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Counter-free automata

Def. A sequence of states qq, ¢1,...q., (for m > 0) In an
automaton A is a counter for a string w if 6(q;, u) = ¢;11
where by convention gy = ¢y, 41-
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Counter-free automata

Def. A sequence of states qq, ¢1,...q., (for m > 0) In an
automaton A is a counter for a string w if 6(q;, u) = ¢;11
where by convention gy = ¢y, 41-

Def. An automaton Is counter-free iff it does not have a
counter.

Theorem (MacNaughton) A language is definable by FOMLO
formula iff it is accepted by a deterministic counter-free au-

tomaton iff it is definable by a star free regular expression.
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The complexity of TL(U) over Nat

Theorem The satisfiability problem for TL(U) over Nat is in
PSPACE.
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The complexity of TL(U) over Nat

Theorem The satisfiability problem for TL(U) over Nat is in
PSPACE.

Lemma(Small Model property) If ¢ is satisfiable then it is
satisfiable on a quasi-periodic model uv* with «, v small

(027 x |4])

Lemma The satisfiability of ¢ over small model can be
checked in NPSPACE.

Homework: Prove PSPACE lower bound for the satifiability
problem

Hint: For every PSPACE TM M and a word « construct a

formula ¢, ., which is satisfiable iff M accepts w.
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Proof of a small model property

Notations: Sub(¢) - the set of subformulas of ¢
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Proof of a small model property

Notations: Sub(¢) - the set of subformulas of ¢
Example ¢ = (XU(YU(Z N —=X)))

The Subformulas of ¢

{(X=X)Y,-Y, Z -ZYU(ZAN-X),-YU(ZN-X),Z N
~X,2(Z N =X)}U{¢}

Number of subformulas - O(|¢|)

Def (Type) Let ¢ be a formula A be a linear order with
monadic predicates and b an element of A.

typey (b) = {¢ € Sub(¢) : Ab | ¢}
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Proof of a small model property

Assume typeffh+A2+A3 (a) = typeffh+A2+A3 (b)

Ay A, Ag

Then
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Assume typeffh+A2+A3 (a) = typeffh+A2+A3 (b)

Ay A, Ag

Then
1. For every c € As

typeﬁl +Ao+As3 (C) — typeil +As (C)

2. Forevery ce A;

typefll +Ao+As (C) — typeﬁl + A3 (C)
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Proof of a small model property

Additional transformations
Image of a point

Assume typefflﬁAﬁAB (a) = typeﬁ1+A2+A3 (b)
Then
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Proof of a small model property

Additional transformations
Image of a point

Assume typeﬁ1+A2+A3 (a) = typeﬁ1+A2+A3 (b)

Then
For every ¢ and its image d

typeﬁl +Ag+Aj3 (C) — typefll +As+As+As (d)
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Proof of a small model property

Assume that b; is an unbounded increasing sequence and

type’; (b;) = type® (b;) for i, j € Nat
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Proof of a small model property

Assume that b; is an unbounded increasing sequence and

type’; (b;) = type® (b;) for i, j € Nat

For p,Ug, € type’,(by) there is ¢ € A, such that
A, C |: ¢2.

Then for every d € A; U Ay and ¢ € Sub(¢)
A,d ):w |ffA1—|—(,<} X Ag,dlzw
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Proof of a small model property

Hence

If ¢ Is satisfiable over a linear structure without a

maximal element then it is satisfiable over a structure
Al + CUAQ.
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Proof of a small model property

Hence

W
|u

W
vl

If ¢ Is satisfiable over a linear structure without a

maximal element then it is satisfiable over a structure
Al + CUAQ.

If ¢ Is satisfiable over the discrete time then it is
satisfiable over a quasiperiodic structure uv®.

nat is the length of «?
< the number of types of ¢ < 2!%I.

nat is the length of v?
< 2190 x |¢].
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The complexity of satisfiability for
TL(U)

The small model property Lemma implies

Theorem The satisfiability problem for TL(U) over Nat is in
NEXPTIME.

Algorithm If ¢ Is satisfiable then there are exponentially
small 4 and v such that uv“, 0 = ¢. An Algorithm guesses
v and v and checks that the guesses are correct.

The algorithm can be implemented on the fly (without

explicit construction of v and v ) in PSPACE.
Hence

Theorem The satisfiability problem for TL(U) over Nat is in
PSPACE.
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From TL(U) to Automata

Theorem. For every ¢ € TL(U) there is a Street automata of
size 2¢! that is equivalent to ¢.
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From TL(U) to Automata

Theorem. For every ¢ € TL(U) there is a Street automata of
size 2¢! that is equivalent to ¢.

Def. a set S of formulas is boolean consistent iff
1. p1 AN € Siff o1 € Sand ¢, € S.
2. eSiftyg S

Observation type’, is a maximal boolean consistent subset of

the subformulas of ¢.
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From TL(U) to Automata

States. The maximal Consistent subsets of Sub(¢).

Alphabet Let X, ... X,, be the atomic propositions in ¢. The
alphabet is the subsets of {1,...,n}.

Transitions Let a be the set of atomic propositions which are
true at a state s. From s only a transitions are enabled.

s —, s Iff for every o.Ugpy € S
either ¢, € s or ¢; € s and p1U¢py € &
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Notations. G, the set of states that contain formula .
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The Street Acceptance conditions: For every ¢,U ¢, € Sub(¢)
we have the pair (G, ue,, Gg,) (1.€. If 91U p2 holds infinitely
often then ¢, holds infinitely often,)
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and let u = aqpa; ... be the corresponding w string. Then
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Notations. G, the set of states that contain formula .
The Initial States: G

The Street Acceptance conditions: For every ¢,U ¢, € Sub(¢)
we have the pair (G, ue,, Gg,) (1.€. If 91U p2 holds infinitely
often then ¢, holds infinitely often,)

Theorem Let o = sgagsy,a; ... be arun of the automaton
and let u = aqpa; ... be the corresponding w string. Then

o IS an accepting run if and only if
u,0 = ¢ and s; = type? (7).
Proof. The If direction is easy. The only if direction: by

structural induction on formula for all = simultaneously
show: if o is an accepting run then ¢ € s; iff u,i = 1.
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