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Def. An automaton is counter-free iff it does not have a
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Alphabet Let

� � � � � � �B be the atomic propositions in

�

. The
alphabet is the subsets of

$ C � � � � � D %
.

Transitions Let 4 be the set of atomic propositions which are
true at a state E. From E only 4 transitions are enabled.

E FG E H iff for every

� � � � < . /

either

� < . E H or

� � . E H and

� � � � < . E H

– p.11/12



From TL(U) to Automata

Notations.

I J the set of states that contain formula

-

.

– p.12/12



From TL(U) to Automata

Notations.

I J the set of states that contain formula

-

.

The Initial States:

I �

– p.12/12



From TL(U) to Automata

Notations.

I J the set of states that contain formula

-

.

The Initial States:

I �

The Street Acceptance conditions: For every

� � � � < . / � ' 
 � �

we have the pair

K I � 1 L �2 � I �2 M
(i.e. if

� � � � < holds infinitely
often then

� < holds infinitely often,)

– p.12/12



From TL(U) to Automata

Notations.

I J the set of states that contain formula

-

.

The Initial States:

I �

The Street Acceptance conditions: For every

� � � � < . / � ' 
 � �

we have the pair

K I � 1 L �2 � I �2 M
(i.e. if

� � � � < holds infinitely
often then

� < holds infinitely often,)

Theorem Let N � E � 4 � E � � 4 � � � � be a run of the automaton
and let � � 4 � 4 � � � � be the corresponding � string. Then

N is an accepting run if and only if
� � 	 � � �

and E � � ( ) * + �
� 
 9 �

.

– p.12/12



From TL(U) to Automata

Notations.

I J the set of states that contain formula

-

.

The Initial States:

I �

The Street Acceptance conditions: For every

� � � � < . / � ' 
 � �

we have the pair

K I � 1 L �2 � I �2 M
(i.e. if

� � � � < holds infinitely
often then

� < holds infinitely often,)

Theorem Let N � E � 4 � E � � 4 � � � � be a run of the automaton
and let � � 4 � 4 � � � � be the corresponding � string. Then

N is an accepting run if and only if
� � 	 � � �

and E � � ( ) * + �
� 
 9 �

.
Proof. The if direction is easy. The only if direction: by
structural induction on formula for all

9

simultaneously
show: if N is an accepting run then

- . E � iff � � 9 � � -
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