristic methods are commonly used because they are much faster than exact
algorithms. In addition, this is a software based strategy, which is therefore relatively cheap
and available to any researcher.

In this lecture we present some of the most commonly used heuristics. They are based
on the following observations:

1. Even linear time complexity will be problematic when database size is huge (over 107).

2. Preprocessing of the database is desirable, since numerous queries are run on an un-
frequently updated database.

3. Substitutions are much more likely than indels.

!Based in part on scribe by Alexander Shevchenko and Jakov Kostjukovsky, 2000.
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4. We expect homologous sequences to contain a lot of segments with matches or substi-
tutions, but without indels and gaps. These segments can be used as starting points
for further searching.

3.2 FASTA

The FASTA algorithm is a heuristic method for string comparison. It was developed by
Lipman and Pearson in 1985 [5] and further improved in 1988 [6].

FASTA compares a query string against a single text string. When searching the whole
database for matches to a given query, we compare the query using the FASTA algorithm
to every string in the database.

Good local alignment is likely to have exact matching subsequences. The algorithm uses
this property and focuses on segments in which there will be an absolute identity between
the two compared strings. We can use the alignment Dot-Plot matrix (see Figure 3.1) for
finding these identical regions.
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Figure 3.1: Alignment Dot-Plot Matrix.

We next present some definitions concerning FASTA:
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ktup (short for k respective tuples) - an integer parameter, which specifies the length
of the matching substrings. The standard recommended ktup values are 4-6 for DNA
sequences matching and 1-2 for protein sequence matching. The trade-off between
speed and sensitivity is controlled by this parameter.

hot spots - the matching ktup-length substrings. Consecutive hot spots are located
along the alignment Dot-Plot matrix or dynamic programming matrix diagonals.

diagonal run - a sequence of nearby hot spots on the same diagonal (not necessarily
adjacent along the diagonal, i.e., spaces between these hot spots are allowed).

inity - the best scoring run.

init, - the best local alignment found by combining "good” diagonal runs with indels
in between.

The stages in the FASTA algorithm are as follows:

1.

Look for hot spots.

This stage can be done efficiently by using a lookup table or a hash. For example,
we can preprocess the database and store for each possible ktup (AA - 20?2, DNA -4)
exactly where it appears along the database sequence . Then, we can scan the query by
shifting a ktup-long window and access each ktup in the hash for retrieving locations
in the database sequence.

. Find 10 best diagonal runs.

In order to evaluate the diagonal runs, FASTA gives each hot spot a positive score,
and the space between consecutive hot spots in a run is given a negative score that
decreases with distance. The score of the diagonal run is the sum of the hot spots
scores and the interspot scores. FASTA finds the 10 highest scoring diagonal runs
under this evaluating scheme.

Compute init; and runs’ filtration.

A diagonal run specifies an alignment, which is composed of matches (the hot spots)
and mismatches (from the interspot regions), but does not contain any indels because
it is derived from a single diagonal. We next evaluate the runs using an amino acid
(or nucleotide) substitution matrix, and pick the best scoring run - init;. In addition,
we discard diagonal runs achieving relatively low scores.

Combine close diagonal runs and compute init,,.

Until now we essentially did not allow any indels in the subalignments. We now try
to combine “good” diagonal runs from close diagonals, thus achieving a subalignment
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with indels. We take “good” subalignments from the previous stage (subalignments
whose score is above some specified threshold) and attempt to combine them into
a single larger high-scoring alignment that allows some spaces. This is done in the
following way:

We construct a directed weighted graph (see Figure 3.2) whose vertices are the sub-
alignments found in the previous stage, and the weight of each vertex is the score
(computed in the previous stage) of the subalignment it represents. Next, we extend
an edge from subalignment v to subalignment v if v starts at a higher row and column
than those at which v ends. We give the edge a negative weight which depends on the
number of gaps that would be created by aligning according to subalignment u followed
by subalignment v. We can discard long and pass-off edges. Essentially, FASTA then
finds a maximum weight path in this acyclic graph. The selected alignment specifies
a single local alignment between the two strings - init,. As in the previous stage, we
discard alignments with relatively low score.

-

Alignment graph

Figure 3.2: The alignment graph.

5. In this step FASTA computes an alternative local alignment score, in addition to init,.
Recall that init; defines a diagonal segment in the dynamic programming matrix. We
consider a narrow diagonal band in the matrix, centered along this segment. We
observe that it is highly likely that the best local alignment that includes the init,
substrings, lies within the band. We assume this is the case and compute the optimal
local alignment in this band, using the ordinary dynamic programming algorithm con-
strained to that band. Assuming that the best local alignment is indeed within the
defined band, the local alignment algorithm essentially merges diagonal runs found in
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the previous stages to achieve a local alignment which may contain indels. The band
width is dependent on the ktup choice. The best local alignment computed in this
stage is called opt.

