

MLO=Automata=regular expressions (over finite orders).

- MLO=Automata=regular expressions (over finite orders).
- 6 MLO= ω -Automata= ω -regular expressions (over Nat).

- MLO=Automata=regular expressions (over finite orders).
- 6 MLO= ω -Automata= ω -regular expressions (over Nat).
- 6 FOMLO=TL(U,S) (over Dedekind complete orders)

- MLO=Automata=regular expressions (over finite orders).
- 6 MLO= ω -Automata= ω -regular expressions (over Nat).
- 6 FOMLO=TL(U,S) (over Dedekind complete orders)
- FOMLO= star free regular expressions (over finite orders)

- MLO=Automata=regular expressions (over finite orders).
- 6 MLO= ω -Automata= ω -regular expressions (over Nat).
- 6 FOMLO=TL(U,S) (over Dedekind complete orders)
- FOMLO= star free regular expressions (over finite orders)
- 6 FOMLO = Counter-free automata (over finite orders)

Counter-free automata

Def. A sequence of states $q_0, q_1, \ldots q_m$ (for m > 0) in an automaton A is a counter for a string u if $\delta(q_i, u) = q_{i+1}$ where by convention $q_0 = q_{m+1}$.

Counter-free automata

Def. A sequence of states $q_0, q_1, \ldots q_m$ (for m > 0) in an automaton A is a counter for a string u if $\delta(q_i, u) = q_{i+1}$ where by convention $q_0 = q_{m+1}$.

Def. An automaton is **counter-free** iff it does not have a counter.

Counter-free automata

Def. A sequence of states $q_0, q_1, \ldots q_m$ (for m > 0) in an automaton A is a counter for a string u if $\delta(q_i, u) = q_{i+1}$ where by convention $q_0 = q_{m+1}$.

Def. An automaton is **counter-free** iff it does not have a counter.

Theorem (MacNaughton) A language is definable by FOMLO formula iff it is accepted by a deterministic counter-free automaton iff it is definable by a star free regular expression.

Theorem The satisfiability problem for TL(U) over Nat is in PSPACE.

Theorem The satisfiability problem for TL(U) over Nat is in PSPACE.

Lemma(Small Model property) If ϕ is satisfiable then it is satisfiable on a *quasi-periodic* model uv^{ω} with u, v small $(O(2^{|\phi|} \times |\phi|)$

Theorem The satisfiability problem for TL(U) over Nat is in PSPACE.

Lemma(Small Model property) If ϕ is satisfiable then it is satisfiable on a *quasi-periodic* model uv^{ω} with u, v small $(O(2^{|\phi|} \times |\phi|)$

Lemma The satisfiability of ϕ over small model can be checked in NPSPACE.

Theorem The satisfiability problem for TL(U) over Nat is in PSPACE.

Lemma(Small Model property) If ϕ is satisfiable then it is satisfiable on a *quasi-periodic* model uv^{ω} with u, v small $(O(2^{|\phi|} \times |\phi|)$

Lemma The satisfiability of ϕ over small model can be checked in NPSPACE.

Homework: Prove PSPACE lower bound for the satifiability problem

Theorem The satisfiability problem for TL(U) over Nat is in PSPACE.

Lemma(Small Model property) If ϕ is satisfiable then it is satisfiable on a *quasi-periodic* model uv^{ω} with u, v small $(O(2^{|\phi|} \times |\phi|)$

Lemma The satisfiability of ϕ over small model can be checked in NPSPACE.

Homework: Prove PSPACE lower bound for the satifiability problem

Hint: For every PSPACE TM M and a word u construct a

formula $\phi_{M,u}$ which is satisfiable iff M accepts u.

Notations: Sub(ϕ) - the set of subformulas of ϕ

Notations: Sub(ϕ) - the set of subformulas of ϕ Example $\phi = (XU(YU(Z \land \neg X)))$ The Subformulas of ϕ $\{X.\neg X, Y, \neg Y, Z, \neg Z, YU(Z \land \neg X), \neg YU(Z \land \neg X), Z \land \neg X, \neg (Z \land \neg X)\} \cup \{\phi\}$

Notations: Sub(ϕ) - the set of subformulas of ϕ Example $\phi = (XU(YU(Z \land \neg X)))$ The Subformulas of ϕ $\{X.\neg X, Y, \neg Y, Z, \neg Z, YU(Z \land \neg X), \neg YU(Z \land \neg X), Z \land \neg X, \neg (Z \land \neg X)\} \cup \{\phi\}$ Number of subformulas - $O(|\phi|)$

Notations: Sub(ϕ) - the set of subformulas of ϕ Example $\phi = (XU(YU(Z \land \neg X)))$ The Subformulas of ϕ $\{X.\neg X, Y, \neg Y, Z, \neg Z, YU(Z \land \neg X), \neg YU(Z \land \neg X), Z \land \neg X, \neg (Z \land \neg X)\} \cup \{\phi\}$ Number of subformulas - $O(|\phi|)$

Def (Type) Let ϕ be a formula A be a linear order with monadic predicates and b an element of A.