6. In the last stage, the database sequences are ranked according to init, scores or opt
scores, and the full dynamic programming algorithm is used to align the query sequence
against each of the highest ranking result sequences.

Figure 3.3 summarizes the FASTA algorithm stages.

Common FASTA output is a histogram indicating the number of database sequences at
any given initial score (see Figure 3.4).

Although FASTA is a heuristic, and as such, it is possible to show instances in which
the alignments found by the algorithm are not optimal, it is claimed (and supported by
experience) that the resulting alignment scores compare well to the optimal alignment, while
the FASTA algorithm is much faster than the ordinary dynamic programming algorithm for
sequence alignment.

3.3 BLAST - Basic Local Alignment Search Tool

The BLAST algorithm was developed by Altschul, Gish, Miller, Myers and Lipman in 1990
[1]. The motivation for the development of BLAST was the need to increase the speed of
FASTA by finding fewer and better hot spots during the algorithm. The idea was to integrate
the substitution matrix in the first stage of finding the hot spots. The BLAST algorithm was
developed for protein alignments in comparison to FASTA, which was developed for DNA
sequences.

BLAST concentrates on finding regions of high local similarity in alignments without
gaps, evaluated by an alphabet-weight scoring matrix. Before explaining how BLAST obtains
its results, we will briefly introduce some terminology.

Given two strings S7 and Ss, a segment pairis a pair of equal length substrings of S; and
Sy, aligned without gaps. A locally mazimal segment is a segment whose alignment score
(without gaps) cannot be improved by extending it or shortening it. A mazimum segment

pair (MSP) in Sy and S is a segment pair with the maximum score over all segment pairs
in Sl; SQ.

When comparing all the sequences in the database against the query, BLAST attempts
to find all the database sequences that when paired with the query contain an MSP above
some cutoff score S. We call such a pair, a hi-scoring pair (HSP). We choose S such that it
is unlikely to find a random sequence in the database that achieves a score higher than S
when compared with the query sequence.

The stages in the BLAST algorithm are as follows:
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Fia. 1. Identification of sequence similarities by FASTA. The

four steps used by the FASTA program to calculate the initial and
optimal similarity scores between two sequences are shown. (A)
Identify regions of identity. (B) Scan the regions using a scoring
matrix and save the best initial regions. Initial regions with scores
less than the joining threshold (27) are dashed. The asterisk denotes
the highest scoring region reported by FASTP. (C) Optimally join
initial regions with scores greater than a threshold. The solid lines
denote regions that are joined to make up the optimized initial score.
(D) Recalculate an optimized alignment centered around the highest
scoring initial region. The dotted lines denote the bounds of the
optimized alignment. The result of this alignment is reported as the
optimized score.

Figure 3.3: Stages of the FASTA algorithm [6].
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Figure 3.4: FASTA output histogram [5].
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1. Given a length parameter w and a threshold parameter t, BLAST finds all the w-length
substrings (called words) of database sequences that align with words from the query
with an alignment score higher than t. Each such hot spot is called a hit in BLAST.
Instead of requiring words to match exactly, BLAST declares that a word hit has been
made if the word taken from the the database has a score of at least ¢t when a substi-
tution matrix is used to compare the word from the query. This strategy allows the
word size (w) to be kept high (for speed), without sacrificing sensitivity. It is usually
recommended to set the parameter w to values of 3 to 5 for amino acids, and ~ 12 for
nucleotides. Thus, ¢ becomes the critical parameter determining speed and sensitivity,
and w is rarely varied. If the value of ¢ is increased; the number of background word
hits will go down and the program will run faster. Reducing ¢ allows more distant
relationships to be found.

2. Extend each hit to a locally maximal segment and check if its score is above S, i.e. if
this sequences pair is HSP. Since pair score matrices typically include negative values,
extension of the initial w-mer hit may increase or decrease the score. Accordingly,
the extension of a hit can be terminated when the reduction in score (relative to the
maximum value encountered) exceeds certain score drop-off threshold.

We may implement the first stage by constructing, for each w-length word « in the query
sequence, all the w-length words whose similarity to « is at least . We store these words in
a data structure which is later accessed while checking the database sequences.

Although BLAST does not allow alignments with indels, it has been shown that with the
correct selection of values to the parameters used by the algorithm, it is possible to obtain
most of the correct alignments while saving much of the computation time compared to the
standard dynamic programming method.

3.3.1 Improved BLAST

Altschul et al. suggested in 1997 [3] an improved BLAST algorithm that allows indels in the
alignment.
The algorithm stages follow:

1. When considering the dynamic programming matrix to align two strings, we search
along each diagonal for two w-length words such that the distance between them is
< A and their score is > T. T can be lower than in the previous algorithm. Future
expansion is done only to such pairs of hits.

2. In the second stage we want to allow local alignments with indels, similarly to the
FASTA algorithm. We allow two local alignments from different diagonals to merge
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into a new local alignment composed of the first local alignment followed by some
indels and then the second local alignment. This local alignment is essentially a path
in the dynamic programming matrix, composed of two diagonal sections and a path
connecting them which may contain gaps. Unlike in FASTA, where we only allowed
the diagonal to have local shifts, restricted to a band, here we allow local alignments
from different diagonals to merge as long as the resulting alignment has a score above
some threshold. This method results in an alignment structure which is much less
regular.

The improved version of BLAST is about 3 times faster than the original algorithm due
to much less expansions made (only two-hit words are expanded).

3.3.2 PSI BLAST - Position Specific Iterated BLAST

The PSI BLAST is another improved version of the BLAST algorithm [3]. When aligning
a group of amino acid sequences, i.e., writing them one below the other (see Section 3.5 for
discussion of multiple alignment), the vector of characters in a certain column (i.e. the same
position in the aligned sequences) is called a profile. For a certain profile we may compute
the histogram of characters types and obtain their distribution. When we align together
amino acid sequences belonging to the same protein family, we will find that some regions
are very similar, with profiles showing little variance. These regions, called conserved regions,
define the structure and functionality typical to this family. We would like the substitution
matrices we use to take into account the statistical information that we have regarding how
conserved is the column, in order to improve our alignment score.

In the first stage of the algorithm we perform ordinary BLAST while using a different cost
vector V; for each column . Initially, each such vector V; is set to the row of the substitution
matrix corresponding to the i-th character in the query sequence. From the high-scoring
results we get, we build profiles for each column. We continue to perform BLAST iteratively
while using as query the collection of profiles, i.e. we use a histogram at each column rather
than a simple string, and compare it against the database. This is equivalent to updating
the position dependent cost vectors according to the profile statistics. After each iterative
step we update the profiles according to the obtained result sequences. We terminate the
iterative loop when we no longer find new meaningful matches.

PSI-BLAST is a rather permissive alignment tool, finding more distantly related se-
quences than FASTA or BLAST. It should be used with care, as the studied sequences may
prove too distant to be meaningfully related.
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3.4 Amino Acids Substitution Matrices

When we search for the best alignment between two protein sequences, the scoring (or sub-
stitution) matrix we use can largely affect the results we get. Ideally, the scores should reflect
the underlying biological phenomena that the alignment seeks to expose. For example - in
the case of sequence divergence due to evolutionary mutations, the values in the scoring
matrix should ideally be derived from empirical observation on ancestral sequences and their
contemporary descendants.

Two examples of simple substitution matrices often used that do not employ the biological
phenomena are:

1. The wunit matriz:

M, — 1 ifi:j.,
0 otherwise.

2. The genetic code matriz. M;; equals the number of minimal base substitutions needed
to convert a codon of amino acid ¢ to a codon of amino acid 7. We disregard here
the importance of chemical properties of the amino acids, that evidently influence the
chances for their substitution, like their hydrophobicity, charge or size.

Note that (1) measures similarity and (2) measures distance.

3.4.1 PAM units and PAM matrices

The methodology of PAM units and the first specific PAM matrices were developed by
Margaret Dayhoff et al. [7, 2]. Dayhoff and her coworkers examined 1572 accepted mutation
between 71 superfamilies of closely related sequences of proteins. During this process they
noticed that the substitutions that occurred in families of closely related proteins were not
random. They concluded that some amino acid substitutions occurred more readily than
others, probably because they did not have a great effect on the structure and function of
a protein. This meant that evolutionarily related proteins did not need to have the same
amino acids at every position: They could have comparable ones. In doing alignments, this
becomes very important. From such observations, the PAM matrix was born. PAM stands
for ”Point Accepted Mutations” or ”Percent of Accepted Mutations” [9)].
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PAM units

We use PAM units to measure the amount of evolutionary distance between two amino acid
sequences. Two sequences S; and Sy are at evolutionary distance of one PAM, if S has
converted to Sy with an average of one accepted point-mutation event per 100 amino acids.
The term “accepted” here means a mutation that was incorporated into the protein and
passed to its progeny. Therefore, either the mutation did not change the function of the
protein or the change in the protein was beneficial to the organism.