 $type_A^{\phi}(b) = \{ \psi \in Sub(\phi) : A, b \models \psi \}$

Then

1. For every $c \in A_3$

$$type^{\phi}_{A_1+A_2+A_3}(c) = type^{\phi}_{A_1+A_3}(c)$$

Assume
$$type_{A_1+A_2+A_3}^{\phi}(a) = type_{A_1+A_2+A_3}^{\phi}(b)$$

Then

1. For every $c \in A_3$

$$type^{\phi}_{A_1+A_2+A_3}(c) = type^{\phi}_{A_1+A_3}(c)$$

2. For every $c \in A_1$

$$type^{\phi}_{A_1+A_2+A_3}(c) = type^{\phi}_{A_1+A_3}(c)$$

$$type^{\phi}_{A_1+A_2+A_3}(c) = type^{\phi}_{A_1+A_2+A_2+A_3}(d)$$

Assume that b_i is an unbounded increasing sequence and

6
$$type_A^{\phi}(b_i) = type_A^{\phi}(b_j)$$
 for $i, j \in Nat$

Assume that b_i is an unbounded increasing sequence and

- 6 $type_A^{\phi}(b_i) = type_A^{\phi}(b_j)$ for $i, j \in Nat$
- For $\phi_1 U \phi_2 \in type_A^{\phi}(b_1)$ there is $c \in A_2$ such that $A, c \models \phi_2$.

Assume that b_i is an unbounded increasing sequence and

- 6 $type_A^{\phi}(b_i) = type_A^{\phi}(b_j)$ for $i, j \in Nat$
- For $\phi_1 U \phi_2 \in type_A^{\phi}(b_1)$ there is $c \in A_2$ such that $A, c \models \phi_2$.

Assume that b_i is an unbounded increasing sequence and

6
$$type_A^{\phi}(b_i) = type_A^{\phi}(b_j)$$
 for $i, j \in Nat$

• For $\phi_1 U \phi_2 \in type_A^{\phi}(b_1)$ there is $c \in A_2$ such that $A, c \models \phi_2$.

Then for every $d \in A_1 \cup A_2$ and $\psi \in Sub(\phi)$

$$A, d \models \psi \text{ iff } A_1 + \omega \times A_2, d \models \psi$$

Hence

6 if ϕ is satisfiable over a linear structure without a maximal element then it is satisfiable over a structure $A_1 + \omega A_2$.

Hence

- 6 if ϕ is satisfiable over a linear structure without a maximal element then it is satisfiable over a structure $A_1 + \omega A_2$.
- ⁶ if ϕ is satisfiable over the discrete time then it is satisfiable over a quasiperiodic structure uv^{ω} .

Hence

- 6 if ϕ is satisfiable over a linear structure without a maximal element then it is satisfiable over a structure $A_1 + \omega A_2$.
- ⁶ if ϕ is satisfiable over the discrete time then it is satisfiable over a quasiperiodic structure uv^{ω} .

Hence

- 6 if ϕ is satisfiable over a linear structure without a maximal element then it is satisfiable over a structure $A_1 + \omega A_2$.
- 6 if ϕ is satisfiable over the discrete time then it is satisfiable over a quasiperiodic structure uv^{ω} .

What is the length of u?

Hence

- 6 if ϕ is satisfiable over a linear structure without a maximal element then it is satisfiable over a structure $A_1 + \omega A_2$.
- ⁶ if ϕ is satisfiable over the discrete time then it is satisfiable over a quasiperiodic structure uv^{ω} .

What is the length of u?

 $|u| \leq$ the number of types of $\phi \leq 2^{|\phi|}$.

Hence

- 6 if ϕ is satisfiable over a linear structure without a maximal element then it is satisfiable over a structure $A_1 + \omega A_2$.
- ⁶ if ϕ is satisfiable over the discrete time then it is satisfiable over a quasiperiodic structure uv^{ω} .

What is the length of u?

 $|u| \leq$ the number of types of $\phi \leq 2^{|\phi|}$.

What is the length of v?

Hence

- 6 if ϕ is satisfiable over a linear structure without a maximal element then it is satisfiable over a structure $A_1 + \omega A_2$.
- ⁶ if ϕ is satisfiable over the discrete time then it is satisfiable over a quasiperiodic structure uv^{ω} .

What is the length of u?

 $|u| \leq$ the number of types of $\phi \leq 2^{|\phi|}$.

What is the length of v? $|v| \le 2^{|\phi|} \times |\phi|.$

The small model property Lemma implies

The small model property Lemma implies Theorem The satisfiability problem for TL(U) over Nat is in NEXPTIME.

The small model property Lemma implies **Theorem** The satisfiability problem for TL(U) over Nat is in NEXPTIME.

Algorithm If ϕ is satisfiable then there are exponentially small u and v such that $uv^{\omega}, 0 \models \phi$. An Algorithm guesses u and v and checks that the guesses are correct.

The small model property Lemma implies Theorem The satisfiability problem for TL(U) over Nat is in NEXPTIME.

Algorithm If ϕ is satisfiable then there are exponentially small u and v such that $uv^{\omega}, 0 \models \phi$. An Algorithm guesses u and v and checks that the guesses are correct.

The algorithm can be implemented on the fly (without explicit construction of u and v) in PSPACE. Hence

The small model property Lemma implies **Theorem** The satisfiability problem for TL(U) over Nat is in NEXPTIME.

Algorithm If ϕ is satisfiable then there are exponentially small u and v such that $uv^{\omega}, 0 \models \phi$. An Algorithm guesses u and v and checks that the guesses are correct.

The algorithm can be implemented on the fly (without explicit construction of u and v) in PSPACE. Hence

Theorem The satisfiability problem for TL(U) over Nat is in PSPACE.

Theorem. For every $\phi \in TL(U)$ there is a Street automata of size $2^{\phi|}$ that is equivalent to ϕ .

Theorem. For every $\phi \in TL(U)$ there is a Street automata of size $2^{\phi|}$ that is equivalent to ϕ .

Def. a set ${\cal S}$ of formulas is boolean consistent iff

1.
$$\phi_1 \land \phi_2 \in S$$
 iff $\phi_1 \in S$ and $\phi_2 \in S$.

2.
$$\neg \psi \in S$$
 iff $\psi \notin S$

Theorem. For every $\phi \in TL(U)$ there is a Street automata of size $2^{\phi|}$ that is equivalent to ϕ .

Def. a set ${\cal S}$ of formulas is boolean consistent iff

1.
$$\phi_1 \land \phi_2 \in S$$
 iff $\phi_1 \in S$ and $\phi_2 \in S$.

2.
$$\neg \psi \in S$$
 iff $\psi \notin S$

Observation $type_A^{\phi}$ is a maximal boolean consistent subset of the subformulas of ϕ .

States. The maximal Consistent subsets of $Sub(\phi)$.

States. The maximal Consistent subsets of $Sub(\phi)$.

Alphabet Let X_1, \ldots, X_n be the atomic propositions in ϕ . The alphabet is the subsets of $\{1, \ldots, n\}$.

States. The maximal Consistent subsets of $Sub(\phi)$.

Alphabet Let X_1, \ldots, X_n be the atomic propositions in ϕ . The alphabet is the subsets of $\{1, \ldots, n\}$.

Transitions Let a be the set of atomic propositions which are true at a state s. From s only a transitions are enabled.

$$s \rightarrow_a s'$$
 iff for every $\phi_1 U \phi_2 \in S$
either $\phi_2 \in s'$ or $\phi_1 \in s'$ and $\phi_1 U \phi_2 \in s'$

Notations. G_{ψ} the set of states that contain formula ψ .

Notations. G_{ψ} the set of states that contain formula ψ .

The Initial States: G_{ϕ}

Notations. G_{ψ} the set of states that contain formula ψ .

The Initial States: G_{ϕ}

The Street Acceptance conditions: For every $\phi_1 U \phi_2 \in Sub(\phi)$ we have the pair $\langle G_{\phi_1 U \phi_2}, G_{\phi_2} \rangle$ (i.e. if $\phi_1 U \phi_2$ holds infinitely often then ϕ_2 holds infinitely often,)

Notations. G_{ψ} the set of states that contain formula ψ .

The Initial States: G_{ϕ}

The Street Acceptance conditions: For every $\phi_1 U \phi_2 \in Sub(\phi)$ we have the pair $\langle G_{\phi_1 U \phi_2}, G_{\phi_2} \rangle$ (i.e. if $\phi_1 U \phi_2$ holds infinitely often then ϕ_2 holds infinitely often,)

Theorem Let $\sigma = s_0 a_0 s_1, a_1 \dots$ be a run of the automaton and let $u = a_0 a_1 \dots$ be the corresponding ω string. Then σ is an accepting run if and only if $u, 0 \models \phi$ and $s_i = type_u^{\phi}(i)$.

Notations. G_{ψ} the set of states that contain formula ψ .

The Initial States: G_{ϕ}

The Street Acceptance conditions: For every $\phi_1 U \phi_2 \in Sub(\phi)$ we have the pair $\langle G_{\phi_1 U \phi_2}, G_{\phi_2} \rangle$ (i.e. if $\phi_1 U \phi_2$ holds infinitely often then ϕ_2 holds infinitely often,)

Theorem Let $\sigma = s_0 a_0 s_1, a_1 \dots$ be a run of the automaton and let $u = a_0 a_1 \dots$ be the corresponding ω string. Then σ is an accepting run if and only if $u, 0 \models \phi$ and $s_i = type_u^{\phi}(i)$. **Proof.** The if direction is easy. The only if direction: by structural induction on formula for all *i* simultaneously show: if σ is an accepting run then $\psi \in s_i$ iff $u, i \models \psi$.