Note that two strings which are one PAM unit diverged do not necessarily differ in one
percent, as often mistakenly thought, because a single position may undergo more than a
single mutation. The difference between the two notions grows as the number of units does.
There are two main problems with the notion of PAM units:

1. Practically all the sequences we can obtain today are extracted from extant organisms.
We almost do not know any protein sequences where one is actually derived from the
other. The lack of ancestral protein sequences is handled by assuming that amino
acid mutations are reversible and equally likely in either direction. This assumption,
together with the additivity property of the PAM units derived from its definition,
imply that given two amino acid sequences S5; and S; whose mutual ancestor is S;; we
have:

d(S;, Sj) = d(S;, Sij) + d(Siy, S;)

where d(i, j) is the PAM distance between amino acid sequences i and j.

2. Insertions and deletions which may occur during evolution are ignored. Hence we
cannot be sure of the correct correspondence between sequence positions. In order to
know the exact correspondence one has to be able to identify the true historical gaps, or
at least to identify large intervals along the two sequences where the correspondence is
correct. This cannot always be done with certainty, especially when the two sequences
are evolutionarily distant.

PAM matrices

PAM matrices are amino acid substitution matrices that encode the expected evolutionary
change at the amino acid level. Each PAM matrix is designed to compare two sequences
which are a specific number of PAM units apart. For example - the PAM120 score matrix is
designed to compare between sequences that are 120 PAM units apart: The score it gives a
pair of sequences is the (log of the) probabilities of such sequences evolving during 120 PAM
units of evolution. For any specific pair (A4;, A;) of amino acids the (i, j) entry in the PAM-N
matrix reflects the frequency at which A; is expected to replace A; in two sequences that
are n PAM units diverged. These frequencies should be estimated by gathering statistics on
replaced amino acids.
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How the PAM matrix was generated

Collecting statistics about amino acids substitution in order to compute the PAM matrices is
relatively difficult for sequences that are evolutionarily distant, as mentioned in the previous
section. Luckily, for sequences that are highly similar, i.e., the PAM divergence distance
between them is small, finding the position correspondence is relatively easy since only few
insertions and deletions took place.

Therefore, Dayhoff started with aligned sequences, highly similar with known evolution-
ary trees (71 trees were examined). Then statistics on exchanges were collected (1572 ex-
changes in total). The PAMI matrix was computed as follows: Let M;; denote the observed
frequency (= estimated probability) of amino acid A; mutating into amino acid A; during
one PAM unit of evolutionary change. The resulting matrix M is a 20 x 20 real matrix, with
the values in each matrix column adding up to 1. There is a significant variance between
the values in each column. For example, see figure 3.5, taken from [2].

A R N D C
A 9867 2 9 10 3
R 1 9913 1 0 1
N 4 1 9822 36 0
D 6 0 42 9859 0
¢ 1 1 0 0 9973

Figure 3.5: The top left corner 5 x 5 of the M matrix used to compute PAM1. We write
10*M;; for convenience.

Note that a matrix with an evolutionary distance of 0 PAMs would have ones on the
main diagonal and zeros elsewhere. A matrix with an evolutionary distance of 1 PAM
would have numbers close to one on the main diagonal and small numbers off the main
diagonal. One PAM would correspond to roughly 1% divergence in a protein (one amino
acid replacement per hundred). To derive a mutational probability matrix for a protein
sequence that underwent N percent accepted mutations, we use the PAM-N matrix, the
PAM1 matrix multiplied by itself N times. This results in a family of scoring matrices, each
suitable for a given evolutionary distance.

Once M is known, the matrix M"™ gives the probabilities of any amino acid mutating
to any other during n PAM units. For convenience the following matrix is derived from
PAM-N:

FG)M"(.5)

Cij = log& = log%
fG@)f(5)
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where f(i) and f(j) are the observed frequencies of amino acids A; and A; respectively. This
approach assumes that the frequencies of the amino acids remain constant over time, and that
the mutational processes causing substitutions during an interval of one PAM unit operate
in the same manner for longer periods (assuming constant evolutionary clock). In general,
the key idea here is to use reliable information from similar sequences (getting PAM1) and
then extrapolating it. We are using ”log odds” - taking the log value of the probability in
order to allow computing the total score of all substitutions using summation rather than
multiplication. Partial validation of the correctness of PAM1 can be gained by viewing the
PAM matrices organized by groups of similar amino acids, when all group members are
located in consecutive columns in the matrix.

3.4.2 BLOSUM - BLOcks SUbstitution Matrix

The BLOSUM matrix is another amino acid substitution matrix, first calculated by Henikoff
and Henikoff [4]. The difference between the PAM and BLOSUM matrices is that PAM is
derived from global alignments of proteins, while BLOSUM comes from alignments of shorter
sequences — blocks of sequences that match each other at some defined level of similarity. The
BLOSUM method thereby incorporates much more data into its matrices, and is therefore,
presumably, more accurate.

For BLOSUM matrix calculation, only blocks of similar amino acid sequences are con-
sidered. We define blocks as a conserved region of a protein family with the family members
aligned (see Figure 3.6). These blocks represent over 500 groups of related proteins, and act
as signatures of these protein families. One reason for this is that one needs to find a multiple
alignment between all these sequences and it is easier to construct such an alignment with
similar sequences. Another reason is that the purpose of the matrix is to measure the prob-
ability of one amino acid changing into another, and the change between distant sequences
may include also insertions and deletions of amino acids. Moreover, we are more interested
in conservation of regions inside protein families, where sequences are quite similar, and
therefore we restrict our examination to such.

ABCDA. . .BBCDA
ABCDA. A .BBCBB
BBCDABA .BCCAA
AACDAC.DCBCDB
CBADAB.DBBDCC
AACAA. . .BBGCC

Q0>

Figure 3.6: Alignment of several sequences. The conserved blocks are marked.
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The first stage of building the BLOSUM matrix is eliminating sequences, which are
identical in more than % of their amino acid sequence. This is done to avoid bias of the
result in favor of a certain protein. The elimination is done either by removing sequences from
the block, or by finding a cluster of similar sequences and replacing it by a new sequence that
represents the cluster. If two sequences are more than 2% identical, then the contribution of
these sequences is weighted to sum to one. In this way the contributions of multiple entries
of closely related sequences is reduced. The matrix built from blocks with no more the 2%
of similarity is called BLOSUM X (e.g., the matrix built using sequences with no more then
50% similarity is called BLOSUMS50.)

Secondly, substitution statistics in each column of each block are collected. This is done
by counting the pairs of amino acids in each column of the multiple alignment. For example
in a column with amino-acids AABACA (as in the first column in the block in Figure 3.6),
there are 6 AA pairs, 4 AB pairs, 4 AC, one BC, 0 BB, 0 CC. So we have a contribution of
6-+4+4+1=15 from the example column to the count (more generally, (g) pairs for a column
of n amino-acids).

In the last stage the results are normalized according to the following definitions:

1. g;; - an observed probability for a pair of amino acids in the same column to be A;
and Aj.

2. p; - an observed probability of a certain amino acid to be A;:

Pi = Qi + Z Gij/2

G

3. Assuming independence, given pairs should occur with frequencies e; ; as follows:

eij = 2pipj, i # j
4. The odds matrix is ¢; j/€; ;.

5. log odd ratio is calculated as s; ; = log, ;%‘ The final result is the rounded 2s; ;. This

value is stored in the (7, j) entry of the BLOSUM matrix. If the observed number of
differences between a pair of amino acids is equal to the expected number then s; ; = 0.
If the observed is less than expected then s; ; < 0 and if the observed is greater than
expected then s; ; > 0.

How can we compare the performance of a BLOSUM matrix with a PAM matrix? Which
clustering percentage matrix from the BLOSUM family is equivalent with what PAM dis-
tance? Some tests were performed [10] and the results were that BLOSUM 45, 62, and 80
performed better (missed less aligned positions) than PAM 120, 160 or 250. While the PAMs
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missed 30-31 positions, BLOSUM missed 6-9 positions. In contrast to the PAM matrices,
more sequences are examined in the process of computing the BLOSUM matrix. Moreover,
the sequences are of specific nature of resemblance, and therefore the two sets of matrices
differ.

Comparing the efficiency of two matrices is done by calculating the ratio between the
number of pairs of similar sequences discovered by a certain matrix but not discovered by
another one and the number of pairs missed by the first but found by the other. According
to this comparison BLOSUMG62 (see example [8]) is found to be better than other BLOSUM
X matrices as well as PAM-X matrices and highly recommended for sequence alignment
and database searching. In general, it is logically to use a specific matricies for a certain
protein.
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